Factorization and Asymptotics of Block Toeplitz Matrices

Estelle Basor

We begin with a matrix-valued function ϕ defined on the unit circle \mathbb{T} with Fourier coefficients

$$
\begin{gathered}
\phi_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(e^{i \theta}\right) e^{-i k \theta} d \theta \\
\phi\left(e^{i \theta}\right)=\sum_{-\infty}^{\infty} \phi_{k} e^{i k \theta}=\sum_{-\infty}^{\infty} \phi_{k} z^{k}
\end{gathered}
$$

and consider the matrix

$$
T_{n}(\phi)=\left(\phi_{j-k}\right)_{j, k=0, \cdots, n-1}
$$

We refer to ϕ as the symbol of the matrix.

This matrix has the form

$$
\left[\begin{array}{ccccc}
\phi_{0} & \phi_{-1} & \phi_{-2} & \cdots & \phi_{-(n-1)} \\
\phi_{1} & \phi_{0} & \phi_{-1} & \cdots & \phi_{-(n-2)} \\
\phi_{2} & \phi_{1} & \phi_{0} & \cdots & \phi_{-(n-3)} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\phi_{n-1} & \phi_{n-2} & \phi_{n-3} & \cdots & \phi_{0}
\end{array}\right]
$$

In the matrix-valued case, each entry is itself a matrix of fixed size.

The Szegö - Widom Limit Theorem states that if the matrix valued symbol ϕ defined on the unit circle \mathbb{T} has a sufficiently well-behaved logarithm then the determinant of the block Toeplitz matrix

$$
T_{n}(\phi)=\left(\phi_{j-k}\right)_{j, k=0, \cdots, n-1}
$$

has the asymptotic behavior

$$
D_{n}(\phi)=\operatorname{det} T_{n}(\phi) \sim G(\phi)^{n} E(\phi) \text { as } n \rightarrow \infty .
$$

Here are the constants:

$$
G(\phi)=e^{(\log \operatorname{det} \phi)_{0}}
$$

and

$$
E(\phi)=\operatorname{det}\left(T(\phi) T\left(\phi^{-1}\right)\right)
$$

where

$$
T(\phi)=\left(\phi_{j-k}\right) \quad 0 \leq j, k<\infty
$$

is the Toeplitz operator defined on H^{2} (the Hardy space) of the circle.

To make sense of the term $\operatorname{det}\left(T(\phi) T\left(\phi^{-1}\right)\right)$ we should note that we can always define the determinant of an operator of the form

$$
I+T
$$

where T is a trace class operator.

Such operators T are compact with discrete eigenvalues λ_{i} that satisfy

$$
\sum_{i=0}^{\infty}\left|\lambda_{i}\right|<\infty
$$

and thus

$$
\operatorname{det}(I+T)=\prod_{i=0}^{\infty}\left(1+\lambda_{i}\right)
$$

is well defined.

More precisely, let \mathcal{B} stand for the set of all function ϕ such that the Fourier coefficients satisfy

$$
\|\phi\|_{\mathcal{B}}:=\sum_{k=-\infty}^{\infty}\left|\phi_{k}\right|+\left(\sum_{k=-\infty}^{\infty}|k| \cdot\left|\phi_{k}\right|^{2}\right)^{1 / 2}<\infty
$$

With the norm, and pointwise defined algebraic operations on \mathbb{T}, the set \mathcal{B} becomes a Banach algebra of continuous functions on the unit circle.

The Szegö - Widom Limit Theorem holds providing $\phi \in \mathcal{B}$ and the function $\operatorname{det} \phi$ does not vanish on \mathbb{T} and has winding number zero.

The most direct way to prove the Szegö-Widom theorem is to prove an identity for the determinants, an identity called the Borodin-Okounkov-Case-Geronimo (BOCG) identity.

