Painlevé equations from Nakajima-Yoshioka blow-up relations

Anton Shchechkin
HSE \& Skoltech

based on work in progress with Mikhail Bershtein

2 September 2018

Painlevé II_{3} equation and its q-deformation

Object of our interest: Painlevé III_{3} equation, its q-deformation and their solutions.

- Toda-like form of these equations is a two bilinear equations on two functions: τ and τ_{1}. It is symmetric under $\tau \leftrightarrow \tau_{1}$.
- For the Painlevé III_{3}

$$
\begin{align*}
D_{[\log z]}^{2}(\tau, \tau) & =-2 z^{1 / 2} \tau_{1}^{2} \\
D_{[\log z]}^{2}\left(\tau_{1}, \tau_{1}\right) & =-2 z^{1 / 2} \tau^{2} \tag{1}
\end{align*}
$$

where second Hirota differential $D_{[\log z]}^{2}(\tau, \tau)=2 \tau^{\prime \prime} \tau-\tau^{\prime 2}, f^{\prime}=z \frac{d f}{d z}$

- q-deformation

$$
\begin{align*}
\bar{\tau} \underline{\tau} & =\tau^{2}-z^{1 / 2} \tau_{1}^{2} \\
\overline{\tau_{1}} \underline{\tau_{1}} & =\tau_{1}^{2}-z^{1 / 2} \tau^{2} \tag{2}
\end{align*}
$$

where $\overline{\tau(z)}=\tau(q z), \underline{\tau(z)}=\tau\left(q^{-1} z\right)$.

Gamayun-lorgov-Lisovyy τ function

Gamayun-lorgov-Lisovyy in 2012-2013 proposed power series representation for the τ function of the (continuous) Painlevé equations. τ function - Fourier transformation of Nekrasov functions

$$
\begin{equation*}
\tau_{j}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}+j / 2} s^{n} \mathcal{Z}(\sigma+n \mid z) \tag{3}
\end{equation*}
$$

- $\mathcal{Z}(\sigma \mid z)$ is a certain Nekrasov function which depends on the Painlevé equation we take. It is a power series of z depending on vacuum expectation value σ and possibly other parameters.
- s and σ play role of the integration constants of the Painlevé equation.
- We take $j=0$ for τ and $j=1$ for τ_{1}.

Approach to solve bilinear equations on τ functions

- We have some bilinear equation on some τ function, schematically

$$
\begin{equation*}
\langle\tau, \tau\rangle=0 \tag{4}
\end{equation*}
$$

- We take the Gamayun-lorgov-Lisovyy formula as the ansatz with some function $\mathcal{Z}(\sigma \mid z)$.
- We collect terms with the power s^{m}. Due to the structure of the ansatz, the relations with s^{m} is equivalent to the relations with s^{m-1}

$$
\begin{equation*}
\langle\tau, \tau\rangle=0, \quad \tau=\left.\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(\sigma+n \mid z) \Leftarrow\langle\tau, \tau\rangle\right|_{s^{m}}=\left.0 \Leftrightarrow\langle\tau, \tau\rangle\right|_{s^{0}}=0 \tag{5}
\end{equation*}
$$

- s^{0} relations is some relation on $\mathcal{Z}(\sigma \mid z)$. In our cases $\mathcal{Z}(\sigma \mid z)$ is some Nekrasov function or via the AGT some conformal block.

Instanton partition functions

- Nekrasov instanton partition function for pure gauge $U(r) \mathrm{YM}$ is defined as the equivariant volume of the instanton moduli space

$$
\begin{equation*}
\mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; z\right)=\sum_{N=0}^{+\infty} z^{N} \int_{M(r, n)} 1 \tag{6}
\end{equation*}
$$

