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Painlevé Equations
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with a, b, c and d arbitrary constants.
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Painlevé σ-Equations
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where β, ϑ0, ϑ∞ and κ1, . . . , κ4 are arbitrary constants.
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Special function solutions of Painlevé equations

Number of
(essential)

parameters

Special
function

Number of
parameters

Associated
orthogonal
polynomial

PI 0 —

PII 1
Airy

Ai(z),Bi(z)
0 —

PIII 2
Bessel

Jν(z), Iν(z), Kν(z)
1 —

PIV 2
Parabolic cylinder

Dν(z)
1

Hermite
Hn(z)

PV 3

Kummer
M(a, b, z), U(a, b, z)

Whittaker
Mκ,µ(z),Wκ,µ(z)

2

Associated
Laguerre
L
(k)
n (z)

PVI 4
hypergeometric

2F1(a, b; c; z)
3

Jacobi
P (α,β)
n (z)
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Properties of the Second Painlevé Equation

d2q

dz2
= 2q3 + zq + a PII

• Hamiltonian structure
• Airy solutions
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Hamiltonian Representation
PII can be written as the Hamiltonian system
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Airy Solutions of PII, P34 and SII
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Let
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respectively satisfy PII, P34 and SII, with n ∈ Z.
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Airy Solutions of PII qn(z;ϑ) =
d

dz
ln
τn−1(z;ϑ)

τn(z;ϑ)

n = 1, ϑ = 0, 13π,
2
3π, π n = 2, ϑ = 0, 13π,

2
3π, π

The dashed line is the cubic

2q3 + zq + n− 1
2 = 0
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Airy Solutions of PII qn(z;ϑ) =
d

dz
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2
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n = 5, ϑ = 0, 13π,
2
3π, π n = 6, ϑ = 0, 13π,
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Airy Solutions of PII with α = 5
2 (n = 2)

(Fornberg & Weideman [2014])

q2(z;ϑ) =
d

dz
ln
W(ϕ, ϕ′)

W(ϕ, ϕ′, ϕ′′)
, ϕ(z;ϑ) = cos(ϑ) Ai(−2−1/3z) + sin(ϑ) Bi(−2−1/3z)

blue/yellow denote poles with residue +1/−1
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Tronquée Solutions of PII (Airy with ϑ = 0)

qn(z; 0) =
d

dz
ln
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, τn(z; 0) =W

(
ϕ0,
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with ϕ0 = ϕ(z; 0) = Ai(−2−1/3z)

n = 2 n = 3 n = 4

Plots of the poles of qn(z; 0) for n = 2, 3, 4; the blue and red circles represent
poles with residues +1 and −1, respectively.
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Airy Solutions of P34 pn(z;ϑ) = −2
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2p3 − zp2 − 1
2n

2 = 0
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Airy Solutions of P34 pn(z; 0) = −2
d2

dz2
ln τn(z; 0)

n = 2, n = 4 n = 6, n = 8
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Airy Solutions of SII σn(z;ϑ) =
d

dz
ln τn(z;ϑ)

n = 1, ϑ = 0, 13π,
2
3π, π n = 2, ϑ = 0, 13π,
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The dashed line is the cubic

2σ3 + zσ − 1
2n = 0
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Airy Solutions of SII σn(z;ϑ) =
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Airy Solutions of SII σn(z; 0) =
d
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Properties of the Fourth Painlevé Equation
and the Fourth Painlevé σ-Equation
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• Hamiltonian Representation
• Parabolic Cylinder Function Solutions
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Hamiltonian Representation of PIV
PIV can be written as the Hamiltonian system
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2q gives PIV with a = 2ϑ0 − ϑ∞ − 1 and b = −2ϑ2∞.