To state the identity, in addition to the Toeplitz operator, we also define a Hankel operator

$$
\begin{array}{rlrl}
T(\phi) & =\left(\phi_{j-k}\right), & & 0 \leq j, k<\infty \\
H(\phi) & =\left(\phi_{j+k+1}\right), & 0 \leq j, k<\infty
\end{array}
$$

For $\phi, \psi \in L^{\infty}(\mathbb{T})^{N \times N}$ the identities

$$
\begin{aligned}
T(\phi \psi) & =T(\phi) T(\psi)+H(\phi) H(\tilde{\psi}) \\
H(\phi \psi) & =T(\phi) H(\psi)+H(\phi) T(\tilde{\psi})
\end{aligned}
$$

are well-known. Here $\tilde{\phi}\left(e^{i \theta}\right)=\phi\left(e^{-i \theta}\right)$.

It follows from these identities that if ψ_{-}and ψ_{+}have the property that all their Fourier coefficients vanish for $k>0$ and $k<0$, respectively, then

$$
\begin{aligned}
T\left(\psi_{-} \phi \psi_{+}\right) & =T\left(\psi_{-}\right) T(\phi) T\left(\psi_{+}\right) \\
H\left(\psi_{-} \phi \tilde{\psi}_{+}\right) & =T\left(\psi_{-}\right) H(\phi) T\left(\psi_{+}\right)
\end{aligned}
$$

Here is one form of the statement of the BOCG identity.

If the conditions of the theorem hold and in addition,

$$
\phi=u_{-} u_{+}=v_{+} v_{-}
$$

(with invertible factors) then

$$
\operatorname{det} T_{n}(\phi)=G(\phi)^{n} E(\phi) \cdot \operatorname{det}\left(I-H\left(z^{-n} v_{-} u_{+}^{-1}\right) H\left(\tilde{u}_{-}^{-1} \tilde{v}_{+} z^{-n}\right)\right)
$$

From this BOCG identity we have an instant proof of the Szegö-Widom theorem, since we can show that given our conditions on ϕ, the operator

$$
\left.H\left(z^{-n} v_{-} u_{+}^{-1}\right) H\left(\tilde{u}_{-}^{-1} \tilde{v}_{+} z^{-n}\right)\right)
$$

tends to zero in the trace norm and thus

$$
\operatorname{det}\left(I-H\left(z^{-n} v_{-} u_{+}^{-1}\right) H\left(\tilde{u}_{-}^{-1} \tilde{v}_{+} z^{-n}\right)\right)
$$

tends to one and

$$
D_{n}(\phi)=\operatorname{det} T_{n}(\phi) \sim G(\phi)^{n} E(\phi) \text { as } n \rightarrow \infty
$$

In the scalar case, $E(\phi)$ has a nice concrete description.

If we have a Wiener-Hopf factorization for $\phi=\phi_{-} \phi_{+}$, then

$$
T(\phi) T\left(\phi^{-1}\right)=T\left(\phi_{-}\right) T\left(\phi_{+}\right) T^{-1}\left(\phi_{-}\right) T^{-1}\left(\phi_{+}\right)
$$

and this is of the form

$$
e^{A} e^{B} e^{-A} e^{-B}
$$

where

$$
A=T\left(\log \left(\phi_{-}\right)\right), \quad B=T\left(\log \left(\phi_{+}\right)\right)
$$

From this we can use a formula for determinants of multiplicative commutators of this form,

$$
\operatorname{det}\left(e^{A} e^{B} e^{-A} e^{-B}\right)=\exp (\operatorname{trace}(A B-B A))
$$

and this then becomes the well-known formula

$$
\exp \left(\sum_{k=1}^{\infty} k(\log \phi)_{k}(\log \phi)_{-k}\right) .
$$

This does not hold in general in the block case.

A much harder question is how do you compute $E(\phi)$ in the block case?

There is one particular result, also due to Widom, where something can be said about the infinite determinant.

Let $\phi \in \mathcal{B}$ be such that the function $\operatorname{det} \phi$ does not vanish on the unit circle and has winding number zero.

Assume that $\phi_{k}=0$ for all $k>m$ or that $\phi_{-k}=0$ for all $k>m$.

