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The Finite Dimensional Case

Ẋt = −∇V (Xt) + σξt , X0 = x

I V : Rd → R is a potential, σ ∈ R is a scalar

I ξt is a white noise is time E[ξtξs ] = δ(t − s)

I Equivalently, ξ = Ẇ , where W is a Brownian motion on Rd

I The solution X x
t is a stochastic process indexed by time t and

the initial condition x ∈ Rd

I Let µ be a stationary probability distribution on Rd , that is for
all times t > 0 and Borel sets A ∈ Rd∫

Rd

P(X x
t ∈ A)µ(x)dx =

∫
A
µ(y)dy .



I Recall that the paths of t 7→Wt are not smooth, they belong

only to C
1
2
−κ for any κ > 0 (not C

1
2 ).

I This makes calculus more interesting: for a smooth
ψ : Rd → R it holds

d

dt
Ex [ψ(X x

t )] = Ex
[
−∇V (X x

t ) · ∇ψ(X x
t ) +

1

2
σ2∆ψ(X x

t )
]
.

Averaging over x ∈ Rd with respect to µ gives

0 =
∑
i

∫
Rd

[
− ∂iV (y)∂iψ(y) + ∂2i ψ(y)

]
µ(y)dy

=
∑
i

∫
Rd

ψ(y)∂i
[
∂iV (y)µ(y) +

σ2

2
∂iµ(y)

]
dy

This leads to the familiar µ(y) = Cexp(− 1
2σ2V (y)).



Stochastic Quantization of Φ4

∂tu = ∆u − u3 + ξ

I ξ is a space/time white noise

E[ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y).

I Note that ∆u − u3 = −∇V (u), where

V (u) =

∫
|∇u|2 +

1

4
u4 dx .

I Formally, the invariant measure for the (infinite dimensional)
stochastic dynamics is again Cexp(−V (u))du.

I (Parisi-Wu) Try to understand the measure Cexp(−V (u))du
through the (infinite dimensional) stochastic dynamics.



A Fundamental Difficulty

∂tu = ∆u − u3 + ξ, V (u) =

∫
|∇u|2 +

1

4
u4 dx

I If the noise ξ is not too rough, the PDE above is well-posed
(and well understood in the deterministic literature). For
instance, if ξ = 0 one has

d

dt
|u|2L2 + V (u) ≤ 0.

I However, space-time white noise ξ is very singular, it is not a

function, it belongs to C−
d+2
2
−κ for all κ > 0. .

I Consider the solution v to the linearized problem

(∂t −∆x)v = ξ,

By Schauder theory for parabolic equations, v belongs to

C 1− d
2
−κ, so at best u belongs to this space, and there is no

canonical meaning of u3.



2d Case: Da-Prato/Debussche

∂tu = ∆u− : u3 : +ξ on T2 × R+

1. Earlier work by Jona Lasinio/Mitter, Albeverio/Rockner, and
Mikulevicius/Rozovsky with different methods

2. Da-Prato/Debussche gave the first pathwise approach,
dividing the problem into a probabilistic step and an analytic
step.

I Key Idea: Split the solution into a rough peice v and a more
regular peice u − v = w and re-write the equation as

∂tw = ∆w− : (w + v)3 :



A Detour into Rough Paths

Return to the finite dimensional case and consider instead the
(driftless) ODE with multiplicative noise

Ẋ = σ(X )Ẇ ,

where σ is some smooth function.

I Similar power counting issue, σ(X ) ∈ C
1
2
−κ for all κ, while

Ẇ ∈ C−
1
2
−κ, so no canonical meaning for σ(X )Ẇ .

I Classical approach of Ito is probabilistic, searches for a
solution in a class of (adapted), random processes.

I Approach by Terry Lyons and further developed by
Massimilliano Gubinelli is pathwise. Efficient splitting into a
probabilistic step and an analytic step.



Ẋ = σ(X )Ẇ ,

I (Analytic Step) Define a class of “controlled rough paths” X
for which there exists a σ such that

Xt = Xs + σs(Wt −Ws) + O(|s − t|1−2κ)

1. (Reconstruction) Given X controlled and a meaning for
W � Ẇ , give a meaning to σ(X )�Ẇ .

2. (Integration) Given a meaning for σ(X ) � Ẇ and a solution X
to the ODE, show that X is controlled.

I (Probabilistic Step) Use stochastic analysis to define W � Ẇ .

I Better to think of the solution as a linear form acting on
vectors (1,W ) ∈ R2 via

t 7→ Xt1 + σtW .



d = 3 and beyond

Theorem (Hairer)

There exists a choice of constants Cε such that the sequence of
solutions to

∂tuε = ∆uε + Cεuε + ξε on T3 × R+

converges to a limit (for small times).