Tau Functions of Integrable Systems and Their Applications, BIRS, Banff, Canada, September 2018



Theorem (Okamoto [1986])
The function

σ(z; θ0, ϑ∞) = HIV ≡ 2qp2 − (q2 + 2zq + 2ϑ0)p + ϑ∞q

where q and p satisfy the Hamiltonian system
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are solutions of the Hamiltonian system HIV.
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Parabolic Cylinder Function Solutions of PIV
Theorem

Suppose τν,n(z; ε) is given by
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Parabolic Cylinder Function Solutions of SIV

Theorem
Suppose τν,n(z; ε) is given by
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d2ϕν

dz2
− 2εz

dϕν
dz

+ 2ενϕν = 0, ε2 = 1 (∗)

• If ν 6∈ Z

ϕν(z; ε) =

{{
cos(θ)Dν(

√
2 z) + sin(θ)Dν(−

√
2 z)
}

exp
(
1
2z

2
)
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√
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2
)
, ε = −1

• If ν = n ∈ Z, with n ≥ 0

ϕn(z; ε) =





cos(θ)Hn(z) + sin(θ) exp(z2)
dn

dzn
{

erfi(z) exp(−z2)
}
, ε = 1

cos(θ)(−i)nHn(iz) + sin(θ) exp(−z2) dn

dzn
{

erfc(z) exp(z2)
}
, ε = −1

• If ν = −n− 1 ∈ Z, with n ≥ 0

ϕ−n−1(z; ε) =



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cos(θ)(−i)nHn(iz) exp(z2) + sin(θ)
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{
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}
, ε = −1

with θ an arbitrary constant, Dν(ζ) the parabolic cylinder function, Hn(z)
the Hermite polynomial, erfc(z) the complementary error function and
erfi(z) the imaginary error function.
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Plots of Bounded Rational Solutions of SIV

σm,n(z) =
d

dz
lnW

(
Hm(z), Hm+1(z), . . . , Hm+n−1(z)

)

σ1,2j(z), j = 1, 2, 3, 4 σ2,2j(z), j = 1, 2, 3, 4 σ3,2j(z), j = 1, 2, 3, 4

σ4,2j(z), j = 1, 2, 3, 4 σ5,2j(z), j = 1, 2, 3, 4 σ10,2j(z), j = 1, 2, 3, 4
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Plots of Bounded Special Function Solutions of SIV

σν,n(z) = −2nz +
d

dz
lnW

(
ϕν, ϕ

′
ν, . . . , ϕ

(n−1)
ν

)

ϕν(z) =
{

cos(θ)D−ν
(√

2 z
)

+ sin(θ)D−ν
(
−
√

2 z
)}

exp
(
1
2z

2
)
, 0 < θ < 1

2π, ν > 0

σ1/2,1(z) σ3/2,1(z) σ5/2,1(z)
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σ1/2,2(z) σ3/2,2(z) σ5/2,2(z)

σ1/2,3(z) σ3/2,3(z) σ5/2,3(z)

Tau Functions of Integrable Systems and Their Applications, BIRS, Banff, Canada, September 2018



Orthogonal Polynomials

• Some History

• Monic orthogonal polynomials

• Semi-classical orthogonal polynomials
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Some History
• The relationship between semi-classical orthogonal polynomials and in-

tegrable equations dates back to Shohat [1939] and Freud [1976].
• Fokas, Its & Kitaev [1991, 1992] identified these integrable equations

as discrete Painlevé equations.
•Magnus [1995] considered the Freud weight

w(x; t) = exp
(
−x4 + tx2

)
, x, t ∈ R,

and showed that the coefficients in the three-term recurrence relation
can be expressed in terms of solutions of

qn(qn−1 + qn + qn+1) + 2tqn = n

which is discrete PI (dPI), as shown by Bonan & Nevai [1984], and

d2qn

dt2
=

1

2qn

(
dqn
dt

)2
+

3

2
q3n + 4tq2n + 2(t2 + 1

2n)qn −
n2

2qn

which is PIV with a = −1
2n and b = −1

2n
2.
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Freud [1976] considered orthogonal polynomials Pn(x) with respect to the
weight

w(x) = |x|ρ exp(−|x|m), ρ > −1, m > 0

which satisfy the three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn−1(x)

and gave recurrence relations for βn in the cases m = 2, 4, 6

•m = 2 (Hermite polynomials when ρ = 0)

2βn = n + 1
2ρ
[
1− (−1)n

]

•m = 4
4βn(βn+1 + βn + βn−1) = n + 1

2ρ
[
1− (−1)n

]

which an autonomous dPI

•m = 6

6βn
(
βn−2βn−1 + β2

n−1 + 2βn−1βn + βn−1βn+1

+ β2
n + 2βnβn+1 + β2

n+1 + βn+1βn+2

)
= n + 1

2ρ
[
1− (−1)n

]

Later studies include Lew & Quarles [1983], Bonan & Nevai [1984],
Fokas, Its & Kitaev [1991, 1992], Clarke & Shizgal [1993], Magnus
[1995], ...

