Wigner's "continuous-spin" representations reconsidered

Joseph C. Várilly

Escuela de Matemática, Universidad de Costa Rica

$$
\text { BIRS, Banff } 2 \text { Aug } 2018
$$

(based on joint work with José M. Gracia-Bondía)

Prologue: string-local field theory

Quantum fields can be built directly from positive-energy repns of the Poincaré group in the setting of Wigner's particle classification.
Standard treatments usually omit the so-called continuous-spin repns, that (a) so far have not been observed; and (b) cannot accomodate covariant "point-local" fields $\phi_{r}(x)$ [Yngvason, 1970]. But later, [Mund-Schroer-Yngvason, 2006] allowed for a string-local field $\phi_{r}(x, e)$, where $e^{2}<0$, localized in spacelike cones centered on "strings" or rays $\{x+t e: t \geq 0\}$, and with good covariance properties:

$$
U(a, \Lambda) \varphi_{r}(x, e) U^{\dagger}(a, \Lambda)=\varphi_{s}(\Lambda x+a, \Lambda e) D(\Lambda)_{r}^{s}
$$

String-local fields are available for all particle types; they "live on Hilbert space" (no indefinite metric); and satisfy string-locality: $\left[\varphi_{r}(x, e), \varphi_{r}\left(x^{\prime}, e^{\prime}\right)\right]=0$ if $\{x+t e\},\left\{x^{\prime}+t^{\prime} e^{\prime}\right\}$ are spacelike separated.

Prologue: string-local field theory

Quantum fields can be built directly from positive-energy repns of the Poincaré group in the setting of Wigner's particle classification.
Standard treatments usually omit the so-called continuous-spin repns, that (a) so far have not been observed; and (b) cannot accomodate covariant "point-local" fields $\phi_{r}(x)$ [Yngvason, 1970]. But later, [Mund-Schroer-Yngvason, 2006] allowed for a string-local field $\phi_{r}(x, e)$, where $e^{2}<0$, localized in spacelike cones centered on "strings" or rays $\{x+t e: t \geq 0\}$, and with good covariance properties:

$$
U(a, \Lambda) \varphi_{r}(x, e) U^{\dagger}(a, \Lambda)=\varphi_{s}(\Lambda x+a, \Lambda e) D(\Lambda)_{r}^{s}
$$

String-local fields are available for all particle types; they "live on Hilbert space" (no indefinite metric); and satisfy string-locality: $\left[\varphi_{r}(x, e), \varphi_{r}\left(x^{\prime}, e^{\prime}\right)\right]=0$ if $\{x+t e\},\left\{x^{\prime}+t^{\prime} e^{\prime}\right\}$ are spacelike separated. Recently, Rehren [2017] gave a construction of such quantum fields for continuous-spin representations, in the line of [MSY06].

Our aim here: to develop a "first-quantized" approach to such repns.

Origins: Wigner's particle classification

Wigner's 1939 paper classified the irreps of the Poincaré group $\mathcal{P}_{+}^{\uparrow}$ according to eigenstates of the 4 -momentum P_{μ}. This group has two Casimirs, P^{2} and W^{2}, where $W^{\mu}:=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} P_{\nu} J_{\rho \sigma}$ is the Pauli-Lubański pseudovector. Note $(P W) \equiv P_{\mu} W^{\mu}=0$, so $P^{2} \geq 0$ implies $W^{2} \leq 0$.
Disregarding $P^{2}<0$ and $P=0$ repns, we are left with:

- $P^{2}=m^{2}>0\left[\right.$ so $\left.W=-m^{2} s(s+1)\right]$, massive particles of spin s;
- $P^{2}=0, W^{2}=0$, "ordinary" massless particles;
- $P^{2}=0, W^{2}=-\kappa^{2}<0$, the "last" particle species. These form two continuum families of repns (for $\kappa>0$); there are bosonic and fermionic versions [Bargmann-Wigner, 1948].
The last case has often been dismissed as unobserved; indeed, no interaction with massive particles is known. But recently interest has revived, since it might contribute to the (largely unknown) material content of the universe.

I shall call the last case Wigner particles (WPs), for short.