- This integral localizes on the fixed points of action of the $r+2$-dimensional torus. Fixed points are labeled by r-tuple of the Young diagrams.
- Example for the 4D $S U(2)$ case

$$
\begin{align*}
& \mathcal{Z}_{\text {inst }}\left(a_{1}, a_{2} ; \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{\lambda^{(1)}, \lambda^{(2)}} \frac{z^{\left|\lambda^{(1)}\right|+\left|\lambda^{(2)}\right|}}{\prod_{i, j=1}^{2} N_{\lambda^{(i)}, \lambda^{(j)}}\left(a_{i}-a_{j} ; \epsilon_{1}, \epsilon_{2}\right)}, \\
& N_{\lambda, \mu}\left(a ; \epsilon_{1}, \epsilon_{2}\right)= \tag{7}\\
& =\prod_{s \in \lambda}\left(a-\epsilon_{2}\left(a_{\mu}(s)+1\right)+\epsilon_{1} I_{\lambda}(s)\right) \prod_{s \in \mu}\left(a+\epsilon_{2} a_{\lambda}(s)-\epsilon_{1}\left(I_{\mu}(s)+1\right)\right)
\end{align*}
$$

Structure of the Nekrasov function

Structure of the Nekrasov function

$$
\begin{equation*}
\mathcal{Z}=\mathcal{Z}_{c \mid} \mathcal{Z}_{1-\text { loop }} \mathcal{Z}_{\text {inst }} \tag{8}
\end{equation*}
$$

- $\mathcal{Z}_{\text {inst }}$ is given by the Nekrasov formula. Case 5D differs from the case 4D in the Nekrasov formula by $a \mapsto 1-q^{a}$.
- Classical part $\mathcal{Z}_{c l}=z^{\Delta(\sigma)}$.
- $\mathcal{Z}_{1 \text {-loop }}$ is given by the double gamma functions with periods $\epsilon_{1,2}$ but when $\epsilon_{1} / \epsilon_{2} \in \mathbb{Z}$ it is expressed in G function (or its q-deformation by q-Pochhammers in 5D case)

$$
\begin{equation*}
\mathcal{Z}_{1-\text { loop }, \epsilon_{1}=-\epsilon_{2}}=\frac{1}{\mathrm{G}(1-2 \sigma) \mathrm{G}(1+2 \sigma)}, \quad \mathcal{Z}_{1-\text { loop }, \epsilon_{1}=-2 \epsilon_{2}}=\mathcal{Z}_{1-\text { loop }, \epsilon_{1}=-\epsilon_{2}}^{1 / 2} \tag{9}
\end{equation*}
$$

Nekrasov functions and solutions of Painlevé equations

Different choice of \mathcal{Z} :

- 4D $S U(2)$ Nekrasov function with $\epsilon_{1}+\epsilon_{2}=0$ (or Vir $c=1$ conformal block) give the solution of continuous Painlevé equations PVI, V, III's (Gamayun-lorgov-Lisovyy, 2012-2013) — proved by different methods.
- 5D $\operatorname{SU}(2)$ Nekrasov function with $\epsilon_{1}+\epsilon_{2}=0-q$-deformed Painlevé $I I I_{3}$ equation (Bershtein-S.,2016) and q-deformed Painlevé VI equation (Jimbo-Nagoya-Sakai, 2017)
- Other choices lead to generalization for the isomonodromic problems of higher rank, larger number of punctures, generalization of Toda-like equations with larger number of nodes, quantization of the τ function.... (Bershtein, Gavrylenko, Marshakov, lorgov, Lisovyy 2015-2018)

Bilinear relations on 5D SU(2) Nekrasov function

In case of q-deformed Painlevé III_{3} we use conjectural bilinear relation on 5D Nekrasov functions

$$
\begin{equation*}
\sum_{2 n \in \mathbb{Z}} \mathcal{Z}\left(\sigma+n \mid q^{-1} z\right) \mathcal{Z}(\sigma-n \mid q z)=\left(1-z^{1 / 2}\right) \sum_{2 n \in \mathbb{Z}} \mathcal{Z}(\sigma+n \mid z), \mathcal{Z}(\sigma-n \mid z) \tag{10}
\end{equation*}
$$

One of the aims of this talk is to present the proof of this relation which before was checked numerically up to the power z^{12}.
The continuous limit $z \mapsto R^{4} z, q=e^{R}, R \rightarrow 0$ give us

$$
\begin{equation*}
\sum_{2 n \in \mathbb{Z}} D^{2}(\mathcal{Z}(\sigma+n \mid z), \mathcal{Z}(\sigma-n \mid z))=-z^{1 / 2} \sum_{2 n \in \mathbb{Z}} \mathcal{Z}(\sigma+n \mid z), \mathcal{Z}(\sigma-n \mid z) \tag{11}
\end{equation*}
$$

We have proved these relations by the representation theory of Super Virasoro algebra when we proved the result of Gamayun-lorgov-Lisovyy for the continuous Painlevé equation.

