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Prologue: string-local field theory
Quantum fields can be built directly from positive-energy repns of the
Poincaré group in the setting of Wigner’s particle classification.

Standard treatments usually omit the so-called continuous-spin
repns, that (a) so far have not been observed; and (b) cannot
accomodate covariant “point-local” fields φr(x) [Yngvason, 1970].

But later, [Mund-Schroer-Yngvason, 2006] allowed for a string-local
field φr(x ,e), where e2 < 0, localized in spacelike cones centered on
“strings” or rays {x + te : t ≥ 0}, and with good covariance properties:

U(a ,Λ)ϕr(x ,e)U
†(a ,Λ) = ϕs(Λx +a ,Λe)D(Λ)sr .

String-local fields are available for all particle types; they “live on
Hilbert space” (no indefinite metric); and satisfy string-locality:
[ϕr(x ,e),ϕr(x ′ ,e ′)] = 0 if {x + te}, {x ′ + t ′e ′} are spacelike separated.

Recently, Rehren [2017] gave a construction of such quantum fields
for continuous-spin representations, in the line of [MSY06].

Our aim here: to develop a “first-quantized” approach to such repns.
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Origins: Wigner’s particle classification
Wigner’s 1939 paper classified the irreps of the Poincaré group P ↑+
according to eigenstates of the 4-momentum Pµ. This group has two
Casimirs, P2 and W2, where Wµ := 1

2ε
µνρσPνJρσ is the Pauli-Lubański

pseudovector. Note (PW) ≡ PµWµ = 0, so P2 ≥ 0 implies W2 ≤ 0.

Disregarding P2 < 0 and P = 0 repns, we are left with:
• P2 =m2 > 0 [so W = −m2s(s +1)], massive particles of spin s ;
• P2 = 0, W2 = 0, “ordinary” massless particles;
• P2 = 0, W2 = −κ2 < 0, the “last” particle species. These form two

continuum families of repns (for κ > 0); there are bosonic and
fermionic versions [Bargmann-Wigner, 1948].

The last case has often been dismissed as unobserved; indeed, no
interaction with massive particles is known. But recently interest has
revived, since it might contribute to the (largely unknown) material
content of the universe.

I shall call the last case Wigner particles (WPs), for short.
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Wave equations for the WP (bosonic case)
As given by Wigner [1948], with (x ,w) or (p ,w) in M4 ×M4, these are:

�xΦ(x ,w) = 0; or p2Φ(p ,w) = 0,

(w2 +κ2)Φ(x ,w) = 0; or (w2 +κ2)Φ(p ,w) = 0,

(w∂x)Φ(x ,w) = 0; or (pw)Φ(p ,w) = 0,

((∂x∂w)+1)Φ(x ,w) = 0; or ((p∂w)+ i)Φ(p ,w) = 0.

The last comes from the form of W2 acting on (x ,w)-space:

(WW) = −1
2JντJ

ντP2 + JκσJ
µσPκPµ; with P2 = 0,

= κ2(p ∂w)
2 − (pw)2�w +2(pw)(p ∂w)(w ∂w) = −κ2.

which gives (p ∂w) = ±i on the space of solutions. This integrates to
Φ(p ,w −λp) = e±iλΦ(p ,w).

Schuster and Toro [2013-15] put (p ∂w)Φ = 0 instead, forcing (pw) , 0
and a different wave equation: (pw)2�wΦ = κ2Φ .
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Classical elementary systems
Irreducible unitary repns of P ↑+ match with coadjoint orbits (Kirillov).
For m > 0, the orbits are ≈R

6 (for spin 0), or ≈R
6 ×S2 (higher spins).

This even includes a Moyal formalism [Cariñena-GraciaB-JCV, 1990]:
one can do relativistic QM on this platform.

The Lie-algebra generators P0,P,L,K act as linear coordinates
p0,p, l,k on the orbits; commutators become Lie-Poisson brackets,
{l i , l j }= εijk lk , and so on.

