Weighted Hurwitz numbers and topological recursion

J. Harnad

Centre de recherches mathématiques
Université de Montréal
Department of Mathematics and Statistics
Concordia University

BIRS Workshop, Sept. 2-7, 2017 Tau functions of integrable systems and their applications

*Based in part on joint work with: M. Guay-Paquet, A. Yu. Orlov, A. Alexandrov, G. Chapuy, B. Eynard

Uses of τ-functions

1. Integrable dynamical systems (autonomous). Generating functions for (isosospectral) commutative flows in integrable systems (KP, Toda, etc.). (Similar to Hamilton's principle function on level sets of invariants.)
2. Integrable dynamical systems (nonautonomous). Generating functions for isomonodromic deformations.
3. Random processes, random matrices, conformal field theory. Partitions functions for random processes, etc. subject to integrable deformations.
4. Quantum integrable systems and solvable lattice models. Solutions to Bethe ansatz equations.(Addition theorems.)
5. Enumerative geometry, topology. Combinatorial generating functions for enumerative invariants. (Intersection numbers, Gromov-Witten invariants, weighted Hurwitz numbers, etc.)

(1) General classical Hurwitz numbers

- Enumerative group theoretical meaning (Frobenius)
- Geometric meaning (Hurwitz)
- Graphical encoding of branched covers "Constellations"
- Simple double Hurwitz numbers (Okounkov/Pandharipande)

2) KP and 2D Toda τ-functions as generating functions

- Simple (single and double) Hurwitz numbers
- τ-functions as generating functions for Hurwitz numbers
- Weighted Hurwitz numbers: weighted branched coverings
- Geometric weighted Hurwitz numbers: weighted coverings
- Examples
(3) Fermionic representations and topological recursion
- Fermionic representation of τ-function and Baker function
- Fermionic representation of adapted basis
- Spectral curve: quantum and classical
- Pair correlator (spectral kernel)
- Current correlators as generating functions

Factorization of elements in S_{N}

Question: What is the number $N!F\left(\mu^{(1)}, \ldots \mu^{(k)}, \mu\right)$ of distinct ways the identity element $\mathbf{I} \in S_{N}$ in the symmetric group S_{N} can be written as a product

$$
\mathbf{I}=h_{1} h_{2} \cdots h_{k}
$$

of k elements $h_{i} \in S_{N}$ in the conjugacy classes of cycle type $h_{i} \in \operatorname{cyc}\left(\mu^{(i))}\right)$ for a given sequence of partitions $\left\{\mu^{(i)}\right\}_{i=1, \ldots, k}$ of N ?

Young diagram of a partition. Example $\mu=(5,4,4,2)$

Representation theoretic answer (Frobenius-Schur)

The Frobenius-Schur formula expresses this in terms of characters:

$$
F\left(\mu^{(1)}, \ldots \mu^{(k)}\right)=\sum_{\lambda,|\lambda|=N} h_{\lambda}^{k-2} \prod_{i=1}^{k} \frac{\chi_{\lambda}\left(\mu^{(i)}\right)}{z_{\mu^{(i)}}}, \quad\left|\mu^{(i)}\right|=N
$$

where $h_{\lambda}=\left(\operatorname{det} \frac{1}{\left(\lambda_{i}-i+j\right)!}\right)^{-1}$ is the product of the hook lengths of the partition $\lambda=\lambda_{1} \geq \cdots \geq \lambda_{\ell(\lambda}>0$, where
$\chi_{\lambda}\left(\mu^{(i)}\right)$ is the irreducible character of representation λ evaluated in the conjugacy class $\mu^{(i)}$, and

$$
z_{\mu}:=\prod_{i} i^{m_{i}(\mu)}\left(m_{i}(\mu)\right)!=|\operatorname{aut}(\mu)|
$$

is the order of the stabilizer of an element of $\operatorname{cyc}(\mu)$
($m_{i}(\mu)=\#$ parts μ_{j} of μ equal to i).

Geometric meaning (Hurwitz)

Hurwitz numbers: Let $H\left(\mu^{(1)}, \ldots, \mu^{(k)}\right)$ be the number of inequivalent branched N-sheeted covers of the Riemann sphere, with k branch points, and ramification profiles $\left(\mu^{(1)}, \ldots, \mu^{(k)}\right)$ at these points.

The Euler characteristic of the covering curve is given by the Riemann-Hurwitz formula:

$$
2-2 g=2 N-d, \quad d:=\sum_{i=1}^{1} \ell^{*}\left(\mu^{(i)}\right)
$$

$g=$ genus of covering curve,
where $\ell^{*}(\mu):=|\mu|-\ell(\mu)=N-\ell(\mu)$ is the colength of the partition. The Monodromy Representation shows these two enumerative invariants are identical.

$$
H\left(\mu^{(1)}, \ldots, \mu^{(k)}\right)=F\left(\mu^{(1)}, \ldots, \mu^{(k)}\right)
$$

Example: 3 -sheeted branched cover with ramification profiles (3) and $(2,1)$

Graphical encoding of branched covers: Constellations

Constellations:

(1) Let P be a generic (non-branched) base point of the covering $\mathcal{C} \rightarrow \mathbf{C P}{ }^{1}$ and $\left(P_{1}, \ldots, P_{N}\right)$ an ordering of the points of \mathcal{C} over P.
(2) Let $\left(Q^{(1)}, \ldots Q^{(k)}\right)$ be an ordering of the branch points of the cover $\Gamma \rightarrow \mathbf{C P}{ }^{1}$, with $\left(Q_{j}^{(i)}\right), j=1, \ldots, \mu_{j}^{(i)}$ the ramification points over these, having ramification indices $\operatorname{ram}\left(Q_{j}^{(i)}\right)=\mu_{j}^{(i)}$ equal to the parts of the partitions $\left(\mu^{(1)}, \ldots, \mu^{(k)}\right)$
(3) For each simple, closed curve \mathcal{C}_{i} in $P \in \mathbf{C P}{ }^{1}$ based at $P \in \mathbf{C P}{ }^{1}$ and going once around $Q^{(i)}$ in the positive sense, there is a unique lift to Γ whose monodromy is an element $h_{i} \in \operatorname{cyc}\left(\mu^{(i)}\right) \subset S_{N}$

Constellations (cont'd)

(4) Draw a bipartite graph on Γ, with vertices of two types: "coloured" and "stars". The "coloured" vertices are the points $\left\{Q_{j}^{(i)}\right\}$ and the star vertices are the points $\left\{P_{1}, \ldots, P_{N}\right\}$. The edges consist of the pairs of segments of the contours around each ramification point $Q_{j}^{(i)}$ starting or ending at one of the unramified ones P_{1}, \ldots, P_{N}.

To these, we add two more "fixed" branch points, say $Q^{(0)}=0$, $Q^{(k+1)}=\infty$, with ramification profiles $\mu^{(0)}:=\mu$ and $\mu^{(k+1)}:=\nu$

Example ($N=5, \quad k=3$)

$$
\begin{aligned}
h_{1} & =(135), \quad h_{2}=(15)(23), \quad h_{3}=(14), \\
h_{0} & =(321), \quad h_{4}=h_{\infty}=(14) \\
\mu^{(1)} & =(3,1,1)), \quad \mu^{(2)}=(2,2,1), \quad \mu^{(3)}=(2,1,1,1), \\
\mu & \left.:=\mu^{(0)}=(3,1,1)\right), \quad \nu:=\mu^{(4)}=(2,1,1,1)
\end{aligned}
$$

Example: Simple single/double Hurwitz numbers (Pandharipande/Okounkov)

In particular, choosing only simple ramifications $\mu^{(i)}=\left(2,(1)^{n-2}\right)$ at $d=k$ points and one further arbitrary one μ at a single point, say, 0 , we have the single simple Hurwitz number:

$$
H^{d}(\mu):=H\left(\left(2,(1)^{n-1}\right), \ldots,\left(2,(1)^{n-1}\right), \mu\right)
$$

By the Frobenius-Schur formula this is

$$
H^{d}(\mu)=\sum_{\lambda,|\lambda|=|\mu|} \frac{\chi_{\lambda}(\mu)}{z_{\mu} h_{\lambda}}\left(\operatorname{cont}_{\lambda}\right)^{d}
$$

where the content sum of the Young diagram associated to λ is defined as

$$
\operatorname{cont}(\lambda):=\sum_{(i j) \in \lambda}(j-i)=\frac{1}{2} \sum_{i=1}^{\ell(\lambda)} \lambda_{i}\left(\lambda_{i}-2 i+1\right)=\frac{\chi_{\lambda}\left(\left(2,(1)^{n-2}\right) h_{\lambda}\right.}{z_{\left(2,(1)^{n-2}\right)}}
$$

Simple single/ double Hurwitz numbers
 (Pandharipande/Okounkov)

The simple (double) Hurwitz number (Okounkov (2000)), defined as

$$
\left.\operatorname{Cov}_{d}(\mu, \nu)=H_{\exp }^{d}(\mu, \nu)\right):=H\left(\left(2,(1)^{n-1}\right), \ldots,\left(2,(1)^{n-1}\right), \mu, \nu\right)
$$

have the ramification types (μ, ν) at two points, say $(0, \infty)$, and simple ramification $\mu^{(i)}=\left(2,(1)^{n-2}\right)$ at $d=k$ other branch points.

Combinatorial meaning: paths in the Cayley graph

Combinatorially, this equals the number of d-step paths in the Cayley graph of S_{n} generated by transpositions, starting at an element $h \in \operatorname{cyc}(\mu)$ and ending in the conjugacy class cyc (ν).

Example: Cayley graph for S_{4} generated by all transpositions

Hypergeometric τ-function as generating function for simple single and double Hurwitz numbers: (Okounkov, Pandharipande)

Define

$$
\begin{aligned}
\tau^{m K P(\gamma, \beta)}(N, \mathbf{t}) & \left.:=\sum_{\lambda} \gamma^{|\lambda|} r_{\lambda}^{\exp }(N, \beta)\right) h_{\lambda}^{-1} s_{\lambda}(\mathbf{t}) \\
\tau^{2 D T o d a(\gamma, \beta)}(N, \mathbf{t}, \mathbf{s}) & :=\sum_{\lambda} \gamma^{|\lambda|} r_{\lambda}^{\exp }(N, \beta) s_{\lambda}(\mathbf{t}) s_{\lambda}(\mathbf{s})
\end{aligned}
$$

where

$$
r_{\lambda}^{\exp }(N, \beta):=\prod_{(i j) \in \lambda} r_{N+j-i}^{\exp }(\beta), \quad r_{j}^{\exp }(\beta):=e^{j \beta}
$$

and

$$
\mathbf{t}=\left(t_{1}, t_{2}, \ldots\right), \quad \mathbf{s}=\left(s_{1}, s_{2}, \ldots\right)
$$

are the KP and 2D Toda flow variables.
For $N=0$, we have

$$
r_{\lambda}^{\exp }(0, \beta)=e^{\beta \operatorname{cont}(\lambda)}
$$

$\mathbf{m K P}$ Hirota bilinear relations for $\tau_{g}^{m K P}(N, \mathbf{t}), \mathbf{t}:=\left(t_{1}, t_{2}, \ldots\right), N \in \mathbf{Z}$