Wave equations for the WP (bosonic case)

As given by Wigner [1948], with (x, w) or (p, w) in $M^{4} \times M^{4}$, these are:

$$
\begin{aligned}
\square_{x} \Phi(x, w) & =0 ; & \text { or } & p^{2} \Phi(p, w) & =0, \\
\left(w^{2}+\kappa^{2}\right) \Phi(x, w) & =0 ; & \text { or } & \left(w^{2}+\kappa^{2}\right) \Phi(p, w) & =0, \\
\left(w \partial_{x}\right) \Phi(x, w) & =0 ; & \text { or } & (p w) \Phi(p, w) & =0, \\
\left(\left(\partial_{x} \partial_{w}\right)+1\right) \Phi(x, w) & =0 ; & \text { or } & \left(\left(p \partial_{w}\right)+i\right) \Phi(p, w) & =0 .
\end{aligned}
$$

The last comes from the form of W^{2} acting on (x, w)-space:

$$
\begin{aligned}
(W W) & =-\frac{1}{2} J_{v \tau} J^{v \tau} P^{2}+J_{\kappa \sigma} J^{\mu \sigma} P^{\kappa} P_{\mu} ; \quad \text { with } P^{2}=0, \\
& =\kappa^{2}\left(p \partial_{w}\right)^{2}-(p w)^{2} \square_{w}+2(p w)\left(p \partial_{w}\right)\left(w \partial_{w}\right)=-\kappa^{2} .
\end{aligned}
$$

which gives $\left(p \partial_{w}\right)= \pm i$ on the space of solutions. This integrates to $\Phi(p, w-\lambda p)=e^{ \pm i \lambda} \Phi(p, w)$.
Schuster and Toro [2013-15] put $\left(p \partial_{w}\right) \Phi=0$ instead, forcing $(p w) \neq 0$ and a different wave equation: $(p w)^{2} \square_{w} \Phi=\kappa^{2} \Phi$.

Classical elementary systems

Irreducible unitary repns of $\mathcal{P}_{+}^{\uparrow}$ match with coadjoint orbits (Kirillov). For $m>0$, the orbits are $\approx \mathbb{R}^{6}$ (for spin 0), or $\approx \mathbb{R}^{6} \times \mathbb{S}^{2}$ (higher spins).

This even includes a Moyal formalism [Cariñena-GraciaB-JCV, 1990]: one can do relativistic QM on this platform.

Classical elementary systems

Irreducible unitary repns of $\mathcal{P}_{+}^{\uparrow}$ match with coadjoint orbits (Kirillov). For $m>0$, the orbits are $\approx \mathbb{R}^{6}$ (for spin 0), or $\approx \mathbb{R}^{6} \times \mathbb{S}^{2}$ (higher spins).

This even includes a Moyal formalism [Cariñena-GraciaB-JCV, 1990]: one can do relativistic QM on this platform.
The Lie-algebra generators P^{0}, P, L, K act as linear coordinates $p^{0}, \mathrm{p}, \mathrm{l}, \mathrm{k}$ on the orbits; commutators become Lie-Poisson brackets, $\left\{l^{i}, l^{j}\right\}=\varepsilon^{i j}{ }_{k} l^{k}$, and so on.

Rotations $R_{\alpha \mathrm{m}}=\exp (\alpha \mathbf{m} \cdot \mathbf{L})$ fix p^{0} and rotate $\mathbf{p}, \mathbf{l}, \mathbf{k}$ in the obvious way. Here is the coadjoint action of the boosts $K_{\zeta, \mathbf{n}}=\exp (\zeta \mathbf{n} \cdot K)$:

$$
\begin{aligned}
K_{\zeta \mathbf{n}} \triangleright p^{0} & =p^{0} \cosh \zeta+\mathbf{n} \cdot \mathbf{p} \sinh \zeta, \\
K_{\zeta \mathbf{n}} \triangleright \mathbf{p} & =\mathbf{p}+p^{0} \mathbf{n} \sinh \zeta+(\mathbf{n} \cdot \mathbf{p}) \mathbf{n}(\cosh \zeta-1), \\
K_{\zeta \mathbf{n}} \triangleright \mathbf{l} & =\mathbf{l} \cosh \zeta+\mathbf{n} \times \mathbf{k} \sinh \zeta-(\mathbf{n} \cdot \mathbf{l}) \mathbf{n}(\cosh \zeta-1), \\
K_{\zeta \mathbf{n}} \triangleright \mathrm{k} & =\mathrm{k} \cosh \zeta-\mathbf{n} \times \mathbf{I} \sinh \zeta-(\mathbf{n} \cdot \mathbf{k}) \mathbf{n}(\cosh \zeta-1) .
\end{aligned}
$$