Rotations Rαm = exp(αm · L) fix p0 and rotate p, l,k in the obvious way.
Here is the coadjoint action of the boosts Kζn = exp(ζn ·K):

Kζn . p
0 = p0 coshζ+n ·psinhζ,

Kζn .p= p+ p0
nsinhζ+(n ·p)n(coshζ −1),

Kζn . l= lcoshζ+n× ksinhζ − (n · l)n(coshζ −1),

Kζn . k= kcoshζ −n× lsinhζ − (n · k)n(coshζ −1).
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Moyal quantization: massive case
For m > 0, the R

6’s in the orbits come from finding “canonical position
coordinates” q i so that {q i ,p j }= δij ; the recipe is

q := − k

p0
+

p×w
mp0(m + p0)

= − k

p0
+

p× s
p0(m + p0)

where s := w/m −w0p/m(m + p0) labels spin variables. Notice that
ms→ w−w0p as m→ 0 with m |s| fixed.

When |s| > 0, it is better to use x := q− (p× s)/m(m + p0). Then
u := (x,p,s) ∈R6 ×S2 covariantly parametrizes the orbits.

For j ∈ 1
2N, the Moyal quantizer is a family of operators Ωj (x,p,s) on

L2(H+
m ,dµ(ξ)) defining a Weyl correspondence W j

A (u) := Tr(AΩj (u)).

Its definition involves the reflections Mp : ξ 7→ 2(pξ)p/(pp)− ξ on H+
m

and the quantizer ∆j (s) for the “fuzzy sphere” [JCV+GraciaB, 1989].
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Coadjoint orbits for the WP
Recall the “canonical” q i on the massive orbits, given by

q := − k

p0
+

p×w
mp0(m + p0)

, not so good when m→ 0.

Schwinger [1970] noted that in the “Pauli-Lubański-limit” m→ 0,
|s| →∞, with m |s| fixed:

ms= w− (w ·p)
p0(m + p0)

p −→ w− w0

p0
p=: t

and suggested to replace q by a “position” vector r, given by

− k

p0
+

p×w
(p0)2(m + p0)

−→ − k

p0
+

p×w
(p0)3

= − k

p0
+

p× t
(p0)3

=: r.

Now the helicity λ := w0/p0 satisfies {λ,r}= 0. The price to pay is that
{r i ,r j }= −εijk λpk (p0)−3 , 0.

We note also that {λ,t}= −p/p0 × t and {λ,p/p0 × t}= t.
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Boosts and rotations: the gyroscope

We now focus on w= λp+ t, where t⊥ p and |t|= κ. The triple
(p/ |p|, t, p/ |p| × t) is an orthogonal frame in 3-space.

With |p|= p0, the boost Kζn takes p/ |p| to another unit vector p′/ |p′ | by
a rotation Rδm with axis m ‖ p×n. Its angle δ is given by

sinδ =
p0 sinhζ+(n ·p)(coshζ −1)

p0p ′0
|p×n|.

(This δ is the limiting angle of the Wigner rotation B−1
Kp KBp as m→ 0.)

Pleasant surprise: the vectors t and p/ |p| × t undergo the same
rotation: Kζn . t= Rδm(t). Thus the frame rotates rigidly under boosts
(and under rotations, too) [GraciaB-Lizzi-JCV-Vitale, 2018].

Orbit shape: (r,p;λ,θ) ∈R3 × (R×S2)× (R×S1) where θ parametrizes
the circle on which t and p/h × t live. (Say, t=: t1(p)cosθ+ t2(p)sinθ.)
Moreover, {λ,cosθ}= sinθ, {λ,sinθ}= −cosθ.
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Generators for a WP representation

We now return to (hermitian) generators of the Poincaré Lie algebra:
impose P2 = 0 and W2 = −κ2 to prepare a WP-type repn U of P ↑+.

Introduce H := (P · L)(P0)−1, so W0 = HP0.

Define T :=W−HP and check that [T i ,T j ] = 0 and T ·T= κ2.