Then

$$
E(\phi)=G(\phi)^{m} \operatorname{det} T_{m}\left(\phi^{-1}\right)
$$

The result also follows from a different form of the BOCG identity:

If $\phi \in \mathcal{B}$ then the BOCG identity can be rewritten in the following form.

$$
\operatorname{det} T_{n}\left(\phi^{-1}\right)=\frac{E(\phi)}{G(\phi)^{n}} \cdot \operatorname{det}\left(I-H\left(z^{-n} \phi\right) T^{-1}(\tilde{\phi}) H\left(\tilde{\phi} z^{-n}\right) T^{-1}(\phi)\right)
$$

The conditions of Widom guarantee that one of the Hankel operators vanishes and thus

$$
\operatorname{det} T_{m}\left(\phi^{-1}\right) G(\phi)^{m}=E(\phi)
$$

Here is an example:

Let

$$
\phi_{\alpha, 2}(z)=a(\alpha)\left(\begin{array}{cc}
1 & \alpha z^{-2} \\
-\bar{\alpha} z^{2} & 1
\end{array}\right)
$$

where $z=e^{i \theta}, a(\alpha)=\left(1+|\alpha|^{2}\right)^{-1 / 2}$.

Note $\phi^{-1}=\phi^{*}, \operatorname{det} \phi=1$, and thus $\phi \in S U(2)$.

$$
E(\phi)=G(\phi)^{2} \operatorname{det} T_{2}\left(\phi^{-1}\right)=\left(1+|\alpha|^{2}\right)^{-2} .
$$

To summarize, we know how to compute $G(\phi)$ and we know how to compute $E(\phi)$ in two cases:

1. For scalar ϕ 's
2. For matrix valued ϕ 's that satisfy Widom's criteria.

Is there a way to put these cases together to compute more complicated examples, especially the ones that seem to arise in statistical mechanics?

First, two basic properties of $E(\phi)$:

$$
E(\phi)=E\left(\phi^{-1}\right)
$$

and

$$
E(\phi \psi)=E(\phi) E(\psi) \times M(\phi, \psi)
$$

where

$$
M(\phi, \psi)=\operatorname{det} T(\phi)^{-1} T(\phi \psi) T(\psi)^{-1} \operatorname{det} T(\widetilde{\phi})^{-1} T(\widetilde{\phi} \widetilde{\psi}) T(\widetilde{\psi})^{-1}
$$

This follows (as almost everything does) from the identity

$$
T(\phi \psi)=T(\phi) T(\psi)+H(\phi) H(\widetilde{\psi})
$$

So whenever we can compute a determinant of the form

$$
\operatorname{det} T(\phi)^{-1} T(\phi \psi) T(\psi)^{-1}
$$

explicitly we can then build answers from known ones.

An example where this idea proved to be useful is an application to a dimer model and here is a picture to illustrate.

A monomer placed on a lattice site forbids a dimer from being placed at the site.

The monomer-monomer correlator is the ratio of the number of configurations with monomers at sites q and r to the number of configurations without the monomers.

If we assume that one of the sites is at the origin and the other at site in an adjacent row n spacings apart, then it was shown by Fendley, Moessner and Sondi that the correlator can be computed from the determinant of a block Toeplitz matrix.

The symbol of interest was of the form

$$
\left(\begin{array}{cc}
c & d \\
\tilde{d} & \tilde{c}
\end{array}\right)
$$

where

$$
c=\frac{\left(t \cos \theta+\sin ^{2} \theta\right)\left(t-e^{i \theta}\right)}{\sqrt{t^{2}+\sin ^{2} \theta+\sin ^{4} \theta}\left(1-2 t \cos \theta+t^{2}\right)}
$$

$$
d=\frac{\sin \theta}{\sqrt{t^{2}+\sin ^{2} \theta+\sin ^{4} \theta}} .
$$

Using the ideas just outlined, one can then compute that

$$
G(\phi)=1
$$

and that

$$
D_{n}(\phi) \sim E(\phi)=\frac{t}{2 t\left(2+t^{2}\right)+\left(1+2 t^{2}\right) \sqrt{2+t^{2}}}
$$

Here t is the weight on the diagonal bonds.

But can we can say more?