Moyal quantization: massive case

For $m>0$, the $\mathbb{R}^{6 \prime} s$ in the orbits come from finding "canonical position coordinates" q^{i} so that $\left\{q^{i}, p^{j}\right\}=\delta_{i j}$; the recipe is

$$
\mathrm{q}:=-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{w}}{m p^{0}\left(m+p^{0}\right)}=-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{s}}{p^{0}\left(m+p^{0}\right)}
$$

where $s:=\mathbf{w} / m-w^{0} \mathbf{p} / m\left(m+p^{0}\right)$ labels spin variables. Notice that $m s \rightarrow w-w^{0} p$ as $m \rightarrow 0$ with $m|s|$ fixed.

When $|\mathbf{s}|>0$, it is better to use $\mathrm{x}:=\mathbf{q}-(\mathbf{p} \times \mathbf{s}) / m\left(m+p^{0}\right)$. Then $u:=(x, p, s) \in \mathbb{R}^{6} \times \mathbb{S}^{2}$ covariantly parametrizes the orbits.

Moyal quantization: massive case

For $m>0$, the $\mathbb{R}^{6 \prime} s$ in the orbits come from finding "canonical position coordinates" q^{i} so that $\left\{q^{i}, p^{j}\right\}=\delta_{i j}$; the recipe is

$$
\mathrm{q}:=-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{w}}{m p^{0}\left(m+p^{0}\right)}=-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{s}}{p^{0}\left(m+p^{0}\right)}
$$

where $s:=\mathbf{w} / m-w^{0} \mathbf{p} / m\left(m+p^{0}\right)$ labels spin variables. Notice that $m s \rightarrow w-w^{0} p$ as $m \rightarrow 0$ with $m|s|$ fixed.

When $|\mathbf{s}|>0$, it is better to use $\mathrm{x}:=\mathbf{q}-(\mathbf{p} \times \mathbf{s}) / m\left(m+p^{0}\right)$. Then $u:=(x, p, s) \in \mathbb{R}^{6} \times \mathbb{S}^{2}$ covariantly parametrizes the orbits.

For $j \in \frac{1}{2} \mathbb{N}$, the Moyal quantizer is a family of operators $\Omega^{j}(\mathrm{x}, \mathrm{p}, \mathrm{s})$ on $L^{2}\left(H_{m}^{+}, d \mu(\xi)\right)$ defining a Weyl correspondence $W_{A}^{j}(u):=\operatorname{Tr}\left(A \Omega_{j}(u)\right)$.

Its definition involves the reflections $M_{p}: \xi \mapsto 2(p \xi) p /(p p)-\xi$ on H_{m}^{+} and the quantizer $\Delta^{j}(s)$ for the "fuzzy sphere" [JCV+GraciaB, 1989].

Coadjoint orbits for the WP

Recall the "canonical" q^{i} on the massive orbits, given by

$$
\mathrm{q}:=-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{w}}{m p^{0}\left(m+p^{0}\right)}, \quad \text { not so good when } \quad m \rightarrow 0 .
$$

Schwinger [1970] noted that in the "Pauli-Lubański-limit" $m \rightarrow 0$, $|\mathbf{s}| \rightarrow \infty$, with $m|\mathbf{s}|$ fixed:

$$
m s=\mathbf{w}-\frac{(\mathbf{w} \cdot \mathbf{p})}{p^{0}\left(m+p^{0}\right)} \mathbf{p} \longrightarrow \mathbf{w}-\frac{w^{0}}{p^{0}} \mathbf{p}=: \mathbf{t}
$$

and suggested to replace q by a "position" vector r, given by

$$
-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{w}}{\left(p^{0}\right)^{2}\left(m+p^{0}\right)} \longrightarrow-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{w}}{\left(p^{0}\right)^{3}}=-\frac{\mathbf{k}}{p^{0}}+\frac{\mathbf{p} \times \mathbf{t}}{\left(p^{0}\right)^{3}}=: \mathbf{r} .
$$

Now the helicity $\lambda:=w^{0} / p^{0}$ satisfies $\{\lambda, r\}=0$. The price to pay is that $\left\{r^{i}, r^{j}\right\}=-\varepsilon^{i j}{ }_{k} \lambda p^{k}\left(p^{0}\right)^{-3} \neq 0$.
We note also that $\{\lambda, \mathrm{t}\}=-\mathrm{p} / p^{0} \times \mathbf{t}$ and $\left\{\lambda, \mathrm{p} / p^{0} \times \mathrm{t}\right\}=\mathrm{t}$.