Tau Functions of Integrable Systems and Their Applications, BIRS, Banff, Canada, September 2018



For the exponential weight

w(x) = exp(−x4 + tx2)

the monic orthogonal polynomials satisfy the recurrence relation

xPn(x) = Pn+1(x) + βn(t)Pn−1(x)

Theorem (Shohat [1939], Freud [1976], Bonan & Nevai [1984])
The recurrence coefficients for the weight w(x) = exp(−x4 + tx2) satisfy

4βn(βn+1 + βn + βn−1 − 1
2t) = n, n ≥ 1

with initial conditions

β0 = 0, β1 =

∫∞
−∞ x

2 exp(−x4 + tx2) dx∫∞
−∞ exp(−x4 + tx2) dx

= Φ(t)

Theorem (Freud [1976])
The recurrence coefficients for the weight w(x) = exp(−x4 + tx2) satisfy

lim
n→∞

βn√
n

=
1√
12
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4βn(βn+1 + βn + βn−1 − 1
2t) = n, β0 = 0, β1 = Φ(t)

t = 0 t = 2 t = 4

t = 6 t = 8 t = 10
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Extract from Digital Library of Mathematical Functions18.32 OP’s with Respect to Freud Weights 475

18.32 OP’s with Respect to Freud Weights

A Freud weight is a weight function of the form

18.32.1 w(x) = exp(−Q(x)), −∞ < x <∞,

where Q(x) is real, even, nonnegative, and continu-
ously differentiable. Of special interest are the cases
Q(x) = x2m, m = 1, 2, . . . . No explicit expressions
for the corresponding OP’s are available. However, for
asymptotic approximations in terms of elementary func-
tions for the OP’s, and also for their largest zeros, see
Levin and Lubinsky (2001) and Nevai (1986). For a
uniform asymptotic expansion in terms of Airy func-
tions (§9.2) for the OP’s in the case Q(x) = x4 see Bo
and Wong (1999).

18.33 Polynomials Orthogonal on the Unit
Circle

18.33(i) Definition

A system of polynomials {φn(z)}, n = 0, 1, . . . , where
φn(z) is of proper degree n, is orthonormal on the unit
circle with respect to the weight function w(z) (≥ 0) if

18.33.1
1

2πi

∫

|z| =1

φn(z)φm(z)w(z)
dz

z
= δn,m,

where the bar signifies complex conjugate. See Simon
(2005a,b) for general theory.

18.33(ii) Recurrence Relations

Denote

18.33.2 φn(z) = κnz
n +

n∑

`=1

κn,n−`z
n−`,

where κn(> 0), and κn,n−`(∈ C) are constants. Also
denote

18.33.3 φ∗n(z) = κnz
n +

n∑

`=1

κn,n−`z
n−`,

where the bar again signifies compex conjugate. Then

18.33.4 κnzφn(z) = κn+1φn+1(z)− φn+1(0)φ∗n+1(z),

18.33.5 κnφn+1(z) = κn+1zφn(z) + φn+1(0)φ∗n(z),

18.33.6
κnφn(0)φn+1(z) + κn−1φn+1(0)zφn−1(z)

= (κnφn+1(0) + κn+1φn(0)z)φn(z).

18.33(iii) Connection with OP’s on the Line

Assume that w(eiφ) = w(e−iφ). Set

18.33.7

w1(x) = (1− x2)−
1
2w
(
x+ i(1− x2)

1
2

)
,

w2(x) = (1− x2)
1
2w
(
x+ i(1− x2)

1
2

)
.

Let {pn(x)} and {qn(x)}, n = 0, 1, . . . , be OP’s with
weight functions w1(x) and w2(x), respectively, on
(−1, 1). Then

18.33.8

pn
(

1
2 (z + z−1)

)

= (const.)×
(
z−nφ2n(z) + znφ2n(z−1)

)

= (const.)×
(
z−n+1φ2n−1(z) + zn−1φ2n−1(z−1)

)
,

18.33.9

qn
(

1
2 (z + z−1)

)

= (const.)× z−n−1φ2n+2(z)− zn+1φ2n+2(z−1)

z − z−1

= (const.)× z−nφ2n+1(z)− znφ2n+1(z−1)

z − z−1
.