We return to our BOCG identity,

$$
\operatorname{det} T_{n}(\phi)=E(\phi) \cdot \operatorname{det}\left(I-H\left(z^{-n} v_{-} u_{+}^{-1}\right) H\left(\tilde{u}_{-}^{-1} \tilde{v}_{+} z^{-n}\right)\right)
$$

As a guess, we hope that
$\operatorname{det}(I+T)=\exp \operatorname{trace}(\log (I+T))=\exp (\operatorname{trace}(T+\cdots)=1+\operatorname{trace} T+\cdots$
We can prove this here and asymptotically compute the trace of the product of Hankels.

The result is (joint work with Ehrhardt and Bleher), for $0<t<1 / 2$

$$
D_{n}(\phi)=E(\phi)\left[1-\frac{e^{-n / \xi}}{n}\left(C_{1}+C_{2}(-1)^{n}+\mathcal{O}\left(n^{-1}\right)\right)\right]
$$

and for $1 / 2<t<1$

$$
\begin{gathered}
E(\phi)\left[1-\frac{e^{-n / \xi}}{n}\left(C_{1} \cos \left(\omega n+\varphi_{1}\right)+C_{2}(-1)^{n} \cos \left(\omega n+\varphi_{2}\right)\right.\right. \\
\left.\left.+C_{3}+C_{4}(-1)^{n}+\mathcal{O}\left(n^{-1}\right)\right)\right]
\end{gathered}
$$

where $\xi, C_{1}, C_{2}, C_{3}, C_{4}, \omega, \varphi_{1}$ and φ_{2} are explicitly determined and depend on t.

The real issue is how does one compute the factors?

To see a simpler case, consider the matrix

$$
\left(\begin{array}{cc}
z-2 & -z+1 / z \\
-2 & 1+1 / 2 z
\end{array}\right)
$$

with determinant $(z+2)(1 / 2 z-1)$.

The factors of the determinant are the key.

$$
\begin{gathered}
\left(\begin{array}{cc}
z-2 & -z+1 / z \\
-2 & 1+1 / 2 z
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
z-2 & -z+1 / z \\
-2 & 1+1 / 2 z
\end{array}\right) \\
=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
z+2 & -(z+2) \\
-2 & 1+1 / 2 z
\end{array}\right) \\
=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
z+2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-2 & 1+1 / 2 z
\end{array}\right) \\
=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
z+2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1-1 / 2 z
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Multiplying these last matrices we have our factorization

$$
\left(\begin{array}{cc}
z-2 & -z+1 / z \\
-2 & 1+1 / 2 z
\end{array}\right)=\left(\begin{array}{cc}
z-2 & -2 \\
-2 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1-1 / 2 z
\end{array}\right)
$$

This of course will not work if the determinant is not of sufficiently high degree.

Consider something of the form in $S U(2)$

$$
\phi=\left(\begin{array}{cc}
a^{*} & b^{*} \\
-b & a
\end{array}\right)
$$

where a, b are in H^{∞} and in \mathcal{B}. Then we know

$$
\phi=\left(\begin{array}{ll}
h_{1} & h_{2} \\
h_{3} & h_{4}
\end{array}\right)\left(\begin{array}{ll}
k_{1} & k_{2} \\
k_{3} & k_{4}
\end{array}\right)
$$

where the right matrix has entries in H^{2} and the left in the conjugate of H^{2}, and we can assume each matrix has determinant 1 .

This means that

$$
h_{3} k_{1}+h_{4} k_{3}=-b, \quad h_{3} k_{2}+h_{4} k_{4}=a
$$

and

$$
h_{3} k_{1} k_{4}+h_{4} k_{3} k_{4}=-b k_{4}, \quad h_{3} k_{2} k_{3}+h_{4} k_{4} k_{3}=a k_{3}
$$

Subtracting and using the fact that $k_{1} k_{4}-k_{2} k_{3}=1$,
we have that

$$
h_{3}=-b k_{4}-a k_{3} .
$$

But this says that h_{3} is in both H^{2} and its conjugate and hence must be a constant. The same argument also says that h_{4} is a constant.