Boosts and rotations: the gyroscope

We now focus on $w=\lambda p+t$, where $t \perp p$ and $|t|=\kappa$. The triple $(p /|p|, t, p /|p| \times t)$ is an orthogonal frame in 3-space.

With $|\mathbf{p}|=p^{0}$, the boost $K_{\zeta \mathrm{n}}$ takes $\mathbf{p} /|\mathbf{p}|$ to another unit vector $\mathbf{p}^{\prime} /\left|\mathbf{p}^{\prime}\right|$ by a rotation $R_{\delta \mathbf{m}}$ with axis $\mathbf{m} \| \mathbf{p} \times \mathbf{n}$. Its angle δ is given by

$$
\sin \delta=\frac{p^{0} \sinh \zeta+(\mathbf{n} \cdot \mathbf{p})(\cosh \zeta-1)}{p^{0} p^{\prime 0}}|\mathbf{p} \times \mathbf{n}| .
$$

(This δ is the limiting angle of the Wigner rotation $B_{K p}^{-1} K B_{p}$ as $m \rightarrow 0$.)

Boosts and rotations: the gyroscope

We now focus on $w=\lambda p+t$, where $t \perp p$ and $|t|=\kappa$. The triple $(p /|p|, t, p /|p| \times t)$ is an orthogonal frame in 3-space.

With $|\mathbf{p}|=p^{0}$, the boost $K_{\zeta \mathrm{n}}$ takes $\mathbf{p} /|\mathbf{p}|$ to another unit vector $\mathbf{p}^{\prime} /\left|\mathbf{p}^{\prime}\right|$ by a rotation $R_{\delta \mathrm{m}}$ with axis $\mathbf{m} \| \mathbf{p} \times \mathbf{n}$. Its angle δ is given by

$$
\sin \delta=\frac{p^{0} \sinh \zeta+(\mathbf{n} \cdot \mathbf{p})(\cosh \zeta-1)}{p^{0} p^{\prime 0}}|\mathbf{p} \times \mathbf{n}| .
$$

(This δ is the limiting angle of the Wigner rotation $B_{K p}^{-1} K B_{p}$ as $m \rightarrow 0$.)
Pleasant surprise: the vectors \mathbf{t} and $\mathbf{p} /|\mathbf{p}| \times \mathbf{t}$ undergo the same rotation: $K_{\zeta \mathrm{n}} \triangleright \mathrm{t}=R_{\delta \mathrm{m}}(\mathrm{t})$. Thus the frame rotates rigidly under boosts (and under rotations, too) [GraciaB-Lizzi-JCV-Vitale, 2018].
Orbit shape: $(\mathbf{r}, \mathbf{p} ; \lambda, \theta) \in \mathbb{R}^{3} \times\left(\mathbb{R} \times \mathbb{S}^{2}\right) \times\left(\mathbb{R} \times \mathbb{S}^{1}\right)$ where θ parametrizes the circle on which \mathbf{t} and $\mathbf{p} / h \times \mathbf{t}$ live. (Say, $\mathbf{t}=\mathbf{t}_{1}(\mathbf{p}) \cos \theta+\mathbf{t}_{2}(\mathbf{p}) \sin \theta$.) Moreover, $\{\lambda, \cos \theta\}=\sin \theta,\{\lambda, \sin \theta\}=-\cos \theta$.

