Wigner's "continuous-spin" representations reconsidered

Joseph C. Várilly

Escuela de Matemática, Universidad de Costa Rica

BIRS, Banff 2 Aug 2018

(based on joint work with José M. Gracia-Bondía)

Prologue: string-local field theory

Quantum fields can be built directly from positive-energy repns of the Poincaré group in the setting of Wigner's particle classification.

Standard treatments usually omit the so-called continuous-spin repns, that (a) so far have not been observed; and (b) cannot accomodate covariant "point-local" fields $\phi_r(x)$ [Yngvason, 1970].

But later, [Mund-Schroer-Yngvason, 2006] allowed for a string-local field $\phi_r(x, e)$, where $e^2 < 0$, localized in spacelike cones centered on "strings" or rays $\{x + te : t \ge 0\}$, and with good covariance properties:

$$U(a,\Lambda)\varphi_r(x,e)U^{\dagger}(a,\Lambda) = \varphi_s(\Lambda x + a,\Lambda e)D(\Lambda)_r^s.$$

String-local fields are available for all particle types; they "live on Hilbert space" (no indefinite metric); and satisfy string-locality: $[\varphi_r(x, e), \varphi_r(x', e')] = 0$ if $\{x + te\}, \{x' + t'e'\}$ are spacelike separated.

Recently, Rehren [2017] gave a construction of such quantum fields for continuous-spin representations, in the line of [MSY06].

Our aim here: to develop a "first-quantized" approach to such repns.

Prologue: string-local field theory

Quantum fields can be built directly from positive-energy repns of the Poincaré group in the setting of Wigner's particle classification.

Standard treatments usually omit the so-called continuous-spin repns, that (a) so far have not been observed; and (b) cannot accomodate covariant "point-local" fields $\phi_r(x)$ [Yngvason, 1970].

But later, [Mund-Schroer-Yngvason, 2006] allowed for a string-local field $\phi_r(x, e)$, where $e^2 < 0$, localized in spacelike cones centered on "strings" or rays $\{x + te : t \ge 0\}$, and with good covariance properties:

$$U(a,\Lambda)\varphi_r(x,e)U^{\dagger}(a,\Lambda) = \varphi_s(\Lambda x + a,\Lambda e)D(\Lambda)_r^s.$$

String-local fields are available for all particle types; they "live on Hilbert space" (no indefinite metric); and satisfy string-locality: $[\varphi_r(x, e), \varphi_r(x', e')] = 0$ if $\{x + te\}, \{x' + t'e'\}$ are spacelike separated. Recently, Rehren [2017] gave a construction of such quantum fields for continuous-spin representations, in the line of [MSY06].

Our aim here: to develop a "first-quantized" approach to such repns.

Joseph C. Várilly

Origins: Wigner's particle classification

Wigner's 1939 paper classified the irreps of the Poincaré group $\mathcal{P}_{+}^{\uparrow}$ according to eigenstates of the 4-momentum P_{μ} . This group has two Casimirs, P^2 and W^2 , where $W^{\mu} := \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} P_{\nu} J_{\rho\sigma}$ is the Pauli-Lubański pseudovector. Note $(PW) \equiv P_{\mu}W^{\mu} = 0$, so $P^2 \ge 0$ implies $W^2 \le 0$.

Disregarding $P^2 < 0$ and P = 0 repns, we are left with:

- $P^2 = m^2 > 0$ [so $W = -m^2 s(s+1)$], massive particles of spin s;
- $P^2 = 0$, $W^2 = 0$, "ordinary" massless particles;
- $P^2 = 0$, $W^2 = -\kappa^2 < 0$, the "last" particle species. These form two continuum families of repns (for $\kappa > 0$); there are bosonic and fermionic versions [Bargmann-Wigner, 1948].

The last case has often been dismissed as unobserved; indeed, no interaction with massive particles is known. But recently interest has revived, since it might contribute to the (largely unknown) material content of the universe.

I shall call the last case Wigner particles (WPs), for short.