With a little more effort one can show that the factorization is of the form (and computable)

$$
\phi=\left(\begin{array}{ll}
1 & h_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
k_{1} & k_{2} \\
k_{3} & k_{4}
\end{array}\right) .
$$

For our previous example

$$
\phi_{\alpha, 2}(z)=a(\alpha)\left(\begin{array}{cc}
1 & \alpha z^{-2} \\
-\bar{\alpha} z^{2} & 1
\end{array}\right)
$$

and this is

$$
a(\alpha)\left(\begin{array}{cc}
1 & \alpha z^{-2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1+|\alpha|^{2} & 0 \\
-\bar{\alpha} z^{2} & 1
\end{array}\right) .
$$

But much more can be said about symbols of the form

$$
\phi=\left(\begin{array}{cc}
a^{*} & b^{*} \\
-b & a
\end{array}\right) .
$$

Not only can they be easily factored, they have an alternate useful factorization for computing determinants.

To give a hint of this, let us return to the $S U(2)$ example and make it more complicated, once again using the idea that we can build our answers from products.

Consider the product:

$$
\phi_{\alpha, m} \phi_{\beta, n}
$$

or

$$
a(\alpha)\left(\begin{array}{cc}
1 & \alpha z^{-m} \\
-\bar{\alpha} z^{m} & 1
\end{array}\right) a(\beta)\left(\begin{array}{cc}
1 & \beta z^{-n} \\
-\bar{\beta} z^{n} & 1
\end{array}\right) .
$$

Before using the formula

$$
\operatorname{det} T(\phi)^{-1} T(\phi \psi) T(\psi)^{-1}
$$

note that

$$
T(\phi \psi)=T(\phi) T(\psi)+H(\phi) H(\widetilde{\psi})
$$

and thus the above becomes

$$
\left.\operatorname{det}\left(I+T(\phi)^{-1} H(\phi) H(\widetilde{\psi})\right) T(\psi)^{-1}\right)
$$

or

$$
\operatorname{det}\left(I+T(\psi)^{-1} T(\phi)^{-1} H(\phi) H(\widetilde{\psi})\right)
$$

For $\phi_{\alpha, m}$ we have, except for constants,

$$
H\left(\phi_{\alpha, m}\right)=H\left(\left(\begin{array}{cc}
0 & 0 \\
-\bar{\alpha} z^{m} & 0
\end{array}\right)\right)
$$

and for $\widetilde{\phi_{\beta, n}}$ this becomes

$$
H\left(\phi_{\beta, n}\right)=H\left(\left(\begin{array}{cc}
0 & \beta z^{n} \\
0 & 0
\end{array}\right)\right)
$$

This produces a determinant of the form

$$
I+A
$$

where A is trace class and has zeros in many columns and many rows.

From this, one can show

$$
\operatorname{det} T(\phi)^{-1} T(\phi \psi) T(\psi)^{-1}=1
$$

A similar computation shows

$$
\operatorname{det} T(\widetilde{\phi})^{-1} T(\tilde{\phi} \widetilde{\psi}) T(\widetilde{\psi})^{-1}=1
$$

And thus we see that $E(\phi)$ for this product completely factors, a result not expected in scalar cases.

$$
\begin{aligned}
E(\phi) & =E\left(\phi_{\alpha, m} \phi_{\beta, n}\right)=E\left(\phi_{\alpha, m}\right) E\left(\phi_{\beta, n}\right) \\
& =\left(1+|\alpha|^{2} \mid\right)^{-m}\left(1+|\beta|^{2}\right)^{-n} .
\end{aligned}
$$

This result can be extended to show that for any finite product

$$
\begin{gathered}
\phi=a\left(\eta_{m}\right)\left(\begin{array}{cc}
1 & -\eta_{m} z^{-m} \\
-\overline{\eta_{m}} z^{m} & 1
\end{array}\right) \cdots a\left(\eta_{1}\right)\left(\begin{array}{cc}
1 & \eta_{1} z^{-1} \\
-\bar{\eta}_{1} z^{1} & 1
\end{array}\right) \\
E(\phi)=\prod_{i=1}^{m}\left(1+\left|\eta_{i}\right|^{2}\right)^{-i}
\end{gathered}
$$

This holds for an infinite product as well as long as the sequence $\left\{\eta_{i}\right\}$ is rapidly decreasing.