Conversely,

18.33.10

z−nφ2n(z)

= Anpn
(

1
2 (z + z−1)

)
+Bn(z − z−1)qn−1

(
1
2 (z + z−1)

)
,

18.33.11

z−n+1φ2n−1(z)

= Cnpn
(

1
2 (z + z−1)

)
+Dn(z − z−1)qn−1

(
1
2 (z + z−1)

)
,

where An, Bn, Cn, and Dn are independent of z.

18.33(iv) Special Cases

Trivial

18.33.12 φn(z) = zn, w(z) = 1.

Szegö–Askey

18.33.13

φn(z)

=
n∑

`=0

(λ+ 1)`(λ)n−`
`! (n− `)! z` =

(λ)n
n!

2F1

( −n, λ+ 1

−λ− n+ 1
; z

)
,

with

18.33.14

w(z) =
(
1− 1

2 (z + z−1)
)λ
,

w1(x) = (1− x)λ−
1
2 (1 + x)−

1
2 ,

w2(x) = (1− x)λ+ 1
2 (1 + x)

1
2 , λ > − 1

2 .

For the hypergeometric function 2F1 see §§15.1 and
15.2(i).

Askey

18.33.15

φn(z) =

n∑

`=0

(
aq2; q2

)
`

(
a; q2

)
n−`

(q2; q2)` (q2; q2)n−`
(q−1z)`

=

(
a; q2

)
n

(q2; q2)n
2φ1

(
aq2, q−2n

a−1q2−2n
; q2,

qz

a

)
,

with

18.33.16 w(z) =
∣∣∣
(
qz; q2

)
∞

/ (
aqz; q2

)
∞

∣∣∣
2

, a2q2 < 1.

For the notation, including the basic hypergeometric
function 2φ1, see §§17.2 and 17.4(i).

When a = 0 the Askey case is also known as the
Rogers–Szegö case.
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Monic Orthogonal Polynomials
Let Pn(x), n = 0, 1, 2, . . . , be the monic orthogonal polynomials of degree
n in x, with respect to the positive weight w(x), such that

∫ b

a

Pm(x)Pn(x)w(x) dx = hnδm,n, hn > 0, m, n = 0, 1, 2, . . .

One of the important properties that orthogonal polynomials have is that
they satisfy the three-term recurrence relation

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x)

where the recurrence coefficients are given by

αn =
∆̃n+1

∆n+1
− ∆̃n

∆n
, βn =

∆n+1∆n−1
∆2
n

with

∆n =

∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1
µ1 µ2 . . . µn
... ... . . . ...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣
, ∆̃n =

∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−2 µn
µ1 µ2 . . . µn−1 µn+1
... ... . . . ... ...

µn−1 µn . . . µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣

and µk =

∫ b

a

xk w(x) dx are the moments of the weight w(x).
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If the weight has the form

w(x; t) = w0(x) exp(tx)

where the integrals
∫ ∞

−∞
xkw0(x) exp(tx) dx exist for all k ≥ 0.

• The recurrence coefficients αn(t) and βn(t) satisfy the Toda system
dαn
dt

= βn − βn+1,
dβn
dt

= βn(αn − αn−1)

• The kth moment is given by

µk(t) =

∫ ∞

−∞
xkw0(x) exp(tx) dx =

dk

dtk

(∫ ∞

−∞
w0(x) exp(tx) dx

)
=

dkµ0

dtk

• Since µk(t) =
dkµ0

dtk
, then ∆n(t) and ∆̃n(t) can be expressed as Wronskians

∆n(t) =W
(
µ0,

dµ0
dt
, . . . ,

dn−1µ0
dtn−1

)
= det

[
dj+kµ0

dtj+k

]n−1

j,k=0

∆̃n(t) =W
(
µ0,

dµ0
dt
, . . . ,

dn−2µ0
dtn−2

,
dnµ0
dtn

)
=

d

dt
∆n(t)
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Generalized Freud Weight

w(x; t) = |x|2ν+1 exp
(
−x4 + tx2

)
, x ∈ R, ν > −1

• PAC, K Jordaan & A Kelil, “A generalized Freud weight”, Stud. Appl.
Math., 136 (2016) 288–320
• PAC & K Jordaan, “Properties of generalized Freud polynomials”, J.