$\oint_{z=\infty} z^{N-N^{\prime}} e^{-\xi(\delta \mathbf{t}, z)} \tau_{g}^{m K P}\left(N, \mathbf{t}-\left[z^{-1}\right]\right) \tau_{g}^{m K P}\left(N^{\prime}, \mathbf{t}+\delta \mathbf{t}+\left[z^{-1}\right]\right)=0$
$\xi(\delta \mathbf{t}, z):=\sum_{i=1}^{\infty} \delta t_{i} z^{i}, \quad\left[z^{-1}\right]_{i}:=\frac{1}{i} z^{-i}, \quad$ identically in $\delta \mathbf{t}=\left(\delta t_{1}, \delta t_{2}, \ldots\right)$

2D Toda Hirota bilinear relations for $\tau_{g}^{2 \operatorname{Toda}}(N, \mathbf{t}, \mathbf{s}), \mathbf{s}:=\left(s_{1}, s_{2}, \ldots\right)$

$$
\begin{aligned}
& \oint_{z=\infty} z^{N-N^{\prime}} e^{-\xi(\delta t, z)} \tau_{g}^{2 \text { Toda }}\left(N, \mathbf{t}-\left[z^{-1}\right], \mathbf{s}\right) \tau_{g}^{2 \text { Toda }}\left(N^{\prime}, \mathbf{t}+\delta \mathbf{t}+\left[z^{-1}\right], \mathbf{s}\right)= \\
& \oint_{z=0} z^{N-N^{\prime}} e^{-\xi(\delta \mathbf{s}, z)} \tau_{g}^{2 \text { Toda }}(N+1, \mathbf{t}, \mathbf{s}-[z]) \tau_{g}^{2 \text { Toda }}\left(N^{\prime}-1, \mathbf{t}, \mathbf{s}+\delta \mathbf{s}+[z]\right) \\
& {[z]_{i}:=\frac{1}{i} z^{i}, \quad \text { identically in } \delta \mathbf{t}=\left(\delta t_{1}, \delta t_{2}, \ldots\right), \delta \mathbf{s}:=\left(\delta \mathbf{s}_{1}, \delta s_{2}, \ldots\right)}
\end{aligned}
$$

Change of basis: Frobenius character formula

Using the Frobenius character formula:

$$
s_{\lambda}(\mathbf{t})=\sum_{\mu,|\mu|=|\lambda|} \frac{\chi_{\lambda}(\mu)}{z_{\mu}} p_{\mu}(\mathbf{t})
$$

where we restrict to

$$
i t_{i}:=p_{i}, \quad i s_{i}:=p_{i}^{\prime}
$$

and the p_{μ} 's are the power sum symmetric functions

$$
p_{\mu}=\prod_{i=1}^{\ell(\mu)} p_{\mu_{i}}, \quad p_{i}:=\sum_{a=1}^{\infty} x_{a}^{i}, \quad p_{i}^{\prime}:=\sum_{a=1}^{\infty} y_{a}^{i}
$$

Generating functions for single and double simple Hurwitz numbers (Okounkov, Pandharipande)

$$
\begin{aligned}
\tau^{(\gamma, \beta)}(\mathbf{t}) & :=\tau^{K P(\gamma, \beta)}(0, \mathbf{t})=\sum_{\lambda} \gamma^{|\lambda|} h_{\lambda}^{-1} e^{\beta \operatorname{cont}(\lambda)} \boldsymbol{s}_{\lambda}(\mathbf{t}) \\
& =\sum_{n=0}^{\infty} \gamma^{n} \sum_{d=0}^{\infty} \frac{\beta^{d}}{d!} \sum_{\mu,|\mu|=n} H_{\exp }^{d}(\mu) p_{\mu}(\mathbf{t}) \\
\tau^{2 D(\gamma, \beta)}(\mathbf{t}, \mathbf{s}) & :=\tau^{2 D \operatorname{Toda}(\gamma, \beta)}(0, \mathbf{t}, \mathbf{s})=\sum_{\lambda} \gamma^{|\lambda|} e^{\beta \operatorname{cont}(\lambda)} \boldsymbol{s}_{\lambda}(\mathbf{t}) \boldsymbol{s}_{\lambda}(\mathbf{s}) \\
& =\sum_{n=0}^{\infty} \gamma^{n} \sum_{d=0}^{\infty} \frac{\beta^{d}}{d!} \sum_{\mu, \nu,|\mu|=\nu \mid=n} H_{\exp }^{d}(\mu, \nu) p_{\mu}(\mathbf{t}) p_{\nu}(\mathbf{s})
\end{aligned}
$$

These are therefore generating functions for the simple single and double Hurwitz numbers.