Wave equations for the WP (bosonic case)

As given by Wigner [1948], with (x, w) or (p, w) in $M^4 \times M^4$, these are:

$$\Box_{x}\Phi(x,w) = 0; \quad \text{or} \qquad p^{2}\Phi(p,w) = 0,$$

$$(w^{2} + \kappa^{2})\Phi(x,w) = 0; \quad \text{or} \qquad (w^{2} + \kappa^{2})\Phi(p,w) = 0,$$

$$(w\partial_{x})\Phi(x,w) = 0; \quad \text{or} \qquad (pw)\Phi(p,w) = 0,$$

$$((\partial_{x}\partial_{w}) + 1)\Phi(x,w) = 0; \quad \text{or} \qquad ((p\partial_{w}) + i)\Phi(p,w) = 0.$$

The last comes from the form of W^2 acting on (x, w)-space:

$$(WW) = -\frac{1}{2}J_{\nu\tau}J^{\nu\tau}P^2 + J_{\kappa\sigma}J^{\mu\sigma}P^{\kappa}P_{\mu}; \quad \text{with } P^2 = 0,$$

= $\kappa^2(p\partial_w)^2 - (pw)^2\Box_w + 2(pw)(p\partial_w)(w\partial_w) = -\kappa^2.$

which gives $(p \partial_w) = \pm i$ on the space of solutions. This integrates to $\Phi(p, w - \lambda p) = e^{\pm i\lambda} \Phi(p, w)$.

Schuster and Toro [2013-15] put $(p \partial_w)\Phi = 0$ instead, forcing $(pw) \neq 0$ and a different wave equation: $(pw)^2 \Box_w \Phi = \kappa^2 \Phi$.

Joseph C. Várilly

Classical elementary systems

Irreducible unitary repns of $\mathcal{P}_{+}^{\uparrow}$ match with coadjoint orbits (Kirillov). For m > 0, the orbits are $\approx \mathbb{R}^{6}$ (for spin 0), or $\approx \mathbb{R}^{6} \times \mathbb{S}^{2}$ (higher spins).

This even includes a Moyal formalism [Cariñena-GraciaB-JCV, 1990]: one can do relativistic QM on this platform.

The Lie-algebra generators P^0 , **P**, **L**, **K** act as linear coordinates p^0 , **p**, **l**, **k** on the orbits; commutators become Lie-Poisson brackets, $\{l^i, l^j\} = \varepsilon^{ij}_k l^k$, and so on.

Rotations $R_{am} = \exp(am \cdot L)$ fix p^0 and rotate **p**, **l**, **k** in the obvious way. Here is the coadjoint action of the boosts $K_{\zeta n} = \exp(\zeta n \cdot K)$:

$$\begin{aligned} & K_{\zeta n} \triangleright p^{0} = p^{0} \cosh \zeta + n \cdot p \sinh \zeta, \\ & K_{\zeta n} \triangleright p = p + p^{0} n \sinh \zeta + (n \cdot p) n (\cosh \zeta - 1), \\ & K_{\zeta n} \triangleright l = l \cosh \zeta + n \times k \sinh \zeta - (n \cdot l) n (\cosh \zeta - 1), \\ & K_{\zeta n} \triangleright k = k \cosh \zeta - n \times l \sinh \zeta - (n \cdot k) n (\cosh \zeta - 1). \end{aligned}$$

Classical elementary systems

Irreducible unitary repns of $\mathcal{P}_{+}^{\uparrow}$ match with coadjoint orbits (Kirillov). For m > 0, the orbits are $\approx \mathbb{R}^{6}$ (for spin 0), or $\approx \mathbb{R}^{6} \times \mathbb{S}^{2}$ (higher spins).

This even includes a Moyal formalism [Cariñena-GraciaB-JCV, 1990]: one can do relativistic QM on this platform.

The Lie-algebra generators P^0 , **P**, **L**, **K** act as linear coordinates p^0 , **p**, **l**, **k** on the orbits; commutators become Lie-Poisson brackets, $\{l^i, l^j\} = \varepsilon^{ij}_k l^k$, and so on.

Rotations $R_{\alpha m} = \exp(\alpha m \cdot L)$ fix p^0 and rotate **p**, **l**, **k** in the obvious way. Here is the coadjoint action of the boosts $K_{\zeta n} = \exp(\zeta n \cdot K)$:

$$\begin{split} & \mathcal{K}_{\zeta n} \triangleright p^{0} = p^{0} \cosh \zeta + n \cdot p \sinh \zeta, \\ & \mathcal{K}_{\zeta n} \triangleright p = p + p^{0} n \sinh \zeta + (n \cdot p) n (\cosh \zeta - 1), \\ & \mathcal{K}_{\zeta n} \triangleright l = l \cosh \zeta + n \times k \sinh \zeta - (n \cdot l) n (\cosh \zeta - 1), \\ & \mathcal{K}_{\zeta n} \triangleright k = k \cosh \zeta - n \times l \sinh \zeta - (n \cdot k) n (\cosh \zeta - 1). \end{split}$$