Approx. Theory, 225 (2018) 148–175
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Generalized Freud weight
For the generalized Freud weight

w(x; t) = |x|2ν+1 exp
(
−x4 + tx2

)
, x ∈ R

the moments are

µ0(t; ν) =

∫ ∞

−∞
|x|2ν+1 exp

(
−x4 + tx2

)
dx =

∫ ∞

0

yν+1 exp
(
−y2 + ty

)
dy

= 2−(ν+1)/2Γ(ν + 1) exp(18t
2)D−ν−1

(
− 1

2

√
2 t
)

µ2n(t; ν) =

∫ ∞

−∞
x2n|x|2ν+1 exp

(
−x4 + tx2

)
dx

=
dn

dtn

(∫ ∞

−∞
|x|2ν+1 exp

(
−x4 + tx2

)
dx

)
=

dnµ0
dtn

µ2n+1(t; ν) =

∫ ∞

−∞
x2n+1|x|2ν+1 exp

(
−x4 + tx2

)
dx = 0

for n = 1, 2, . . . , where Dν(ζ) is the parabolic cylinder function.
When ν = n ∈ Z+, then

D−n−1
(
− 1

2

√
2 t
)

= 1
2

√
2π

dn

dtn
{[

1 + erf
(
1
2t
)]

exp
(
1
8t

2
)}
,

where erf(z) is the error function.
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Since µ2j+1(t; ν) = 0 then using ideas due to Hubert [2017]

∆2n =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0 0 µ2 . . . µ2n−2 0
0 µ2 0 . . . 0 µ2n
µ2 0 µ4 . . . µ2n 0
... ... ... . . . ... ...

µ2n−2 0 µ2n . . . µ4n−4 0
0 µ2n 0 . . . 0 µ4n−2

∣∣∣∣∣∣∣∣∣∣∣∣

= AnBn

∆2n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0 0 µ2 . . . 0 µ2n
0 µ2 0 . . . µ2n 0
µ2 0 µ4 . . . 0 µ2n+2
... ... ... . . . ... ...
0 µ2n 0 . . . µ4n−2 0
µ2n 0 µ2n+2 . . . 0 µ4n

∣∣∣∣∣∣∣∣∣∣∣∣

= An+1Bn

where

An =

∣∣∣∣∣∣∣∣

µ0 µ2 . . . µ2n−2
µ2 µ4 . . . µ2n
... ... . . . ...

µ2n−2 µ2n . . . µ4n−4

∣∣∣∣∣∣∣∣
, Bn =

∣∣∣∣∣∣∣∣

µ2 µ4 . . . µ2n
µ4 µ6 . . . µ2n+2
... ... . . . ...
µ2n µ2n+2 . . . µ4n−2

∣∣∣∣∣∣∣∣

which can be written as Wronskians since µ2j =
djµ0

dtj
.
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Theorem (PAC, Jordaan & Kelil [2016])
The recurrence coefficient βn(t) in the three-term recurrence relation

xPn(x; t) = Pn+1(x; t) + βn(t)Pn−1(x; t),

is given by

β2n(t; ν) =
d

dt
ln
τn(t; ν + 1)

τn(t; ν)
, β2n+1(t; ν) =

d

dt
ln

τn+1(t; ν)

τn(t; ν + 1)

where τn(t; ν) is the Wronskian given by

τn(t; ν) =W
(
φν,

dφν
dt
, . . . ,

dn−1φν
dtn−1

)

with
φν(t) = µ0(t; ν) =

Γ(ν + 1)

2(ν+1)/2
exp
(
1
8t

2
)
D−ν−1

(
− 1

2

√
2 t
)

Remark: The function Sn(t; ν) =
d

dt
ln τn(t; ν) satisfies

4

(
d2Sn

dt2

)2

−
(
t
dSn
dt
− Sn

)2

+ 4
dSn
dt

(
2

dSn
dt
− n

)(
2

dSn
dt
− n− ν

)
= 0

which is equivalent to SIV, the PIV σ-equation, so
β2n(t; ν) = Sn(t; ν + 1)− Sn(t; ν), β2n+1(t; ν) = Sn+1(t; ν)− Sn(t; ν + 1)
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Theorem
The recurrence coefficients βn(t) satisfy the equation

d2βn

dt2
=

1

2βn

(
dβn
dt

)2

+ 3
2β

3
n − tβ2

n + (18t
2 − 1

2an)βn +
bn

16βn
(1)

which is equivavlent to PIV, where the parameters an and bn are given by
a2n = −2ν − n− 1, a2n+1 = ν − n
b2n = −2n2, b2n+1 = −2(ν + n + 1)2

Further βn(t) satisfies the nonlinear difference equation

βn+1 + βn + βn−1 = 1
2t +

2n + (2ν + 1)[1− (−1)n]

8βn
(2)

which is the general discrete PI.