Weighted Hurwitz numbers: weighted branched coverings

Choose a weight generating function

$$
G(z)=1+\sum_{i=1}^{\infty} g_{i} z^{i}
$$

For Okounkov-Pandharipande's simple single and double Hurwitz numbers: $G(z)=e^{z}$.
If $G(z)$ is expressible as an infinite (or finite) product expansion

$$
G(z):=\prod_{i=1}^{\infty}\left(1+z c_{i}\right), \quad \text { or } \quad G(z):=\prod_{i=1}^{\infty}\left(1-z c_{i}\right)^{-1}, \quad \mathbf{c}=\left(c_{1}, c_{2}, \ldots\right),
$$

the g_{i} 's are the elementary or complete symmetric functions

$$
g_{i}=e_{i}(\mathbf{c}), \quad \text { or } g_{i}=h_{i}(\mathbf{c}) .
$$

of the weight determining parameters $\mathbf{c}=\left(c_{1}, c_{2}, \ldots\right)$.

Suppose the generating function $G(z)$ and its dual $\tilde{G}(z):=\frac{1}{G(-z)}$ can be represented as infinite (or finite) products

$$
G(z)=\prod_{i=1}^{\infty}\left(1+z c_{i}\right), \quad \tilde{G}(z)=\prod_{i=1}^{\infty} \frac{1}{1-z c_{i}} .
$$

Define the weight for a branched covering having a pair of branch points with ramification profiles of type (μ, ν), and k additional branch points with ramification profiles $\left.\left(\mu^{1}\right), \ldots, \mu^{(k)}\right)$ to be:

$$
\begin{aligned}
& W_{G}\left(\mu^{(1)}, \ldots, \mu^{(k)}\right):=\frac{1}{k!} \sum_{\sigma \in S_{k}} \sum_{1 \leq i_{i}<\cdots<i_{k}} c_{i_{\sigma}(1)}^{\ell^{*}\left(\mu^{(1)}\right)} \cdots c_{i_{\sigma}(k)}^{\ell^{*}\left(\mu^{(k)}\right)} \\
& W_{\tilde{G}}\left(\mu^{(1)}, \ldots, \mu^{(k)}\right):=\frac{(-1)^{\ell^{*}(\lambda)}}{k!} \sum_{\sigma \in S_{k}} \sum_{1 \leq i_{1} \leq \cdots \leq i_{k}} c_{i_{\sigma}(1)}^{\ell^{*}\left(\mu^{(1)}\right)}, \cdots c_{i_{\sigma}(k)}^{\ell^{*}\left(\mu^{(k)}\right)},
\end{aligned}
$$

where the partition λ of length k has parts $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ equal to the colengths ($\ell^{*}\left(\mu^{(1)}\right), \ldots, \ell^{*}\left(\mu^{(k)}\right)$), arranged in weakly decreasing order.

Definition (Weighted geometrical Hurwitz numbers)

The weighted geometrical Hurwitz numbers for n-sheeted branched coverings of the Riemann sphere, having a pair of branch points with ramification profiles of type (μ, ν), and k additional branch points with ramification profiles $\left(\mu^{1)}, \ldots, \mu^{(k)}\right)$ are defined to be

$$
\begin{aligned}
& H_{G}^{d}(\mu, \nu):=\sum_{k=0}^{\infty} \sum_{\substack{\mu^{(1)}, \ldots \mu^{(k)} \\
\sum_{i=1}^{k} \ell^{*}\left(\mu^{(i)}\right)=d}}^{\prime} W_{G}\left(\mu^{(1)}, \ldots, \mu^{(k)}\right) H\left(\mu^{(1)}, \ldots, \mu^{(k)}, \mu, \nu\right) \\
& H_{\tilde{G}}^{d}(\mu, \nu):=\sum_{k=0}^{\infty} \sum_{\substack{\mu^{(1)}, \ldots \mu^{(k)} \\
\sum_{i=1}^{d} \ell^{*}\left(\mu^{(i)}\right)=d}}^{\prime} W_{\tilde{G}}\left(\mu^{(1)}, \ldots, \mu^{(k)}\right) H\left(\mu^{(1)}, \ldots, \mu^{(k)}, \mu, \nu\right),
\end{aligned}
$$

where \sum^{\prime} denotes the sum over all partitions other than the cycle type of the identity element.

Content product formula and τ-function

Choose the following parameters of the hypergeometric τ - function content product formula

$$
\begin{aligned}
r_{\lambda}^{G}(\beta) & =\prod_{(i j) \in \lambda} G((j-i) \beta)=\prod_{(i j) \in \lambda} r_{j-i}^{G}(\beta) \\
r_{j}^{G}(\beta) & :=G(j \beta)=\frac{\rho_{j}}{\rho_{j-1}}, \\
\rho_{j} & =e^{T_{j}}=\prod_{i=1}^{j} G(i \beta), \quad \rho_{0}=1 \\
\rho_{-j} & =e^{T_{-j}}=\prod_{i=1}^{j} G^{-1}(-i \beta), \quad j=1,2, \ldots
\end{aligned}
$$

Theorem (Hypergeometric τ-functions as generating function for weighted branched covers)