Putting Y := P(P0)−1 ×T, one finds that [H ,Y j ] = iT j and [H ,T j ] = −iY j ,
so that each pair (Y j ,T j ) supplies ladder operators for H .

Under boosts (and rotations), the triple (P/P0,T,Y) still rotates
gyroscopically.

The Schwinger position operators satisfy [R i ,R j ] = −iεijkHPk (P0)−3,
which already implies the nonlocality of the WP (as Schwinger noted).

Moreover, [H ,K] = iT(P0)−1, so the helicity H is not Lorentz-invariant
in the WP representations.
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The one-particle Hilbert space
To display this representation in an invariant formalism, we may label
states by pairs of 3-vectors (p,t), subject to p , 0, p⊥ t and |t|= κ.

The redundancy in t is removed as in [Bargmann-Wigner, 1948], by
assigning an angle θ to the circle, t=: t1 cosθ+ t2 sinθ.

With p0 = |p| and λ := w0/p0, we can simplify

Φ(p ,w) ≡ Φ(p,λp+ t) = e−iλΦ(p,t) ≡ e−iλΦ(p,θ)

and use the Lorentz-invariant scalar product

〈Φ |Φ〉 ∝
∫

d3p

|p|
dθ |Φ(p,θ)|2.

On the space of solutions of the wave equations, the representation
now has the scalar-like form:

U(a ,Λ)Φ(x ,w) := Φ(Λ−1(x −a),Λ−1w).
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What about the little group method?
The usual construction of a unirrep for the WP uses induction from the
little group E(2), generated by two “null rotations” and an ordinary
rotation, replacing the t-plane with an abstract plane.

Fix a 4-momentum k = (|k|,k) and take ~ξ ⊥ k with |~ξ |= κ. We get
rotation and boost generators [Lomont-Moses, 1962-67]:

L↔−ip×∂p+
p+ |p|k
|p|+ k ·p

S · k,

K↔ i |p|∂p −
k×p
|p|+ k ·p

S · k+ p

|p|2
×
(
p+ |p|k
|p|+ k ·p

× ~ξ
)
.

Contrast with, say, L↔−ip×∂p − iw×∂w for the invariant form.

A unitary transformation intertwines both representations:

δ(|~ξ |2 −κ2)δ(~ξ · k)ψ(p, ~ξ) := e iw0/ |p| exp

(
iα

k×p
|k×p|

· L
)
Φ(p ,w)

∣∣∣∣
w=~ξ+w0p/ |p|

with angle α such that cosα = (k ·p)/ |p|.
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On second quantization for the WP: two remarks

The unitary transformation appears (without proof) in [Hirata, 1977],
who also found a causal propagator of the form

D̃(x ,x ′;w ,w ′) =
δ(w2 +κ2)

(2π)3

∫
d3

p
sin |p|(t − t ′)

|p|
e ip·(x−x′)

× δ(pw)δ3
(
|p|(w−w′)− (w0 −w ′0)p

)
e i(w0−w ′0)/ |p|.

This D̃ is Lorentz-invariant and satisfies the Wigner equations.

(Here Φ(x ,w) depends on the extra w , so this does not contradict
Yngvason’s theorem on nonlocality of quantum fields for the WP.)

We know that a quantized field for a WP could be string-local, so we
can try to find a good set of intertwiners. Indeed, this has already been
done in [Rehren, 2017], but with a different starting point, leading to a
stress-energy-momentum tensor for the WP, as a quadratic form.
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[CGV90]: J. F. Cariñena, JMG-B, JCV: JPA 23 (1990), 901.

[MSY06]: J. Mund, B. Schroer, J. Yngvason: CMP 268 (2006), 201.

[ST13]: P. Schuster, N. Toro: JHEP 1309 (2013), 104.

[R17]: K-H. Rehren: JHEP 1711 (2017), 130.

[GLVV18]: JMG-B, F. Lizzi, JCV, P. Vitale: JPA 51 (2018), 255203.

Joseph C. Várilly Wigner’s last particle Banff, 2 Aug 2018 13 / 13