Returning to

$$
\phi=\left(\begin{array}{cc}
a^{*} & b^{*} \\
-b & a
\end{array}\right)
$$

where a, b are in H^{∞} and in \mathcal{B}.

One can show, assuming some additional smoothness assumptions on a and b, is that ϕ can be factored as above, that is,
$\phi=\lim _{n \rightarrow \infty} a\left(\eta_{n}\right)\left(\begin{array}{cc}1 & \eta_{n} z^{-n} \\ -\bar{\eta}_{n} z^{n} & 1\end{array}\right) \cdots a\left(\eta_{1}\right)\left(\begin{array}{cc}1 & \eta_{1} z^{-1} \\ -\bar{\eta}_{1} z^{1} & 1\end{array}\right)$.
and thus $E(\phi)=\prod_{i=1}^{\infty}\left(1+\left|\eta_{i}\right|^{2}\right)^{-i}$

A similar result holds for something of the form

$$
\psi=\left(\begin{array}{cc}
c & d \\
-d^{*} & c^{*}
\end{array}\right)
$$

which can be factored as

$$
\lim _{n \rightarrow \infty} a\left(\alpha_{n}\right)\left(\begin{array}{cc}
1 & -\overline{\alpha_{n}} z^{n} \\
\alpha_{n} z^{-n} & 1
\end{array}\right) \cdots a\left(\alpha_{0}\right)\left(\begin{array}{cc}
1 & -\overline{\alpha_{0}} \\
\alpha_{0} & 1
\end{array}\right) .
$$

Finally, we consider

$$
\psi^{*}\left(\begin{array}{cc}
e^{i \chi} & 0 \\
0 & e^{-i \chi}
\end{array}\right) \phi
$$

where ϕ, ψ (as before) are where χ is real valued,

Note this a product where all three factors are in $S U(2)$.

It turns out that E splits into three known pieces here.

The simplest case is when $\chi=0$. Then it is clear that

$$
E\left(\psi^{*} \phi\right)=E\left(\psi^{*}\right) E(\phi)
$$

This follows from the fact that $H\left(\psi^{*}\right)$ is

$$
H\left(\left(\begin{array}{cc}
c & d \\
-d^{*} & c^{*}
\end{array}\right)^{*}\right)=H\left(\left(\begin{array}{cc}
c^{*} & -d \\
d * & c
\end{array}\right)\right)=H\left(\left(\begin{array}{cc}
0 & -d \\
0 & c
\end{array}\right)\right)
$$

For $H(\widetilde{\phi})$ we have

$$
H\left(\left(\begin{array}{cc}
\widetilde{a^{*}} & \widetilde{b^{*}} \\
\widetilde{-b} & \widetilde{a}
\end{array}\right)\right)=H\left(\left(\begin{array}{cc}
\widetilde{a^{*}} & -\widetilde{b^{*}} \\
0 & 0
\end{array}\right)\right)
$$

so that

$$
H\left(\psi^{*}\right) H(\widetilde{\phi})=H\left(\left(\begin{array}{cc}
0 & -d \\
0 & c
\end{array}\right)\right) H\left(\left(\begin{array}{cc}
\widetilde{a^{*}} & -\widetilde{b^{*}} \\
0 & 0
\end{array}\right)\right)
$$

and this is the zero operator.

This means using our formula:

$$
\operatorname{det}\left(I+T(\phi)^{-1} T\left(\psi^{*}\right)^{-1} H\left(\psi^{*}\right) H(\widetilde{\phi})\right)
$$

that the above is simply the determinant of the identity operator.

A similar computation can be done with all three factors and the end result (joint work with Doug Pickrell) is that the determinant constant is

$$
\prod_{i=1}^{\infty}\left(1+\left|\eta_{i}\right|^{2}\right)^{-i} \times \prod_{i=1}^{\infty}\left(1+\left|\alpha_{i}\right|^{2}\right)^{-i} \times \exp \sum_{k=1}^{\infty} 2 k \chi_{k} \chi_{-k} .
$$

Some of this can be extended to $S L(2)$ symbols, some to higher dimension, and some to higher genus surfaces, but many open questions remain.