I Alternative proof using Paracontrolled Calculus by
Catellier/Chouk.

I Global a priori bounds derived by Mourrat and Weber (should
yield an invariant measure). Alternative, direct construction of
an invariant measure by Albeverio/Kusuoka.

I (Highly non-trivial) Extension to Φ4−δ
4 as a culmination of

work by Bruned, Chandra, Chevrev, Hairer, Zambotti.



Singular SPDE Philosophy

Heightened interest in Singular SPDE:

I Regularity Structures: Hairer

I Paracontrolled Distributions: Gubinelli/Imkeller/Perkowski,
Bailleul/Bernicot

I Renormalization group: Kupainen

General themes

I Models: building blocks

I Modelled Distributions: “regularity” in quotation marks

I Integration: gaining “regularity” through the PDE

I Reconstruction: using “regularity” + off-line inputs to give a
meaning to the non-linearity



Quasi-linear SPDE

∂tu − A(u)∂2xu = f .

Motivation: Toy model for PDE’s of a more geometric nature,
intrinsic interest in PDE and probability, Feynmac-Kac
representation (for regular enough f).

For notational convenience, one space dimension. For simplicity,
periodic in space/time, re-label coordinates

∂2u − A(u)∂21u = f ,

for x = (x1, x2) ∈ [0, 1]2 where x1 is for space, x2 is for time.
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A Fundamental Difficulty

∂2u − A(u)∂21u = f ,

1. (Integration) For f ∈ Cα−2, expect u ∈ Cα.

2. (Reconstruction) For A(u) ∈ Cα and ∂21u ∈ Cα−2, meaning of
A(u)∂21u ?

Classical view: regularity α of A(u) must over-compensate for the
irregularity α− 2 of ∂21u.

I α ∈ (2,∞): Pointwise solutions

I α ∈ (1, 2): Distributional solutions
(α− 2 < 0, α + α− 2 > 0)

Modern view: need an enhanced definition of regularity of u and
additional off-line structure of f

I α ∈ (0, 1): Active area, focus of the remainder of the talk
(α + α− 2 < 0)
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Related Singular SPDE Literature
Quasi-linear

1. Otto-Weber ( α ∈ (23 , 1), parametric model )

(∂2 − a0∂
2
1)vα(·, a0) = f .

u(y)− u(x)
2α
≈ δA(u(x)).

(
vα(y)− vα(x)

)
[(·)T ,A(u)] � ∂21u

3α−2
≈ A′(u)δA(u).[(·)T , vα]�∂21vα

2. Furlan-Gubinelli , Bailleul-Debussche-Hofmanova ( α ∈ (23 , 1)
paracontrolled approach with and without a parametric
ansatz, respectively )

3. Gerenscer-Hairer ( parametric model, regularity structures: big
progress for α > 0, one (crucial) step working only for α > 1

2
) Transformation method

4. Otto-Sauer-Smith-Weber ( parametric, regularity structures
(with some twists); abstract tools work for α > 0, concrete
results for α > 1

2 posted, α > 2
5 also checked ) Direct

approach



Flexible Approach
Study (linear) parabolic PDE’s with a ∈ Cα and f ∈ Cα−2

∂2u − a � ∂21u = f

I Off-line step: Given a (small) model f , vα, vα � ∂21vα, w2α,
w2α � ∂21vα, v2α � ∂21w2α, w3α, ...

I Functional framework: Modelled distributions V , linear forms
acting on (abstract) functions of several parameters
(a0, a

′
0, . . . ).

I The solution map: Build the (non-linear) map Va 7→ Vu which
takes a modelled distribution describing a into a modelled
distribution describing u.

I Reconstruction: Given Va and Vu, build and characterize
a � ∂21u.

I Integration: Given a � ∂21u and the solution u to the PDE,
show that that Vu is a modelled distribution.

Non-linear problem follows via a straightforward iteration

Vũ 7→ Va 7→ Vu, a = A(ũ).



Abstract Integration Theorem (Local Splitting Method)
Let η ∈ (1, 2) and (x , y) 7→ U(x , y) be a bounded, continuous
function (periodic in y) with the following properties:

1. For all base points x and length scales T
1
4 ,R ≤ 1 it holds

inf
a0∈I
‖(∂2 − a0∂

2
1)(·)TU(x , ·)‖BR(x)

≤
∑
β∈A

(T
1
4 )η−2−βRβ.

2. For all x , y , z it holds∣∣U(x , y)− U(x , z)− U(y , y) + U(y , z)− γ(x , y)(z − y)1
∣∣

≤
∑
β∈A

dη−β(y , x)dβ(z , y)

for some function (x , y) 7→ γ(x , y).