Remark: The link between the differential equation (1) and the difference
equation (2) is given by the Bäcklund transformations

βn+1 =
1

2βn

dβn
dt
− 1

2βn + 1
4t +

cn
4βn

, βn−1 = − 1

2βn

dβn
dt
− 1

2βn + 1
4t +

cn
4βn

with cn = 1
2n + 1

4(2ν + 1)[1− (−1)n].
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The first few recurrence coefficients are:
β1(t) = Φν

β2(t) = −2Φ2
ν − tΦν − ν − 1

2Φν

β3(t) = − Φν

2Φ2
ν − tΦν − ν − 1

− ν + 1

2Φν

β4(t) =
t

2(ν + 2)
+

Φν

2Φ2
ν − tΦν − ν − 1

+
(ν + 1)(t2 + 2ν + 4)Φν + (ν + 1)2t

2(ν + 2)[2(ν + 2)Φ2
ν − (ν + 1)tΦν − (ν + 1)2]

β5(t) = − 2νt

ν + 1
− 2(ν + 1)

t
− 2ν(2t2 + ν + 1)Φν − 4ν2t

(ν + 1)[(ν + 1)Φ2
ν + 2νtΦν − 2ν2]

− 2[νt2 + (ν + 1)(2ν + 1)]Φ2
ν + 2νt(t2 + 4ν + 5)Φν − 4ν2t2 − 8ν2(ν + 1)

t[tΦ3
ν(t) + (2t2 − 2ν + 1)Φ2

ν − 6Φννt + 4ν2]

where

Φν(t) =
d

dt
ln
{
D−ν−1

(
− 1

2

√
2 t
)

exp
(
1
8t

2
)}

= 1
2t + 1

2

√
2
D−ν

(
− 1

2

√
2 t
)

D−ν−1
(
− 1

2

√
2 t
).
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β2n−1(t;
1
2), n = 1, 2, . . . , 5 β2n(t; 12), n = 1, 2, . . . , 5

Plots of the recurrence coefficients β2n−1(t; 12) and β2n(t; 12), n = 1, 2, . . . , 5, for
n = 1 (black), n = 2 (red), n = 3 (blue), n = 4 (green) and n = 5 (purple).
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Lemma (PAC, Jordaan & Kelil [2016])
As t→∞, the recurrence coefficient βn(t; ν) has the asymptotic expansion

β2n(t; ν) =
n

t
− 2n(2ν − n + 1)

t3
+O

(
t−5
)

β2n+1(t; ν) =
t

2
+
ν − n
t
− 2(ν2 − 4νn + n2 − ν − n)

t3
+O

(
t−5
)

for n ∈ N. Further, as t→ −∞

β2n(t; ν) = −n
t

+
2n(2ν + 3n + 1)

t3
+O

(
t−5
)

β2n+1(t; ν) = −ν + n + 1

t
+

2(ν + n + 1)(ν + 3n + 2)

t3
+O

(
t−5
)

Conjecture
• β2n+1(t; ν) is a monotonically increasing function of t.
• β2n+2(t; ν) > β2n(t; ν), for all t.
• β2n(t; ν) has one maximum at t = t∗2n, with t∗2n+2 > t∗2n.
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Theorem (PAC & Jordaan [2018])
For ν > −1 and β0 = 0, there exists a unique β1(t; ν) > 0 such that {βn(t; ν)}n∈N

defined by the nonlinear discrete equation

βn
(
βn+1 + βn + βn−1 − 1

2t
)

= 1
4[n + (2ν + 1)∆n] (1)

with ∆n = 1
2[1− (−1)n], is a positive sequence and the solution arises when

β1(t; ν) = 1
2t + 1

2

√
2
D−ν

(
− 1

2

√
2 t
)