Moyal quantization: massive case

For m > 0, the $\mathbb{R}^{6'}$ s in the orbits come from finding "canonical position coordinates" q^{i} so that $\{q^{i}, p^{j}\} = \delta_{ij}$; the recipe is

$$\mathbf{q} := -\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{w}}{mp^0(m+p^0)} = -\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{s}}{p^0(m+p^0)}$$

where $\mathbf{s} := \mathbf{w}/m - w^0 \mathbf{p}/m(m + p^0)$ labels spin variables. Notice that $m\mathbf{s} \to \mathbf{w} - w^0 \mathbf{p}$ as $m \to 0$ with $m|\mathbf{s}|$ fixed.

When $|\mathbf{s}| > 0$, it is better to use $\mathbf{x} := \mathbf{q} - (\mathbf{p} \times \mathbf{s})/m(m + p^0)$. Then $u := (\mathbf{x}, \mathbf{p}, \mathbf{s}) \in \mathbb{R}^6 \times \mathbb{S}^2$ covariantly parametrizes the orbits.

For $j \in \frac{1}{2}\mathbb{N}$, the Moyal quantizer is a family of operators $\Omega^{j}(\mathbf{x}, \mathbf{p}, \mathbf{s})$ on $L^{2}(H_{m}^{+}, d\mu(\xi))$ defining a Weyl correspondence $W_{A}^{j}(u) := \operatorname{Tr}(A \Omega_{j}(u))$.

Its definition involves the reflections $M_p: \xi \mapsto 2(p\xi)p/(pp) - \xi$ on H_m^+ and the quantizer $\Delta^j(\mathbf{s})$ for the "fuzzy sphere" [JCV+GraciaB, 1989].

Moyal quantization: massive case

For m > 0, the $\mathbb{R}^{6'}$ s in the orbits come from finding "canonical position coordinates" q^{i} so that $\{q^{i}, p^{j}\} = \delta_{ij}$; the recipe is

$$\mathbf{q} := -\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{w}}{mp^0(m+p^0)} = -\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{s}}{p^0(m+p^0)}$$

where $\mathbf{s} := \mathbf{w}/m - w^0 \mathbf{p}/m(m + p^0)$ labels spin variables. Notice that $m\mathbf{s} \to \mathbf{w} - w^0 \mathbf{p}$ as $m \to 0$ with $m|\mathbf{s}|$ fixed.

When $|\mathbf{s}| > 0$, it is better to use $\mathbf{x} := \mathbf{q} - (\mathbf{p} \times \mathbf{s})/m(m + p^0)$. Then $u := (\mathbf{x}, \mathbf{p}, \mathbf{s}) \in \mathbb{R}^6 \times \mathbb{S}^2$ covariantly parametrizes the orbits.

For $j \in \frac{1}{2}\mathbb{N}$, the Moyal quantizer is a family of operators $\Omega^{j}(\mathbf{x}, \mathbf{p}, \mathbf{s})$ on $L^{2}(H_{m}^{+}, d\mu(\xi))$ defining a Weyl correspondence $W_{A}^{j}(u) := \operatorname{Tr}(A \Omega_{j}(u))$.

Its definition involves the reflections $M_p : \xi \mapsto 2(p\xi)p/(pp) - \xi$ on H_m^+ and the quantizer $\Delta^j(\mathbf{s})$ for the "fuzzy sphere" [JCV+GraciaB, 1989].

Coadjoint orbits for the WP

Recall the "canonical" q^i on the massive orbits, given by

$$\mathbf{q} := -\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{w}}{mp^0(m+p^0)}, \quad \text{not so good when} \quad m \to 0.$$

Schwinger [1970] noted that in the "Pauli-Lubański-limit" $m \rightarrow 0$, $|\mathbf{s}| \rightarrow \infty$, with $m|\mathbf{s}|$ fixed:

$$m\mathbf{s} = \mathbf{w} - \frac{(\mathbf{w} \cdot \mathbf{p})}{p^0(m+p^0)} \mathbf{p} \longrightarrow \mathbf{w} - \frac{w^0}{p^0} \mathbf{p} =: \mathbf{t}$$

and suggested to replace **q** by a "position" vector **r**, given by

$$-\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{w}}{(p^0)^2(m+p^0)} \longrightarrow -\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{w}}{(p^0)^3} = -\frac{\mathbf{k}}{p^0} + \frac{\mathbf{p} \times \mathbf{t}}{(p^0)^3} =: \mathbf{r}.$$

Now the helicity $\lambda := w^0/p^0$ satisfies $\{\lambda, \mathbf{r}\} = \mathbf{0}$. The price to pay is that $\{r^i, r^j\} = -\varepsilon^{ij}{}_k \lambda p^k (p^0)^{-3} \neq \mathbf{0}$.