Nakajima-Yoshioka relations

There are blow-up relations on 4D and 5D partition functions [Nakajima, Yoshioka $2003,2005]$. They express instanton partition function on $\widehat{\mathbb{C}^{2}}-\mathbb{C}^{2}$ blowed up in the point as a bilinear relation on \mathbb{C}^{2} instanton partition function

$$
\begin{equation*}
\mathcal{Z}_{\widehat{\mathbb{C}^{2}}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| z\right)=\sum_{n \in \mathbb{Z}} \mathcal{Z}_{\mathbb{C}^{2}}\left(a+\epsilon_{1} n\left|\epsilon_{1}, \epsilon_{2}-\epsilon_{1}\right| z\right) \mathcal{Z}_{\mathbb{C}^{2}}\left(a+\epsilon_{2} n\left|\epsilon_{1}-\epsilon_{2}, \epsilon_{2}\right| z\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{\widehat{\mathbb{C}^{2}}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| z\right)=\mathcal{Z}_{\mathbb{C}^{2}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| z\right) \tag{13}
\end{equation*}
$$

There are also differential (for 4D) and q-difference (for 5D) Nakajima-Yoshioka relations.

Nakajima-Yoshioka relations: $c=-2 \tau$ function

Take particular case $\epsilon_{1}+\epsilon_{2}=0$ in Nakajima-Yoshioka relations. Then in CFT terms $c=1$ partition function is a bilinear combination of $c=-2$

$$
\begin{equation*}
\mathcal{Z}_{c=1}(\sigma \mid z)=\sum_{n \in \mathbb{Z}} \mathcal{Z}_{c=-2}(\sigma+n \mid z / 4) \mathcal{Z}_{c=-2}(\sigma-n \mid z / 4) \tag{14}
\end{equation*}
$$

Then it is natural to make Fourier transformation

$$
\begin{equation*}
\tau(\sigma, s \mid z)=\tau^{-}(\sigma, s \mid z) \tau^{+}(\sigma, s \mid z) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2}(\pm i)^{n^{2}} \mathcal{Z}_{c=-2}(\sigma+n \mid z / 4) \tag{16}
\end{equation*}
$$

$c=-2 \tau$ function: differential relations

Differential Nakajima-Yoshioka relations

$$
\begin{array}{lr}
D_{[\log z]}^{1}\left(\tau^{-}, \tau^{+}\right)=z^{1 / 4} \tau_{1}, & D_{[\log z]}^{2}\left(\tau^{-}, \tau^{+}\right)=0 \\
D_{[\log z]}^{3}\left(\tau^{-}, \tau^{+}\right)=z^{1 / 4} \tau_{1}^{\prime}, & D_{[\log z]}^{4}\left(\tau^{-}, \tau^{+}\right)=-2 z \tau \tag{17}
\end{array}
$$

The PIII_{3} equation follow from these equations. Namely, first and second equations imply that

$$
\begin{equation*}
z \frac{d}{d z} \tau^{ \pm}=\frac{1}{2}\left(\zeta \pm \zeta^{\prime}\right) \tau^{ \pm} \tag{18}
\end{equation*}
$$

where $\zeta=\tau^{\prime} / \tau$ is a Hamiltonian of the PIII_{3} equation. From the fourth equation

$$
\begin{equation*}
\left(\zeta^{\prime \prime}-\zeta^{\prime}\right)^{2}=4 \zeta^{\prime 2}\left(\zeta-\zeta^{\prime}\right)-4 z \zeta^{\prime} \tag{19}
\end{equation*}
$$

which is Hamiltonian form of PIII_{3} equation.

Toda-like form from Nakajima-Yoshioka relations

q-difference Nakajima-Yoshioka relations

$$
\begin{align*}
& \overline{\tau^{+}} \underline{\tau^{-}}-\underline{\tau^{+}} \overline{\tau^{-}}=-2 z^{1 / 4} \tau_{1}, \\
& \overline{\tau^{+}} \underline{\tau^{-}}+\underline{\tau^{+}} \overline{\tau^{-}}=2 \tau \tag{20}
\end{align*}
$$

Proposition

Take (20) and $\tau=\tau^{+} \tau^{-}$. Then τ and τ_{1} satisfy Toda-like equation

$$
\begin{equation*}
\bar{\tau} \underline{\tau}=\tau^{2}-z^{1 / 2} \tau_{1}^{2} \tag{21}
\end{equation*}
$$

Proof and consequences

Proof.