D−ν−1
(
− 1

2

√
2 t
)

Consider the discrete equation (1) with initial conditions β0 = 0 and

β1 = 1
2t + 1

2

√
2

[
cos(θ)D−ν

(
− 1

2

√
2 t
)
− sin(θ)D−ν

(
1
2

√
2 t
)

cos(θ)D−ν−1
(
− 1

2

√
2 t
)

+ sin(θ)D−ν−1
(
1
2

√
2 t
)
]

with 0 ≤ θ ≤ 1
2π a parameter (if 1

2π < θ < π then β1 has a pole at a finite
value of t), which is the general solution of the Riccati equation

dΦν

dt
= −Φ2

ν + 1
2tΦν + 1

2(ν + 1)
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Φν(t; θ) = 1
2t + 1

2

√
2

[
cos(θ)D−ν

(
− 1

2

√
2 t
)
− sin(θ)D−ν

(
1
2

√
2 t
)

cos(θ)D−ν−1
(
− 1

2

√
2 t
)

+ sin(θ)D−ν−1
(
1
2

√
2 t
)
]

Since the parabolic cylinder function Dν(z) has the asymptotics

Dν(z) =





zν exp(−1
4z

2)
{

1 +O(z−2)
}
, as z →∞,√

2π

Γ(−ν)
(−z)−ν−1 exp(14z

2)
{

1 +O(z−2)
}
, as z → −∞,

then

Φν(t; 0) =





1
2t +O(t−1), as t→∞,
−ν + 1

t
+O(t−3), as t→ −∞,

Φν(t; θ) = 1
2t +O(t−1), as t→ ±∞, if 0 < θ < 1

2π,

Φν(t;
1
2π) =




−ν + 1

t
+O(t−3), as t→∞,

1
2t +O(t−1), as t→ −∞,
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Φν(t; θ) = 1
2t + 1

2

√
2

[
cos(θ)D−ν

(
− 1

2

√
2 t
)
− sin(θ)D−ν

(
1
2

√
2 t
)

cos(θ)D−ν−1
(
− 1

2

√
2 t
)

+ sin(θ)D−ν−1
(
1
2

√
2 t
)
]

θ = 0 (black), θ = 1
12π (red), θ = 1

4π (blue), θ = 5
12π (green), θ = 1

2π (purple)
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β0 = 0, β1 = Φ(0; 0) β1 = Φ(0; 0) + 10−4 β1 = Φ(0; 0)− 10−4

β0 = 0, β1 = Φ(5; 0) β1 = Φ(5; 0) + 10−4 β1 = Φ(5; 0)− 10−4
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Complex roots of cos(θ)D−ν−1
(
− 1

2

√
2 t
)

+ sin(θ)D−ν−1
(
1
2

√
2 t
)

θ = 0 θ = π/107 θ = π/104

θ = 1
100π θ = 1

10π θ = 1
4π
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Complex poles of βj(t), j = 2, 3, 4

β2(t) β3(t) β4(t)

These are tronquée solutions of PIV since they have no poles in the half-
plane <(t) < 0.
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Theorem (PAC & Jordaan [2018])
Let t, ν ∈ R, then as n → ∞, the recurrence coefficient βn(t; ν) associated

with monic generalized Freud polynomials satisfying

βn
(
βn+1 + βn + βn−1 − 1

2t
)

= 1
4[n + (2ν + 1)∆n],

where ∆n = 1
2[1− (−1)n], has the asymptotic expansion

βn(t; ν) =

√
n

12

{
1 +

t√
12n

+
t2 + 12(2ν + 1)∆n

24n
+O(n−2)

}
,

as n→∞.

t = 0 t = 5 t = 10

Generalizes results of Lew & Quarles [1983], Clarke & Shizgal [1993]
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Examples Associated with the Third Painlevé Equation

d2q

dz2
=

1

q

(
dq

dz

)2

− 1

z

dq

dz
+
aq2 + b

z
+ cq3 +

d

q
PIII

(
z

d2σ

dz2
− dσ

dz

)2
+

[
4

(
dσ

dz

)2
− z2

](
z

dσ

dz
− 2σ

)
+ 4zϑ0ϑ∞

dσ

dz
= (ϑ20 + ϑ2∞)z2 SIII

Making the transformations

q(z) = t−1/2u(t), σ(z) = 2h(t), t = 1
4z

2

give

d2u

dt2
=

1

u

(
du

dt

)2

− 1

t

du

dt
+
au2

4t2
+
b

4t
+
cu3

4t2
+
d

4u
PIII′

(
t
d2h

dt2

)2

+

{
4

(
dh

dt

)2

− 1

}(
t
dh

dt
− h
)

