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We begin with a matrix-valued function φ defined on the unit circle T
with Fourier coefficients

φk =
1

2π

∫ 2π

0
φ(eiθ) e−ikθ dθ,

φ(eiθ) =

∞∑
−∞

φk ei k θ =

∞∑
−∞

φk zk.

and consider the matrix

Tn(φ) = (φj−k)j, k = 0, ··· , n−1

We refer to φ as the symbol of the matrix.



This matrix has the form



φ0 φ−1 φ−2 · · · φ−(n−1)
φ1 φ0 φ−1 · · · φ−(n−2)
φ2 φ1 φ0 · · · φ−(n−3)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
φn−1 φn−2 φn−3 · · · φ0



In the matrix-valued case, each entry is itself a matrix of fixed size.



The Szegö - Widom Limit Theorem states that if the matrix valued
symbol φ defined on the unit circle T has a sufficiently well-behaved
logarithm then the determinant of the block Toeplitz matrix

Tn(φ) = (φj−k) j,k=0,··· ,n−1

has the asymptotic behavior

Dn(φ) = det Tn(φ) ∼ G(φ)n E(φ) as n→∞.



Here are the constants:

G(φ) = e(log detφ)0

and
E(φ) = det

(
T(φ)T(φ−1)

)
where

T(φ) = (φj−k) 0 ≤ j, k <∞

is the Toeplitz operator defined on H2 (the Hardy space) of the circle.



To make sense of the term det
(
T(φ)T(φ−1)

)
we should note that we

can always define the determinant of an operator of the form

I + T

where T is a trace class operator.

Such operators T are compact with discrete eigenvalues λi that satisfy

∞∑
i=0

|λi| <∞

and thus

det(I + T) =

∞∏
i=0

(1 + λi)

is well defined.



More precisely, let B stand for the set of all function φ such that the
Fourier coefficients satisfy

‖φ‖B :=

∞∑
k=−∞

|φk|+
( ∞∑

k=−∞
|k| · |φk|2

)1/2
<∞.

With the norm, and pointwise defined algebraic operations on T, the
set B becomes a Banach algebra of continuous functions on the unit
circle.

The Szegö - Widom Limit Theorem holds providing φ ∈ B and the
function detφ does not vanish on T and has winding number zero.



The most direct way to prove the Szegö-Widom theorem is to prove
an identity for the determinants, an identity called the
Borodin-Okounkov-Case-Geronimo (BOCG) identity.

To state the identity, in addition to the Toeplitz operator, we also
define a Hankel operator

T(φ) = (φj−k), 0 ≤ j, k <∞,
H(φ) = (φj+k+1), 0 ≤ j, k <∞.



For φ, ψ ∈ L∞(T)N×N the identities

T(φψ) = T(φ)T(ψ) + H(φ)H(ψ̃)

H(φψ) = T(φ)H(ψ) + H(φ)T(ψ̃)

are well-known. Here φ̃(ei θ) = φ(e−i θ).

It follows from these identities that if ψ− and ψ+ have the property
that all their Fourier coefficients vanish for k > 0 and k < 0,
respectively, then

T(ψ−φψ+) = T(ψ−)T(φ)T(ψ+),

H(ψ−φψ̃+) = T(ψ−)H(φ)T(ψ+).



Here is one form of the statement of the BOCG identity.

If the conditions of the theorem hold and in addition,

φ = u−u+ = v+v−

(with invertible factors) then

det Tn(φ) = G(φ)n E(φ) · det
(
I − H(z−nv−u−1

+ )H(ũ−1
− ṽ+z−n)

)
.



From this BOCG identity we have an instant proof of the
Szegö-Widom theorem, since we can show that given our conditions
on φ, the operator

H(z−nv−u−1
+ )H(ũ−1

− ṽ+z−n))

tends to zero in the trace norm and thus

det(I − H(z−nv−u−1
+ )H(ũ−1

− ṽ+z−n))

tends to one and

Dn(φ) = det Tn(φ) ∼ G(φ)n E(φ) as n→∞.



In the scalar case, E(φ) has a nice concrete description.

If we have a Wiener-Hopf factorization for φ = φ−φ+, then

T(φ)T(φ−1) = T(φ−)T(φ+)T−1(φ−)T−1(φ+)

and this is of the form
e Ae Be−Ae−B

where
A = T(log(φ−)), B = T(log(φ+)).



From this we can use a formula for determinants of multiplicative
commutators of this form,

det (eAeBe−Ae−B) = exp (trace(AB− BA))

and this then becomes the well-known formula

exp

( ∞∑
k=1

k (logφ)k (logφ)−k

)
.

This does not hold in general in the block case.



A much harder question is how do you compute E(φ) in the block
case?

There is one particular result, also due to Widom, where something
can be said about the infinite determinant.

Let φ ∈ B be such that the function detφ does not vanish on the unit
circle and has winding number zero.

Assume that φk = 0 for all k > m or that φ−k = 0 for all k > m.