Geometrically,

$$
\begin{aligned}
\tau^{(G, \beta, \gamma)}(\mathbf{t}, \mathbf{s}) & =\sum_{\lambda} \gamma^{|\lambda|} r_{\lambda}^{G}(\beta) \boldsymbol{s}_{\lambda}(\mathbf{t}) \boldsymbol{s}_{\lambda}(\mathbf{s}) \\
& =\sum_{d=0}^{\infty} \sum_{\substack{\mu, \nu,|\mu|=|\nu|}} \gamma^{|\mu|} H_{G}^{d}(\mu, \nu) p_{\mu}(\mathbf{t}) p_{\nu}(\mathbf{s}) \beta^{d}
\end{aligned}
$$

is the generating function for the numbers $H_{G}^{d}(\mu, \nu)$ of such weighted n-fold branched coverings of the sphere, with a pair of specified branch points having ramification profiles (μ, ν) and genus given by the Riemann-Hurwitz formula

$$
2-2 g=\ell(\mu)+\ell(\nu)-d
$$

Weighted constellations: Coloured $\left\{Q_{i=1, \ldots, k}^{(j)}\right\}$ vertices and edges

$$
\left(\beta c_{j}\right)^{-1} \varliminf^{Q_{1}^{(j)}}
$$

$$
Q^{(j)}
$$

Weighted constellations: White $\left\{Q_{i}^{(0)}\right\}$ vertices

$$
Q^{(0)}
$$

Weighted constellations: Black $\left\{Q^{\left.(\infty)_{i}\right\}}\right.$ vertices

$$
Q^{(\infty)}
$$

τ function as generating functions for weighted constellations

Taking the product of all weights over all vertices and edges and summing gives the τ-function

$$
\tau^{(G, \beta, \gamma)}(\mathbf{t}, \mathbf{s})=\sum_{d=0}^{\infty} \sum_{\substack{\mu, \nu\rangle \\|\mu|=|\nu|}} \gamma^{|\mu|} H_{G}^{d}(\mu, \nu) p_{\mu}(\mathbf{t}) p_{\nu}(\mathbf{s}) \beta^{d}
$$

Example 1: Okounkov's simple double Hurwitz numbers

$$
\begin{aligned}
G(z) & =\exp (z), \quad \exp _{j}=\frac{1}{j!} \\
r_{j}^{\exp }(\beta) & =\exp (j \beta), \quad r_{\lambda}^{\exp }(\beta)=\prod_{(j) \in \lambda} \exp (\beta(j-i)),
\end{aligned}
$$

Example 2: Belyi curves: strongly monotone paths

$$
\begin{aligned}
G(z) & =E(z):=1+z, \quad E(z, \mathcal{J})=\prod_{a=1}^{n}\left(1+z \mathcal{J}_{a}\right) \\
e_{1} & =1, \quad e_{j}=0 \text { for } j>1, \quad r_{\lambda}^{E}(\beta)=\prod_{((j) \in \lambda}(1+\beta(j-i)), \\
T_{j}^{E} & =\sum_{k=1}^{j} \ln (1+k \beta), \quad T_{-j}^{E}=-\sum_{k=1}^{j-1} \ln (1-k \beta), \quad j>0 .
\end{aligned}
$$

Example 3: Signed Hurwitz numbers: weakly monotone paths

$$
\begin{aligned}
G(z) & =H(z):=\frac{1}{1-z}, \quad H_{i}=1, i \in \mathbf{N}^{+} \\
r_{j}^{H}(\beta) & =(1-z j)^{-1}, \quad r_{\lambda}^{H}(\beta)=\prod_{(i j) \in \lambda}(1-\beta(j-i))^{-1}, \\
T_{j}^{H} & =-\sum_{i=1}^{j} \ln (1-i \beta), \quad T_{-j}^{E}=\sum_{i=1}^{j-1} \ln (1+i \beta), \quad j>0 .
\end{aligned}
$$

Combinatorially, $H_{H}^{d}(\mu, \nu)=F_{H}^{d}(\mu, \nu)$ enumerates d-step paths in the Cayley graph of S_{n} from an element in the conjugacy class of cycle type μ to the class cycle type ν, that are weakly monotonically increasing in their second elements.

Signed Hurwitz numbers: weakly monotone paths (cont'd)

Specializing to:

$$
t_{i}:=\frac{1}{i} \operatorname{tr} A^{N}, s_{i}:=\frac{1}{i} \operatorname{tr} B^{N}, A, B \in \mathcal{H}^{N \times N}, \beta=1 / N
$$

Gives the Itzykson-Zuber-Harish-Chandra integral

$$
\begin{aligned}
\tau^{H, 1 / N}=\mathcal{I}_{N}(A, B) & :=\int_{U \in U(N)} e^{-\operatorname{tr} U A U^{\dagger} B} d \mu(U) \\
& =\prod_{k=0}^{N-1} k!\frac{\operatorname{det}\left(e^{-a_{i} b_{j}}\right)_{1 \leq i, j \leq N}}{\Delta(\mathbf{a}) \Delta(\mathbf{b})}
\end{aligned}
$$

Signed Hurwitz numbers: weakly monotone paths (cont'd)

The coefficients $H_{H}^{d}(\mu, \nu)$ are double Hurwitz numbers that enumerate n-sheeted branched coverings of the Riemann sphere with branch points at 0 and ∞ having ramification profile types μ and ν, and an arbitrary number of further branch points, such that the sum of the complements of their ramification profile lengths (i.e., the "defect" in the Riemann Hurwitz formula) is equal to d. The latter are counted with a sign, which is $(-1)^{n+d}$ times the parity of the number of branch points.