Then there exists a continuous function ν such that for all x , y∣∣U(x , y)− U(x , x)− ν(x)(y − x)1
∣∣ . dη(y , x).



Main (Concrete) Theorem
Given:

I α ∈ (25 , 1) and a (small) model consisting of Cα−2

distributions v+ � v− and Cα functions v+.

I modelled distribution Va of order η (large enough) describing
a with [a]α small

There exists a unique modelled distribution Vu of order η
(describing to lowest order a function u) with the following
properties.

I V∂21u
is algebraically determined by Va.

I There exists a unique distribution a � ∂21u such that

lim
T→0
‖(a � ∂21u)T − a(∂21u)T − (V a ⊗ V∂21u

)′.(v+ � v−)T‖ = 0,

where V a = Va − a.

I ∂2u − a � ∂21u = f in the sense of distributions.

Moreover, the map Va 7→ Vu is bounded. For α ∈ (12 , 1), also
locally Lipschitz.



The Positive Model: α ∈ (1
2 ,

2
3)

v+ := (1, vα, x1,w2α)

(∂2 − a0∂
2
1)vα(·, a0) = f

(∂2 − a0∂
2
1)w2α(·, a′0, a0) = (vα � ∂21vα)(·, a′0, a0),

where f and vα � ∂21vα(a′0, a0) in Cα−2 satisfy

(T
1
4 )2−α‖fT‖ ≤ N, (T

1
4 )2−2α‖(vα � ∂21vα)T − vα(∂21vα)T‖ ≤ N2.

Lemma
For all x , y it holds (for some function ω)∣∣w2α(y , a′0, a0)− w2α(x , a′0, a0)

− vα(x , a′0)
(
∂a0vα(y , a0)− ∂a0vα(x , a0)

)
− ω(x , a0, a

′
0)(y − x)1

∣∣ . N2d2α(x , y).

(x , y) 7→ U(x , y , a′0, a0) := w2α(y , a′0, a0)− vα(x , a′0)∂a0vα(y , a0).



Function-like Modelled Distributions
Define a graded Banach space for placeholders
v+ = (1, vα, x1,w2α).

T+ = T0 ⊕ Tα ⊕ T1 ⊕ T2α

:= R⊕ C 2(I )⊕ R⊕ C 2,1(I × I ),

where C 2,1(I × I ) = C 2(I )⊗ C 1(I ).

A modelled distribution Vu describing u to order η is a family of
linear forms on T+ indexed by points x ∈ R2 such that

Continuity condition: For each x , y ∈ R2 and placeholder v+ ∈ T+∣∣(Vu(y)− Vu(x)).v+
∣∣

≤ dη(y , x)|1|+ dη−α(y , x)‖vα − vα(x)1‖Tα

+ dη−2α(y , x)‖w2α − w2α(x)1

− vα(x)⊗ (∂a0vα − ∂a0vα(x)1)‖T2α .

u(y)− Vu(x).v+(y) = O(dη(x , y)) (by prev. Lemma).



Algebraic Lemma

Given Va on T+, define V∂21u
on placeholders v− = (∂21vα, ∂

2
1w2α)

in T− = ∂21T+ by

V∂21u
.v− = δa.∂

2
1vα + (V

′
a ⊗ δa).

(
∂a0∂

2
1vα

∂21w2α,

)
where. V ′a is the reduction of the form Va to act only on the
placeholders (1, vα) ∈ T0 ⊕ Tα.

Lemma
Given a modelled distribution Va of order η on T+, the above
definition of V∂21u

yields a modelled distribution of order η − 2 on
T−.



The Negative Model: α ∈ (1
2 ,

2
3)

Recall that the rough diffusion operator is characterized by

lim
T→0
‖(a � ∂21u)T − a(∂21u)T − (V a ⊗ V∂21u

)′.(v+ � v−)T‖ = 0.

Need additional distributions w2α � ∂21vα, vα � ∂21w2α

v+ � v− =

(
∂21vα vα � ∂21vα x1∂

2
1vα w2α � ∂21vα

∂21w2α vα � ∂21w2α

)
Level 3α− 2:

(T
1
4 )3α−2‖[(·)T ,w2α] � ∂21vα(a′′0 , a

′
0, a0)

− vα(a′′0)∂a′0 [(·)T , vα] � ∂21vα(a′0, a0)‖ ≤ N3

(T
1
4 )3α−2‖[(·)T , vα] � ∂21w2α(a′′0 , a

′
0, a0)

− vα(a′0)∂a0 [(·)T , vα] � ∂21vα(a′′0 , a0)‖ ≤ N3



Thanks for your attention