Proof is extremely elementary. We substitute τ_{1} and τ in different ways

$$
\begin{equation*}
\overline{\tau^{+}} \overline{\tau^{-}} \underline{\tau^{+}} \tau^{-}=\frac{1}{4}\left(\overline{\tau^{+}} \underline{\tau}^{-}+\underline{\tau^{+}} \overline{\tau^{-}}\right)^{2}-\frac{1}{4}\left(\overline{\tau^{+}} \underline{\tau^{-}}-\underline{\tau^{+}} \overline{\tau^{-}}\right)^{2} \tag{22}
\end{equation*}
$$

- Nakajima-Yoshioka relations are proven, so we obtain the proof of the conjectured bilinear relation (10) in q-case automatically.
- There is, of course, differential analogue of this Proposition.

$c=-2 \tau$ function: motivations 1

- Riemann-Hilbert problem: [lorgov, Lisovyy, Teschner, 2014] give naturaly relate $\tau_{c=1}$ to the Riemann-Hilbert problem. Their arguments works for the case $b^{2} \in \mathbb{Z}$, in particular for $c=-2$.
- Central charge of symplectic fermions is $c=-2$. We expect that $\tau_{c=-2}$ is a conformal block for the symplectic fermions.
- Classical conformal block $c=\infty$ is related to the Painlevé equations [Litvinov, Lukyanov, Nekrasov, Zamolodchikov, 2013]. There is a relation between $\tau_{c=-2}$ and classical conformal blocks.
- For special resonance values of parameters $\tau_{c=1}$ is expressed by the determinant of hypergeometric functions [Morozov, Mironov, 2017]. Similarly $\tau_{c=-2}$ is a Pfaffian.

$c=-2 \tau$ function: motivations 2

$$
\begin{equation*}
\tau(\kappa, \hbar, \xi)=Z_{C S}(\hbar, \xi) \operatorname{det}\left(1+\kappa \rho_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right) \tag{23}
\end{equation*}
$$

\]

where ρ is inverse operator to the Hamiltonian of the relativistic Toda chain

$$
\begin{equation*}
\rho_{\mathbb{P}^{1} \times \mathbb{P}^{1}}=\left(e^{p}+e^{-p}+e^{x}+m_{\mathbb{P}^{1} \times \mathbb{P}^{1}} e^{-x}\right)^{-1} \tag{24}
\end{equation*}
$$

This determinant is the grand canonical partition function for topological strings on local $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Spectral determinant for the special value of z is a generating function for the ABJ partition functions.

$$
\begin{equation*}
\overline{\tau^{+}} \underline{\tau^{-}}+\underline{\tau^{+}} \overline{\tau^{-}}=\tau=\tau^{+} \tau^{-} \tag{25}
\end{equation*}
$$

are "quantum Wronskian" relations in ABJ theory [Grassi-Hatsuda-Marino, 2014]

$c=-2 \tau$ function: cluster structure

q-deformed $c=-2 \tau$ function admits cluster structure as the $c=1 \tau$ function does [Bershtein, Gavrylenko, Marshakov, 2017]

$$
\begin{align*}
& \overline{\tau_{0}^{+}}=\frac{\tau_{0}^{+} \tau_{0}^{-}-z^{1 / 4} \tau_{1}^{+} \tau_{1}^{-}}{\tau_{0}^{-}} \\
& \overline{\tau_{0}^{-}}=\frac{\tau_{0}^{+} \tau_{0}^{-}+{z^{1 / 4}}^{1}+\tau_{1}^{-}}{\underline{\tau_{0}^{+}}} \tag{26}
\end{align*}
$$

The quiver is surprisingly just the same as for the q-Painlevé VI equation.