+ ϑ0ϑ∞
dh

dt
= 1

4(ϑ
2
0 + ϑ2∞) SIII′
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Semi-classical weights with recurrence coefficients expressible in terms of
solutions of SIII or SIII′, the PIII and PIII′ σ-equations, include

w(x; t) µ0(t) =

∫
w(x; t) dx

(
1− x2

)ν−1/2
e±tx x ∈ [−1, 1] 2ν Γ(ν + 1

2)π
−1/2 t−νIν(t)(

x2 − 1
)ν−1/2

e−tx x ∈ [1,∞) 2ν Γ(ν + 1
2)π
−1/2 t−νKν(t)

xν−1 e−x−t/x x ∈ [0,∞) 2tν/2Kν

(
2
√
t
)

with Iν(z) and Kν(z) modified Bessel functions, which have the integral
representations

Iν(z) =
(12z)ν√

π Γ(ν + 1
2)

∫ 1

−1
(1− x2)ν−1/2 e±xz dx

Kν(z) =
(12z)ν√

π Γ(ν + 1
2)

∫ ∞

1

(x2 − 1)ν−1/2 e−xz dx

Kν(2
√
t) = 1

2t
−ν/2

∫ ∞

0

xν−1 exp (−x− t/x) dx
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Modified Bessel function solution of PIII

d2q

dz2
=

1

q

(
dq

dz

)2

− 1

z

dq

dz
+
aq2 + b

z
+ cq3 +

d

q
PIII

has the solution

q(z) =
2ν

z
+

cos(θ)Iν+1(z)− sin(θ)Kν+1(z)

cos(θ)Iν(z) + sin(θ)Kν(z)

with Iν(z), Kν(z) modified Bessel functions and θ a constant, for the pa-
rameters a = −2ν, b = 2(1− ν), c = 1 and d = −1

θ = 0

θ = 1
20
π

θ = 1
4
π

θ = 9
20
π

θ = 1
2
π
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Consider the tau-function

τn(z; ν) = det
[
zν+j+k

{
cos(θ)Iν+j+k(z) + sin(θ)Kν+j+k(z)

}]n−1
j,k=0

then
Sn(z; ν) = z

d

dz
ln τn(z; ν)

satisfies an equation equivalent to SIII.

θ = 0

θ = 1
20
π

θ = 1
4
π

θ = 9
20
π

θ = 1
2
π
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Conclusions
• The coefficients in the three-term recurrence relations associated with

semi-classical generalizations of orthogonal polynomials can often be ex-
pressed as tau-functions (Hankel determinants) which arise in the solu-
tion of the Painlevé equations and the Painlevé σ-equations.
• These solutions of the Painlevé equations are those given in terms of the

classical special functions, the so-called “classical solutions”, which are
not transcendental.
• The moments of the semi-classical weights provide the link between the

orthogonal polynomials and the associated Painlevé equation.
• These ideas can be applied to orthogonal polynomials in other contexts:
∗ discrete orthogonal polynomials;
∗ on the unit circle;
∗ curves in the complex plane;
∗ discontinuous weights.

• These results illustrate the increasing significance of integrable systems,
in particular Painlevé equations, in the field of orthogonal polynomials
and special functions.

Tau Functions of Integrable Systems and Their Applications, BIRS, Banff, Canada, September 2018



Thank You!
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39 (2014) 223–254
• P A Clarkson, K Jordaan & A Kelil, “A generalized Freud weight”,

Stud. Appl. Math., 136 (2016) 288–320
• P A Clarkson, “On Airy solutions of the second Painlevé equation”, Stud.
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Remark 5.3 (Relation with Painlevé equations). Since all the Painlevé
equations arise as equations of isomonodromic deformation of certain
2 × 2 ODEs with prescribed pole locations, it is clear that choosing ap-
propriately the set of contours and the semiclassical measure one can
generate special solutions of the Painlevé equations in terms of such
orthogonal polynomials.
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