Then
E(φ) = G(φ)m det Tm(φ−1).



The result also follows from a different form of the BOCG identity:

If φ ∈ B then the BOCG identity can be rewritten in the following
form.

det Tn(φ−1) =
E(φ)

G(φ)n · det
(

I − H(z−nφ)T−1(φ̃)H(φ̃z−n)T−1(φ)
)
.

The conditions of Widom guarantee that one of the Hankel operators
vanishes and thus

det Tm(φ−1)G(φ)m = E(φ).



Here is an example:

Let

φα,2(z) = a(α)

 1 α z−2

−ᾱ z 2 1


where z = eiθ, a(α) = (1 + |α|2)−1/2.

Note φ−1 = φ∗, detφ = 1, and thus φ ∈ SU(2).

E(φ) = G(φ)2 det T2(φ−1) = (1 + |α|2)−2.



To summarize, we know how to compute G(φ) and we know how to
compute E(φ) in two cases:

1. For scalar φ’s

2. For matrix valued φ’s that satisfy Widom’s criteria.

Is there a way to put these cases together to compute more
complicated examples, especially the ones that seem to arise in
statistical mechanics?



First, two basic properties of E(φ):

E(φ) = E(φ−1)

and
E(φψ) = E(φ)E(ψ)×M(φ, ψ)

where

M(φ, ψ) = det T(φ)−1T(φψ)T(ψ)−1 det T(φ̃)−1T(φ̃ψ̃)T(ψ̃)−1.



This follows (as almost everything does) from the identity

T(φψ) = T(φ)T(ψ) + H(φ)H(ψ̃).

So whenever we can compute a determinant of the form

det T(φ)−1T(φψ)T(ψ)−1

explicitly we can then build answers from known ones.



An example where this idea proved to be useful is an application to a
dimer model and here is a picture to illustrate.



A monomer placed on a lattice site forbids a dimer from being placed
at the site.

The monomer-monomer correlator is the ratio of the number of
configurations with monomers at sites q and r to the number of
configurations without the monomers.

If we assume that one of the sites is at the origin and the other at site
in an adjacent row n spacings apart, then it was shown by Fendley,
Moessner and Sondi that the correlator can be computed from the
determinant of a block Toeplitz matrix.



The symbol of interest was of the form c d

d̃ c̃


where

c =
(t cos θ + sin2 θ)(t − eiθ)√

t2 + sin2 θ + sin4 θ(1− 2t cos θ + t2)

d =
sin θ√

t2 + sin2 θ + sin4 θ
.



Using the ideas just outlined, one can then compute that

G(φ) = 1

and that

Dn(φ) ∼ E(φ) =
t

2t(2 + t2) + (1 + 2t2)
√

2 + t2
.

Here t is the weight on the diagonal bonds.



But can we can say more?

We return to our BOCG identity,

det Tn(φ) = E(φ) · det
(
I − H(z−nv−u−1

+ )H(ũ−1
− ṽ+z−n)

)
.

As a guess, we hope that

det(I+T) = exp trace(log(I+T)) = exp(trace(T+· · · ) = 1+traceT+· · ·

We can prove this here and asymptotically compute the trace of the
product of Hankels.



The result is (joint work with Ehrhardt and Bleher), for 0 < t < 1/2

Dn(φ) = E(φ)

[
1− e−n/ξ

n
(C1 + C2(−1)n +O(n−1))

]

and for 1/2 < t < 1

E(φ)
[
1− e−n/ξ

n
(C1 cos(ωn + ϕ1) + C2(−1)n cos(ωn + ϕ2)

+C3 + C4(−1)n +O(n−1))
]

where ξ, C1,C2,C3,C4, ω, ϕ1 and ϕ2 are explicitly determined and
depend on t.



The real issue is how does one compute the factors?

To see a simpler case, consider the matrix z− 2 −z + 1/z

−2 1 + 1/2z


with determinant (z + 2)(1/2z− 1).

The factors of the determinant are the key.



 z− 2 −z + 1/z

−2 1 + 1/2z

 =

 1 2

0 1

 1 −2

0 1

 z− 2 −z + 1/z

−2 1 + 1/2z



=

 1 2

0 1

 z + 2 −(z + 2)

−2 1 + 1/2z


=

 1 2

0 1

 z + 2 0

0 1

 1 −1

−2 1 + 1/2z


=

 1 2

0 1

 z + 2 0

0 1

 1 0

−2 −1

 1 0

0 1− 1/2z

 1 −1

0 1





Multiplying these last matrices we have our factorization

 z− 2 −z + 1/z

−2 1 + 1/2z

 =

 z− 2 −2

−2 −1

 1 −1

0 1− 1/2z

 .



This of course will not work if the determinant is not of sufficiently
high degree.

Consider something of the form in SU(2)

φ =

 a∗ b∗

−b a


where a, b are in H∞ and in B. Then we know

φ =

 h1 h2

h3 h4

 k1 k2

k3 k4


where the right matrix has entries in H2 and the left in the conjugate
of H2, and we can assume each matrix has determinant 1.