We note also that $\{\lambda, t\} = -p/p^0 \times t$ and $\{\lambda, p/p^0 \times t\} = t$.

Boosts and rotations: the gyroscope

We now focus on $\mathbf{w} = \lambda \mathbf{p} + \mathbf{t}$, where $\mathbf{t} \perp \mathbf{p}$ and $|\mathbf{t}| = \kappa$. The triple $(\mathbf{p}/|\mathbf{p}|, \mathbf{t}, \mathbf{p}/|\mathbf{p}| \times \mathbf{t})$ is an orthogonal frame in 3-space.

With $|\mathbf{p}| = p^0$, the boost $K_{\zeta \mathbf{n}}$ takes $\mathbf{p}/|\mathbf{p}|$ to another unit vector $\mathbf{p}'/|\mathbf{p}'|$ by a rotation $R_{\delta \mathbf{m}}$ with axis $\mathbf{m} \parallel \mathbf{p} \times \mathbf{n}$. Its angle δ is given by

$$\sin \delta = \frac{p^0 \sinh \zeta + (\mathbf{n} \cdot \mathbf{p})(\cosh \zeta - 1)}{p^0 p'^0} |\mathbf{p} \times \mathbf{n}|.$$

(This δ is the limiting angle of the Wigner rotation $B_{Kp}^{-1}KB_p$ as $m \to 0$.)

Pleasant surprise: the vectors t and $p/|p| \times t$ undergo the same rotation: $K_{\zeta n} \triangleright t = R_{\delta m}(t)$. Thus the frame rotates rigidly under boosts (and under rotations, too) [GraciaB-Lizzi-JCV-Vitale, 2018].

Orbit shape: $(\mathbf{r}, \mathbf{p}; \lambda, \theta) \in \mathbb{R}^3 \times (\mathbb{R} \times \mathbb{S}^2) \times (\mathbb{R} \times \mathbb{S}^1)$ where θ parametrizes the circle on which t and $\mathbf{p}/h \times \mathbf{t}$ live. (Say, $\mathbf{t} =: \mathbf{t}_1(\mathbf{p}) \cos \theta + \mathbf{t}_2(\mathbf{p}) \sin \theta$.) Moreover, $\{\lambda, \cos \theta\} = \sin \theta$, $\{\lambda, \sin \theta\} = -\cos \theta$.

Boosts and rotations: the gyroscope

We now focus on $\mathbf{w} = \lambda \mathbf{p} + \mathbf{t}$, where $\mathbf{t} \perp \mathbf{p}$ and $|\mathbf{t}| = \kappa$. The triple $(\mathbf{p}/|\mathbf{p}|, \mathbf{t}, \mathbf{p}/|\mathbf{p}| \times \mathbf{t})$ is an orthogonal frame in 3-space.

With $|\mathbf{p}| = p^0$, the boost $K_{\zeta \mathbf{n}}$ takes $\mathbf{p}/|\mathbf{p}|$ to another unit vector $\mathbf{p}'/|\mathbf{p}'|$ by a rotation $R_{\delta \mathbf{m}}$ with axis $\mathbf{m} \parallel \mathbf{p} \times \mathbf{n}$. Its angle δ is given by

$$\sin \delta = \frac{p^0 \sinh \zeta + (\mathbf{n} \cdot \mathbf{p})(\cosh \zeta - 1)}{p^0 p'^0} |\mathbf{p} \times \mathbf{n}|.$$

(This δ is the limiting angle of the Wigner rotation $B_{Kp}^{-1}KB_p$ as $m \to 0$.)

Pleasant surprise: the vectors **t** and $\mathbf{p}/|\mathbf{p}| \times \mathbf{t}$ undergo the same rotation: $K_{\zeta n} \triangleright \mathbf{t} = R_{\delta m}(\mathbf{t})$. Thus the frame rotates rigidly under boosts (and under rotations, too) [GraciaB-Lizzi-JCV-Vitale, 2018].