Fermionic representation of hypergeometric 2D Toda τ-functions

The fermionic creation and annihiliation operators $\left\{\psi_{i}, \psi_{i}^{\dagger}\right\}_{i \in \mathbf{Z}}$ satisfy the usual anticommutation relations and vacuum state $|0\rangle$ vanishing conditions

$$
\left[\psi_{i}, \psi_{j}^{\dagger}\right]_{+}=\delta_{i j} \quad \psi_{i}|0\rangle=0, \quad \text { for } i<0, \quad \psi_{i}^{\dagger}|0\rangle=0, \quad \text { for } i \geq 0 .
$$

The shift flow abelian subgroups $\Gamma_{+}=\left\{\gamma_{+}(\mathbf{t}\}, \Gamma_{-}=\left\{\gamma_{-}(\mathbf{s})\right\}\right.$ are defined in terms of the current components $J\left\{{ }_{i}\right\}_{i \in \mathbf{Z}}$ as

$$
\hat{\gamma}_{+}(\mathbf{t})=e^{\sum_{i=1}^{\infty} t_{i} J_{i}}, \quad \hat{\gamma}-(\mathbf{s})=e^{\sum_{i=1}^{\infty} s_{i} J_{-i}}, \quad J_{i}=\sum_{k \in \mathbf{Z}} \psi_{k} \psi_{k+i}^{\dagger}, \quad i \in \mathbf{Z} .
$$

Choose the parameters of the hypergeometric τ - function as:

$$
\rho_{j}=e^{T_{i}}=\prod_{i=1}^{j} G(i \beta), \quad \rho_{-j}=e^{T_{-i}}=\prod_{i=0}^{j-1}(G(-i \beta))^{-1}, \quad j=1,2, \ldots
$$

Fermionic expressions for the τ-function and Baker function

The τ-function is expressed fermionically as

$$
\tau_{\rho}(N, \mathbf{t}, \mathbf{s}):=\langle N| \hat{\gamma}_{+}(\mathbf{t}) \hat{C}_{\rho} \hat{\gamma}_{-}(\mathbf{s})|N\rangle
$$

where

$$
\hat{C}_{\rho}:=e^{\sum_{i \in \mathcal{Z}}\left(T_{i}+\operatorname{lin}(\gamma)\right): \psi_{i} \psi_{i}^{\dagger}:}
$$

The Baker function and dual Baker function are

$$
\begin{aligned}
& \Psi_{\rho}(z, \mathbf{t}, \mathbf{s})=\frac{\langle 0| \psi_{0}^{\dagger} \hat{\gamma}_{+}(\mathbf{t}) \psi(z) \hat{C}_{\rho} \hat{\gamma}_{-}(\mathbf{s})|0\rangle}{\tau_{\rho}(N, \mathbf{t} \mathbf{s})}, \\
& \Psi_{\rho}^{*}(z, \mathbf{t}, \mathbf{s})=\frac{\left.\langle 0| \psi_{-1} \hat{\gamma}_{+}+\mathbf{t}\right) \psi^{\dagger}(z) \hat{C}_{\rho} \hat{\gamma}_{-}(\mathbf{s})|0\rangle}{\tau_{\rho}(N, \mathbf{t}, \mathbf{s})} . \\
& \psi(z):=\sum_{i \in \mathbf{Z}} \psi_{i} z^{i}, \quad \psi^{\dagger}(z):=\sum_{i \in \mathbf{Z}} \psi_{i}^{\dagger} z^{-i-1},
\end{aligned}
$$

Fermionic representation of adapted bases

Adapted basis

$$
\begin{aligned}
& \Psi_{k}^{+}(x)::=\left\{\begin{array}{l}
\gamma\langle 0| \psi^{*}(1 / x) \hat{C}_{\rho} \hat{\gamma}_{-}\left(\beta^{-1} \mathbf{s}\right) \psi_{k-1}|0\rangle \quad \text { if } k \geq 1, \\
\gamma\langle 0| \psi_{k-1} \hat{\gamma}_{-}^{-1}\left(\beta^{-1} \mathbf{s}\right) \hat{C}_{\rho}^{-1} \psi^{*}(1 / x) \hat{C}_{\rho} \hat{\gamma}_{-}\left(\beta^{-1} \mathbf{s}\right)|0\rangle \quad \text { if } k \leq 0, \\
\end{array}\right. \\
&=\gamma \sum_{j=0}^{\infty} \rho_{j+k-1} h_{j}\left(\beta^{-1} \mathbf{s}\right) x^{j+k}
\end{aligned}
$$

Dual adapted basis

$$
\begin{aligned}
\Psi_{k}^{-}(x) & := \begin{cases}\langle 0| \psi\left(1 / x \hat{C}_{\rho} \hat{\gamma}_{-}\left(\beta^{-1} \mathbf{s}\right) \psi_{-k}^{*}|0\rangle\right. & \text { if } k \geq 1 \\
\langle 0| \psi_{-k}^{*} \hat{\gamma}_{-}^{-1}\left(\beta^{-1} \mathbf{s}\right) \hat{C}_{\rho}^{-1} \psi(1 / x) \hat{C}_{\rho} \hat{\gamma}_{-}\left(\beta^{-1} \mathbf{s}\right)|0\rangle \quad \text { if } k \leq 0 .\end{cases} \\
& =\sum_{j=0}^{\infty} \rho_{-j-k}^{-1} h_{j}\left(-\beta^{-1} \mathbf{s}\right) x^{j+k}
\end{aligned}
$$