This means that

h3k1 + h4k3 = −b, h3k2 + h4k4 = a

and
h3k1k4 + h4k3k4 = −bk4, h3k2k3 + h4k4k3 = ak3

Subtracting and using the fact that k1k4 − k2k3 = 1,

we have that
h3 = −bk4 − ak3.



But this says that h3 is in both H2 and its conjugate and hence must be
a constant. The same argument also says that h4 is a constant.

With a little more effort one can show that the factorization is of the
form (and computable)

φ =

 1 h2

0 1

 k1 k2

k3 k4

 .



For our previous example

φα,2(z) = a(α)

 1 α z−2

−ᾱ z 2 1



and this is

a(α)

 1 αz−2

0 1

 1 + |α|2 0

−ᾱz2 1

 .



But much more can be said about symbols of the form

φ =

 a∗ b∗

−b a

 .

Not only can they be easily factored, they have an alternate useful
factorization for computing determinants.

To give a hint of this, let us return to the SU(2) example and make it
more complicated, once again using the idea that we can build our
answers from products.



Consider the product:
φα,m φβ,n

or

a(α)

 1 α z−m

−ᾱ zm 1

 a(β)

 1 β z−n

−β̄ zn 1

 .



Before using the formula

det T(φ)−1T(φψ)T(ψ)−1

note that
T(φψ) = T(φ)T(ψ) + H(φ)H(ψ̃)

and thus the above becomes

det(I + T(φ)−1H(φ)H(ψ̃))T(ψ)−1)

or
det(I + T(ψ)−1T(φ)−1H(φ)H(ψ̃)).



For φα,m we have, except for constants,

H(φα,m) = H(

 0 0

−ᾱ zm 0

)

and for φ̃β,n this becomes

H(φβ,n) = H(

 0 βzn

0 0

).



This produces a determinant of the form

I + A

where A is trace class and has zeros in many columns and many rows.

From this, one can show

det T(φ)−1T(φψ)T(ψ)−1 = 1

A similar computation shows

det T(φ̃)−1T(φ̃ψ̃)T(ψ̃)−1 = 1.



And thus we see that E(φ) for this product completely factors, a result
not expected in scalar cases.

E(φ) = E(φα,m φβ,n) = E(φα,m)E(φβ,n)

= (1 + |α|2|)−m(1 + |β|2)−n.



This result can be extended to show that for any finite product

φ = a(ηm)

 1 −ηm z−m

−η̄m zm 1

 · · · a(η1)

 1 η1 z−1

−η̄1 z1 1

 ,

E(φ) =

m∏
i=1

(1 + |ηi|2)−i.

This holds for an infinite product as well as long as the sequence {ηi}
is rapidly decreasing.



Returning to

φ =

 a∗ b∗

−b a


where a, b are in H∞ and in B.

One can show, assuming some additional smoothness assumptions on
a and b, is that φ can be factored as above, that is,

φ = lim
n→∞

a(ηn)

 1 ηn z−n

−η̄n zn 1

 · · · a(η1)

 1 η1 z−1

−η̄1 z1 1

 .

and thus E(φ) =
∏∞

i=1(1 + |ηi|2)−i



A similar result holds for something of the form

ψ =

 c d

−d∗ c∗


which can be factored as

lim
n→∞

a(αn)

 1 −ᾱn zn

αn z−n 1

 · · · a(α0)

 1 −ᾱ0

α0 1

 .



Finally, we consider

ψ∗

 eiχ 0

0 e−iχ

φ

where φ, ψ (as before) are where χ is real valued,

Note this a product where all three factors are in SU(2).



It turns out that E splits into three known pieces here.

The simplest case is when χ = 0. Then it is clear that

E(ψ∗φ) = E(ψ∗) E(φ).

This follows from the fact that H(ψ∗) is

H(

 c d

−d∗ c∗

∗) = H(

 c∗ −d

d∗ c

) = H(

 0 −d

0 c

).



For H(φ̃) we have

H(

 ã∗ b̃∗

−̃b ã

) = H(

 ã∗ −b̃∗

0 0

)

so that

H(ψ∗)H(φ̃) = H(

 0 −d

0 c

)H(

 ã∗ −b̃∗

0 0

)

and this is the zero operator.



This means using our formula:

det(I + T(φ)−1T(ψ∗)−1H(ψ∗)H(φ̃))

that the above is simply the determinant of the identity operator.

A similar computation can be done with all three factors and the end
result (joint work with Doug Pickrell) is that the determinant constant
is

∞∏
i=1

(1 + |ηi|2)−i ×
∞∏

i=1

(1 + |αi|2)−i × exp
∞∑

k=1

2 kχkχ−k.



Some of this can be extended to SL(2) symbols, some to higher
dimension, and some to higher genus surfaces, but many open
questions remain.