Generators for a WP representation

We now return to (hermitian) generators of the Poincaré Lie algebra: impose $P^{2}=0$ and $W^{2}=-\kappa^{2}$ to prepare a WP-type repn U of $\mathcal{P}_{+}^{\uparrow}$. Introduce $H:=(P \cdot L)\left(P^{0}\right)^{-1}$, so $W^{0}=H P^{0}$.
Define $\mathrm{T}:=\mathrm{W}-H \mathrm{P}$ and check that $\left[T^{i}, T^{j}\right]=0$ and $\mathrm{T} \cdot \mathrm{T}=\kappa^{2}$.
Putting $Y:=P\left(P^{0}\right)^{-1} \times T$, one finds that $\left[H, Y^{j}\right]=i T^{j}$ and $\left[H, T^{j}\right]=-i Y^{j}$, so that each pair $\left(Y^{j}, T^{j}\right)$ supplies ladder operators for H.

Under boosts (and rotations), the triple ($\mathrm{P} / \mathrm{P}^{0}, \mathrm{~T}, \mathrm{Y}$) still rotates gyroscopically.
The Schwinger position operators satisfy $\left[R^{i}, R^{j}\right]=-i \varepsilon^{i j} H P^{k}\left(P^{0}\right)^{-3}$, which already implies the nonlocality of the WP (as Schwinger noted). Moreover, $[H, \mathrm{~K}]=i \mathrm{~T}\left(P^{0}\right)^{-1}$, so the helicity H is not Lorentz-invariant in the WP representations.

The one-particle Hilbert space

To display this representation in an invariant formalism, we may label states by pairs of 3 -vectors (\mathbf{p}, t), subject to $\mathbf{p} \neq \mathbf{0}, \mathrm{p} \perp \mathrm{t}$ and $|\mathrm{t}|=\mathcal{\kappa}$.

The redundancy in t is removed as in [Bargmann-Wigner, 1948], by assigning an angle θ to the circle, $\mathbf{t}=: \mathbf{t}_{1} \cos \theta+\mathbf{t}_{2} \sin \theta$.

With $p^{0}=|\mathbf{p}|$ and $\lambda:=w^{0} / p^{0}$, we can simplify

$$
\Phi(p, w) \equiv \Phi(\mathbf{p}, \lambda \mathbf{p}+\mathbf{t})=e^{-i \lambda} \Phi(\mathbf{p}, \mathbf{t}) \equiv e^{-i \lambda} \Phi(\mathbf{p}, \theta)
$$

and use the Lorentz-invariant scalar product

$$
\langle\Phi \mid \Phi\rangle \propto \int \frac{d^{3} p}{|\mathbf{p}|} d \theta|\Phi(\mathbf{p}, \theta)|^{2}
$$

On the space of solutions of the wave equations, the representation now has the scalar-like form:

$$
U(a, \Lambda) \Phi(x, w):=\Phi\left(\Lambda^{-1}(x-a), \Lambda^{-1} w\right)
$$

What about the little group method?

The usual construction of a unirrep for the WP uses induction from the little group E(2), generated by two "null rotations" and an ordinary rotation, replacing the t-plane with an abstract plane.
Fix a 4-momentum $k=(|\mathbf{k}|, \mathbf{k})$ and take $\vec{\xi} \perp \mathbf{k}$ with $|\vec{\xi}|=\kappa$. We get rotation and boost generators [Lomont-Moses, 1962-67]:

$$
\begin{aligned}
& \mathrm{L} \leftrightarrow-i \mathbf{p} \times \partial_{\mathrm{p}}+\frac{\mathbf{p}+|\mathbf{p}| \mathbf{k}}{|\mathbf{p}|+\mathbf{k} \cdot \mathbf{p}} \mathbf{S} \cdot \mathbf{k}, \\
& \mathbf{K} \leftrightarrow i|\mathbf{p}| \partial_{\mathbf{p}}-\frac{\mathbf{k} \times \mathbf{p}}{|\mathbf{p}|+\mathbf{k} \cdot \mathbf{p}} \mathbf{S} \cdot \mathbf{k}+\frac{\mathbf{p}}{|\mathbf{p}|^{2}} \times\left(\frac{\mathbf{p}+|\mathbf{p}| \mathbf{k}}{|\mathbf{p}|+\mathbf{k} \cdot \mathbf{p}} \times \vec{\xi}\right) .
\end{aligned}
$$

Contrast with, say, $L \leftrightarrow-i p \times \partial_{p}-i w \times \partial_{w}$ for the invariant form.
A unitary transformation intertwines both representations:
$\delta\left(|\vec{\xi}|^{2}-\kappa^{2}\right) \delta(\vec{\xi} \cdot \mathbf{k}) \psi(\mathbf{p}, \vec{\xi}):=\left.e^{i w^{0} /|\mathbf{p}|} \exp \left(i \alpha \frac{\mathbf{k} \times \mathbf{p}}{|\mathbf{k} \times \mathbf{p}|} \cdot \mathbf{L}\right) \Phi(p, w)\right|_{\mathbf{w}=\vec{\xi}+w^{0} \mathbf{p} / \mathbf{p} \mid}$
with angle α such that $\cos \alpha=(\mathbf{k} \cdot \mathbf{p}) /|\mathbf{p}|$.