Recursion operator

Define the recursion operators

$$
R_{ \pm}(x):=\gamma x G(\pm \beta D)
$$

where

$$
D:=x \frac{d}{d x}
$$

is the Euler operator.
Then

$$
\begin{aligned}
& \Psi_{k \pm 1}^{+}(x):=R_{+}^{ \pm 1} \Psi_{k}^{+}(x) \\
& \Psi_{k \pm 1}^{-}(x):=R_{-}^{ \pm 1} \Psi_{k}^{-}(x)
\end{aligned}
$$

Theorem (Quantum spectral curve at $\mathrm{t}=0$)

The function $\Psi_{0}^{+}(x)$ satisfies

$$
\left(\beta D-S\left(R_{+}\right)\right) \Psi_{0}^{+}(x)=0
$$

and $\Psi_{0}^{-}(x)$ satisfies the dual equation

$$
\left(\beta D+S\left(R_{-}\right)\right) \Psi_{0}^{-}(x)=0
$$

where

$$
S(x):=\sum_{k=1}^{\infty} k s_{k} x^{k}
$$

Classical spectral curve at $\mathrm{t}=0$

$$
x y=S(\gamma x G(x y)), \quad\left\{\begin{array}{l}
x=\frac{z}{\gamma G(S(z))} \\
y=\frac{S(z)}{z} \gamma G(S(z))
\end{array}\right.
$$

Pair correlator

The pair correlator is

$$
\begin{aligned}
K\left(x, x^{\prime}\right) & :=\frac{1}{x-x^{\prime}} \tau^{(G, \beta, \gamma)}\left([x]-\left[x^{\prime}\right], \beta^{-1} \mathbf{s}\right) \\
& =\frac{1}{x x^{\prime}}\langle 0| \psi\left(1 / x^{\prime}\right) \psi^{*}(1 / x) \hat{C}_{\rho} \hat{\gamma}_{-}\left(\beta^{-1} \mathbf{s}\right)|0\rangle
\end{aligned}
$$

Finite degree

In the following, we assume that only a finite number of variables s_{k} are nonzero, so $S(x)$ is a polynomial

$$
S(x)=\sum_{k=1}^{L} k s_{k} x^{k}
$$

of degree L. We also assume that only the first M parameters $\left\{c_{i}\right\}$ are nonzero, so the weight generating function $G(z)$ is also a polynomial, of degree M

Christoffel-Darboux-type reduction

Define the operators

$$
\begin{aligned}
\Delta_{ \pm}(x) & :=S(x) \pm \beta D \\
V_{ \pm}(x) & :=G\left(\Delta_{ \pm}(x)\right)
\end{aligned}
$$

and the Christoffel Darboux-type kernel generating function

$$
A(r, t):=\left(r V_{-}(t)-t V_{+}(r)\right)\left(\frac{1}{r-t}\right)=\sum_{i=0}^{L M-1} \sum_{j=0}^{L M-1} \mathbf{A}_{i j} r^{i} t^{j}
$$

Theorem

The following Christoffel-Darboux type relation expresses $K\left(x, x^{\prime}\right)$ as a finite rank sum in terms of the adapted bases

$$
K\left(x, x^{\prime}\right)=\frac{1}{x-x^{\prime}} \sum_{i=0}^{L M-1} \sum_{i=0}^{L M-1} \mathbf{A}_{i j} r^{i} t^{j} \Psi_{i}^{+}(x) \Psi_{j}^{-}\left(x^{\prime}\right)
$$

Definition (Current correlator generating function)

$$
\begin{aligned}
F_{n}\left(\mathbf{s} ; x_{1}, \ldots, x_{n}\right) & :=\left.\prod_{a=1}^{n} \tilde{\nabla}\left(x_{a}\right)\left(\tau^{(G, \beta, \gamma)}(\mathbf{t}, \mathbf{s})\right)\right|_{\mathbf{t}=\mathbf{0}} \\
& =\sum_{\mu, \nu, \ell(\mu)=n} \sum_{d} \gamma^{|\mu|} \beta^{d-\ell(\nu)} H_{G}^{d}(\mu, \nu) \tilde{z}_{\mu} m_{\mu}\left(x_{1}, \ldots, x_{n}\right) p_{\nu}(\mathbf{s}) \\
\tilde{F}_{n}\left(\mathbf{s} ; x_{1}, \ldots, x_{n}\right) & :=\left.\prod_{a=1}^{n} \tilde{\nabla}\left(x_{a}\right)\left(\ln \left(\tau^{(G, \beta, \gamma)}(\mathbf{t}, \mathbf{s})\right)\right)\right|_{\mathbf{t}=\mathbf{0}} \\
& :=\sum_{\mu, \nu, \ell(\mu)=n} \sum_{d} \gamma^{|\mu|} \beta^{d-\ell(\nu)} \tilde{H}_{G}^{d}(\mu, \nu) \tilde{z}_{\mu} m_{\mu}\left(x_{1}, \ldots, x_{n}\right) p_{\nu}(\mathbf{s})
\end{aligned}
$$

$$
\tilde{F}_{g, n}\left(\mathbf{s} ; x_{1}, \ldots, x_{n}\right):=\sum^{|\mu|} \tilde{H}_{G}^{d}(\mu, \nu) \tilde{z}_{\mu} m_{\mu}\left(x_{1}, \ldots, x_{n}\right) p_{\nu}(\mathbf{s})
$$

$$
\mu, \nu, \overline{\ell(\mu)}=n
$$

where $\tilde{\nabla}(x):=\sum_{i=1}^{\infty} \frac{x^{i}}{i} \frac{\partial}{\partial t_{i}}$.