Orbit shape: $(\mathbf{r}, \mathbf{p}; \lambda, \theta) \in \mathbb{R}^3 \times (\mathbb{R} \times \mathbb{S}^2) \times (\mathbb{R} \times \mathbb{S}^1)$ where θ parametrizes the circle on which t and $\mathbf{p}/h \times \mathbf{t}$ live. (Say, $\mathbf{t} =: \mathbf{t}_1(\mathbf{p})\cos\theta + \mathbf{t}_2(\mathbf{p})\sin\theta$.) Moreover, $\{\lambda, \cos\theta\} = \sin\theta$, $\{\lambda, \sin\theta\} = -\cos\theta$.

Generators for a WP representation

We now return to (hermitian) generators of the Poincaré Lie algebra: impose $P^2 = 0$ and $W^2 = -\kappa^2$ to prepare a WP-type repn U of \mathcal{P}_+^{\uparrow} . Introduce $H := (\mathbf{P} \cdot \mathbf{L})(P^0)^{-1}$, so $W^0 = HP^0$. Define $\mathbf{T} := \mathbf{W} - H\mathbf{P}$ and check that $[T^i, T^j] = 0$ and $\mathbf{T} \cdot \mathbf{T} = \kappa^2$. Putting $\mathbf{Y} := \mathbf{P}(P^0)^{-1} \times \mathbf{T}$, one finds that $[H, Y^j] = iT^j$ and $[H, T^j] = -iY^j$,

so that each pair (Y^j, T^j) supplies ladder operators for *H*. Under boosts (and rotations), the triple $(P/P^0, T, Y)$ still rotates

gyroscopically.

The Schwinger position operators satisfy $[R^i, R^j] = -i\epsilon^{ij}{}_k HP^k (P^0)^{-3}$, which already implies the nonlocality of the WP (as Schwinger noted).

Moreover, $[H, K] = iT(P^0)^{-1}$, so the helicity H is not Lorentz-invariant in the WP representations.

The one-particle Hilbert space

To display this representation in an invariant formalism, we may label states by pairs of 3-vectors (p,t), subject to $p \neq 0$, $p \perp t$ and $|t| = \kappa$.

The redundancy in t is removed as in [Bargmann-Wigner, 1948], by assigning an angle θ to the circle, t =: t₁ cos θ + t₂ sin θ .

With $p^0 = |\mathbf{p}|$ and $\lambda := w^0/p^0$, we can simplify

$$\Phi(\boldsymbol{p}, \boldsymbol{w}) \equiv \Phi(\boldsymbol{p}, \lambda \boldsymbol{p} + \boldsymbol{t}) = e^{-i\lambda} \Phi(\boldsymbol{p}, \boldsymbol{t}) \equiv e^{-i\lambda} \Phi(\boldsymbol{p}, \boldsymbol{\theta})$$

and use the Lorentz-invariant scalar product

$$\langle \Phi | \Phi \rangle \propto \int \frac{d^3 \mathbf{p}}{|\mathbf{p}|} d\theta |\Phi(\mathbf{p}, \theta)|^2.$$

On the space of solutions of the wave equations, the representation now has the scalar-like form:

$$U(a,\Lambda)\Phi(x,w):=\Phi(\Lambda^{-1}(x-a),\Lambda^{-1}w).$$

What about the little group method?

The usual construction of a unirrep for the WP uses induction from the little group E(2), generated by two "null rotations" and an ordinary rotation, replacing the t-plane with an abstract plane.

Fix a 4-momentum $k = (|\mathbf{k}|, \mathbf{k})$ and take $\vec{\xi} \perp \mathbf{k}$ with $|\vec{\xi}| = \kappa$. We get rotation and boost generators [Lomont-Moses, 1962-67]:

$$L \leftrightarrow -i\mathbf{p} \times \partial_{\mathbf{p}} + \frac{\mathbf{p} + |\mathbf{p}|\mathbf{k}}{|\mathbf{p}| + \mathbf{k} \cdot \mathbf{p}} \mathbf{S} \cdot \mathbf{k},$$

$$\mathbf{K} \leftrightarrow i|\mathbf{p}| \partial_{\mathbf{p}} - \frac{\mathbf{k} \times \mathbf{p}}{|\mathbf{p}| + \mathbf{k} \cdot \mathbf{p}} \mathbf{S} \cdot \mathbf{k} + \frac{\mathbf{p}}{|\mathbf{p}|^{2}} \times \left(\frac{\mathbf{p} + |\mathbf{p}|\mathbf{k}}{|\mathbf{p}| + \mathbf{k} \cdot \mathbf{p}} \times \vec{\xi}\right).$$

Contrast with, say, $L \leftrightarrow -ip \times \partial_p - iw \times \partial_w$ for the invariant form.