On second quantization for the WP: two remarks

The unitary transformation appears (without proof) in [Hirata, 1977], who also found a causal propagator of the form

$$
\begin{aligned}
\widetilde{D}\left(x, x^{\prime} ; w, w^{\prime}\right)= & \frac{\delta\left(w^{2}+\kappa^{2}\right)}{(2 \pi)^{3}} \int d^{3} \mathbf{p} \frac{\sin |\mathbf{p}|\left(t-t^{\prime}\right)}{|\mathbf{p}|} e^{i \mathbf{p} \cdot\left(x-x^{\prime}\right)} \\
& \times \delta(p w) \delta^{3}\left(|\mathbf{p}|\left(\mathbf{w}-\mathbf{w}^{\prime}\right)-\left(w^{0}-w^{\prime 0}\right) \mathbf{p}\right) e^{i\left(w^{0}-w^{\prime 0}\right) /|\mathbf{p}|}
\end{aligned}
$$

This \widetilde{D} is Lorentz-invariant and satisfies the Wigner equations.
(Here $\Phi(x, w)$ depends on the extra w, so this does not contradict Yngvason's theorem on nonlocality of quantum fields for the WP.)

On second quantization for the WP: two remarks

The unitary transformation appears (without proof) in [Hirata, 1977], who also found a causal propagator of the form

$$
\begin{aligned}
\widetilde{D}\left(x, x^{\prime} ; w, w^{\prime}\right)= & \frac{\delta\left(w^{2}+\kappa^{2}\right)}{(2 \pi)^{3}} \int d^{3} \mathbf{p} \frac{\sin |\mathbf{p}|\left(t-t^{\prime}\right)}{|\mathbf{p}|} e^{i \mathbf{p} \cdot\left(\mathrm{x}-\mathrm{x}^{\prime}\right)} \\
& \times \delta(p w) \delta^{3}\left(|\mathbf{p}|\left(\mathbf{w}-\mathbf{w}^{\prime}\right)-\left(w^{0}-w^{\prime 0}\right) \mathbf{p}\right) e^{i\left(w^{0}-w^{\prime 0}\right) /|\mathbf{p}|}
\end{aligned}
$$

This \widetilde{D} is Lorentz-invariant and satisfies the Wigner equations.
(Here $\Phi(x, w)$ depends on the extra w, so this does not contradict Yngvason's theorem on nonlocality of quantum fields for the WP.)

We know that a quantized field for a WP could be string-local, so we can try to find a good set of intertwiners. Indeed, this has already been done in [Rehren, 2017], but with a different starting point, leading to a stress-energy-momentum tensor for the WP, as a quadratic form.

Some references

[W48]: E. Wigner: Z. Phys 124 (1948), 665.
[BW48]: V. Bargmann, E. Wigner: PNAS 34 (1948), 211.
[LM62] : J. S. Lomont, H. E. Moses: JMP 3 (1962), 405.
[Y70]: J. Yngvason: CMP 18 (1970), 195.
[S70]: J. Schwinger: Particles, Sources and Fields 1, 1970.
[H77]: K. Hirata: PTP 58 (1977), 652.
[VG89]: JCV, J. M. Gracia-Bondía: APNY 190 (1989), 107.
[CGV90]: J. F. Cariñena, JMG-B, JCV: JPA 23 (1990), 901.
[MSY06]: J. Mund, B. Schroer, J. Yngvason: CMP 268 (2006), 201.
[ST13]: P. Schuster, N. Toro: JHEP 1309 (2013), 104.
[R17]: K-H. Rehren: JHEP 1711 (2017), 130.
[GLVV18]: JMG-B, F. Lizzi, JCV, P. Vitale: JPA 51 (2018), 255203.