Definition (Current correlators as generating functions for weighted Hurwitz numbers)

The fermionic current correlator is a generating function for (connected) weighted Hurwitz numbers $\tilde{H}^{d}(\mu, \nu)$ at fixed $\ell(\mu)=n$

$$
\begin{aligned}
W_{n}\left(x_{1}, \ldots, x_{n}\right) & :=\frac{\partial^{n}}{\partial x_{1} \cdots \partial x_{n}} F_{n}\left(\mathbf{s} ; x_{1}, \ldots, x_{n}\right), \\
& :=\frac{1}{\prod_{i=1}^{n} x_{i}}\langle 0| \prod_{i=1}^{n} J_{+}\left(x_{i}\right) \hat{C}_{\rho} \hat{\gamma}_{-}\left(\beta^{-1} \mathbf{s}\right)|0\rangle,
\end{aligned}
$$

where $J_{+}(x):=\sum_{i=1}^{\infty} J_{i} x^{i}$ is the positive part of the current generator.

Definition (Fixed genus generating function)

$$
\tilde{W}_{g, n}\left(x_{1}, \ldots, x_{n}\right):=\frac{\partial}{\partial x_{1}} \ldots \frac{\partial}{\partial x_{n}} \tilde{F}_{g, n}\left(\mathbf{s} ; x_{1}, \ldots, x_{n}\right)
$$

Definition

$$
\begin{aligned}
\tilde{\omega}_{g, n}\left(z_{1}, \ldots, z_{n}\right) & :=\tilde{W}_{g, n}\left(X\left(z_{1}\right), \ldots, X\left(z_{n}\right)\right) X^{\prime}\left(z_{1}\right) \ldots X^{\prime}\left(z_{n}\right) d z_{1} \ldots d z_{n} \\
& +\delta_{g, 0} \delta_{n, 2} \frac{X^{\prime}\left(z_{1}\right) X^{\prime}\left(z_{2}\right) d z_{1} d z_{2}}{\left(X\left(z_{1}\right)-X\left(z_{2}\right)\right)^{2}}
\end{aligned}
$$

Theorem

When $2 g-2+n>0, \tilde{\omega}_{g, n}\left(z_{1}, \ldots, z_{n}\right)$ has poles only at branch points, and no poles at $z_{i}=\infty$.

Theorem (Topological recursion)

$\tilde{\omega}_{g, n}$ satisfy the topological recursion relations. If all branchpoints a are simple, with local Galois involution $z \mapsto \sigma_{a}(z)$, we have

$$
\begin{aligned}
& \tilde{\omega}_{g, n}\left(z_{1}, \ldots, z_{n}\right) \\
& \quad=-\sum_{a} \operatorname{res}_{z=a}\left[\frac{d z_{1}}{z-z_{1}}-\frac{d z_{1}}{\sigma_{a}(z)-z_{1}}\right] \frac{\mathcal{W}_{g, n}\left(z, \sigma_{a}(z), z_{2}, \ldots, z_{n}\right)}{2\left(Y(z)-Y\left(\sigma_{a}(z)\right)\right) d X(z)}
\end{aligned}
$$

where $\mathcal{W}_{g, n}\left(z, z^{\prime}, z_{2}, \ldots, z_{n}\right)=\tilde{\omega}_{g-1, n+1}\left(z, z^{\prime}, z_{2}, \ldots, z_{n}\right)$

$$
+\sum_{g_{1}+g_{2}=g, l_{1} \uplus l_{2}=\left\{z_{2}, \ldots, z_{n}\right\}}^{\prime} \tilde{\omega}_{g_{1}, 1+\left|l_{1}\right|}\left(z, l_{1}\right) \tilde{\omega}_{g_{2}, 1+\left|l_{2}\right|}\left(z^{\prime}, l_{2}\right)
$$

References

A. Alexandrov, G. Chapuy, B. Eynard and J. Harnad, "Weighted Hurwitz numbers and topological recursion: summary overview", (arXiv:1610.09408) J. Math. Phys.59, 081102 (2018).
A. Alexandrov, G. Chapuy, B. Eynard and J. Harnad, "Fermionic approach to weighted Hurwitz numbers and topological recursion", Commun. Math. Phys. 360, 777-826 (2018).
A. Alexandrov, G. Chapuy, B. Eynard, J. Harnad '"Weighted Hurwitz numbers and topological recursion", arXiv:1806.09738 (2018).

Vincent Bouchard and Bertrand Eynard, "Think globally, compute locally ", JHEP 1302 (2013) 143
M. Guay-Paquet and J. Harnad, "2D Toda τ-functions as combinatorial generating functions", Lett. Math. Phys. 105, 827-852 (2015).
M. Guay-Paquet and J. Harnad, "Generating functions for weighted Hurwitz numbers", J. Math. Phys. 58, 083503 (2017).
J. Harnad and A. Yu. Orlov, "Hypergeometric τ-functions, Hurwitz numbers and enumeration of paths", Commun. Math. Phys. 338, 267-284 (2015).
J. Harnad, 'Weighted Hurwitz numbers and hypergeometric τ-functions: an overview", AMS Proceedings of Symposia in Pure Mathematics 93, 289-333 (2016).
A. Okounkov, "Toda equations for Hurwitz numbers", Math. Res. Lett. 7, 447-453 (2000).