A unitary transformation intertwines both representations:

$$\delta(|\vec{\xi}|^2 - \kappa^2) \,\delta(\vec{\xi} \cdot \mathbf{k}) \,\psi(\mathbf{p}, \vec{\xi}) := e^{iw^0/|\mathbf{p}|} \exp\left(i\alpha \,\frac{\mathbf{k} \times \mathbf{p}}{|\mathbf{k} \times \mathbf{p}|} \cdot \mathbf{L}\right) \Phi(\mathbf{p}, w) \Big|_{\mathbf{w} = \vec{\xi} + w^0 \mathbf{p}/|\mathbf{p}|}$$

with angle α such that $\cos \alpha = (\mathbf{k} \cdot \mathbf{p})/|\mathbf{p}|$.

On second quantization for the WP: two remarks

The unitary transformation appears (without proof) in [Hirata, 1977], who also found a causal propagator of the form

$$\widetilde{D}(x, x'; w, w') = \frac{\delta(w^2 + \kappa^2)}{(2\pi)^3} \int d^3 \mathbf{p} \frac{\sin|\mathbf{p}|(t - t')}{|\mathbf{p}|} e^{i\mathbf{p}\cdot(\mathbf{x} - \mathbf{x'})} \\ \times \delta(pw) \,\delta^3 (|\mathbf{p}|(\mathbf{w} - \mathbf{w'}) - (w^0 - w'^0)\mathbf{p}) e^{i(w^0 - w'^0)/|\mathbf{p}|}.$$

This \widetilde{D} is Lorentz-invariant and satisfies the Wigner equations. (Here $\Phi(x, w)$ depends on the extra w, so this does not contradict Yngvason's theorem on nonlocality of quantum fields for the WP.)

We know that a quantized field for a WP could be string-local, so we can try to find a good set of intertwiners. Indeed, this has already been done in [Rehren, 2017], but with a different starting point, leading to a stress-energy-momentum tensor for the WP, as a quadratic form.

On second quantization for the WP: two remarks

The unitary transformation appears (without proof) in [Hirata, 1977], who also found a causal propagator of the form

$$\widetilde{D}(x, x'; w, w') = \frac{\delta(w^2 + \kappa^2)}{(2\pi)^3} \int d^3 \mathbf{p} \frac{\sin|\mathbf{p}|(t - t')}{|\mathbf{p}|} e^{i\mathbf{p}\cdot(\mathbf{x} - \mathbf{x'})} \\ \times \delta(pw) \,\delta^3 (|\mathbf{p}|(\mathbf{w} - \mathbf{w'}) - (w^0 - w'^0)\mathbf{p}) e^{i(w^0 - w'^0)/|\mathbf{p}|}.$$

This \widetilde{D} is Lorentz-invariant and satisfies the Wigner equations. (Here $\Phi(x, w)$ depends on the extra w, so this does not contradict Yngvason's theorem on nonlocality of quantum fields for the WP.)

We know that a quantized field for a WP could be string-local, so we can try to find a good set of intertwiners. Indeed, this has already been done in [Rehren, 2017], but with a different starting point, leading to a stress-energy-momentum tensor for the WP, as a quadratic form.

Some references

- [W48]: E. Wigner: Z. Phys 124 (1948), 665.
- [BW48]: V. Bargmann, E. Wigner: PNAS 34 (1948), 211.
- [LM62]: J. S. Lomont, H. E. Moses: JMP 3 (1962), 405.
 - [Y70]: J. Yngvason: CMP 18 (1970), 195.
 - [S70]: J. Schwinger: Particles, Sources and Fields 1, 1970.
 - [H77]: K. Hirata: PTP 58 (1977), 652.
- [VG89]: JCV, J. M. Gracia-Bondía: APNY 190 (1989), 107.
- [CGV90]: J. F. Cariñena, JMG-B, JCV: JPA 23 (1990), 901.
- [MSY06]: J. Mund, B. Schroer, J. Yngvason: CMP 268 (2006), 201.
 - [ST13]: P. Schuster, N. Toro: JHEP 1309 (2013), 104.
 - [R17]: K-H. Rehren: JHEP 1711 (2017), 130.
- [GLVV18]: JMG-B, F. Lizzi, JCV, P. Vitale: JPA 51 (2018), 255203.