$c=-2 \tau$ function: Chern-Simons terms generalization

- In the work Bershtein, Gavrylenko, Marshakov, 2018 the generalizations of Toda-like equations were considered. The generalizations were in two directions - the number of nodes bigger than 2 and Toda-like equations corresponding to the Nekrasov functions modified by the Chern-Simons term.
- We at the moment failed to obtain Toda-like equations from Nakajima-Yoshioka relations for the number of nodes larger then 2 but for the case of 2 nodes we have obtained Chern-Simons generalization.
- Each summand of instanton partition function obtain a multiplier in power k

$$
\begin{equation*}
\mathrm{T}_{\lambda}=\prod_{(i, j) \in \lambda} u^{-1} q_{1}^{1-i} q_{2}^{1-j} \tag{27}
\end{equation*}
$$

- The level of additional Chern-Simons is $0 \leq k \leq r$ - only in this case instanton partition function converge.
- $k=2$ is equivalent to the $k=0$ and $k=1$ correspond to the Painlevé $A_{7}^{(1)}$ equation.

Algebraic solutions and \log limit of $c=-2 \tau$ function

As it is for $c=1 \tau$ function there exist limit $\sigma \rightarrow 0$ and "algebraic" solution for the $\sigma=1 / 4, s= \pm 1$

- It is known that $\tau(1 / 4, \pm 1 \mid z)=z^{1 / 16} e^{\mp \sqrt{z}}$. One can find that

$$
\begin{equation*}
\tau^{+}=e^{2 i z^{1 / 4}} z^{1 / 32} e^{2 \sqrt{z}}, \quad \tau^{-}=e^{2 i z^{1 / 4}} z^{1 / 32} e^{2 \sqrt{z}} \tag{28}
\end{equation*}
$$

- Logarithmic limit for $c=1$ is $s=e^{2 \Omega \sigma}, \sigma \rightarrow 0$. It also could be applied for the $c=-2 \tau$ function

Thank you for the attention!

Conformal blocks

- We have graded Lie algebra (for example, Virasoro algebra) $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$.
- We take highest weight vector $\left|v_{\lambda}\right\rangle$, s.t. $U\left(\mathfrak{n}^{+}\right)$act on it by zero and $U(\mathfrak{h})$ act as on eigenvector.
- Verma module $U(\mathfrak{n})^{-}\left|v_{\lambda}\right\rangle$
- Whittaker vector in the Verma module

$$
\begin{equation*}
|W(z)\rangle=\sum_{N=0}^{+\infty} z^{N}|N\rangle, \quad \operatorname{deg}(|N\rangle)=N \tag{29}
\end{equation*}
$$

s.t.

$$
\begin{equation*}
g|W(z)\rangle=\beta_{g} z^{\operatorname{deg}(g)}|W(z)\rangle \tag{30}
\end{equation*}
$$

- Conformal block

$$
\begin{equation*}
\mathcal{Z}(z)=\langle W(1) \mid W(z)\rangle \tag{31}
\end{equation*}
$$

Representation-theoretic interpretation

Nakajima-Yoshioka blow-up relations on 4D Nekrasov functions have representation-theoretic interpretation (Bershtein, Feigin, Litvinov, 2013).

- 4D Nekrasov function with $\epsilon_{1}+\epsilon_{2}=0$ correspond via AGT correspondence to the $c=14$-point Virasoro conformal block.
- Introduce vertex operator algebra Urod as a sum of Heisenberg algebra Fock modules $\bigoplus_{k \in \mathbb{Z}} F_{k \sqrt{2}}$ but with modified stress-energy tensor.
- There are Vir \oplus Vir subalgebra with $b_{1}^{2}+b_{2}^{-2}=-1$ in the $U(U r o d \otimes \operatorname{Vir})$, moreover there is a decomposition of the Verma module

$$
\begin{equation*}
U_{1} \otimes \mathbb{L}_{P, b}=\bigoplus_{k \in \mathbb{Z}} \mathbb{L}_{P_{1}+k b_{1}, b_{1}} \otimes \mathbb{L}_{P_{2}+k b_{2}^{-1}, b_{2}} \tag{32}
\end{equation*}
$$

- Take Whittaker vector $v_{1 / \sqrt{2}} \otimes|W(z)\rangle$ in I.h.s. Then it decompose into sum of $\operatorname{Vir} \oplus \operatorname{Vir}$ Whittaker vectors in r.h.s. Squaring this relation we obtain Nakajima-Yoshioka blow-up relation.

