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The Finite Dimensional Case

X = —VV(Xe) +0&,  Xo=x
V :RY — R is a potential, ¢ € R is a scalar
& is a white noise is time E[£:£5] = 6(t — s)
Equivalently, £ = W, where W is a Brownian motion on R?
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The solution X is a stochastic process indexed by time t and
the initial condition x € R9

Let 1 be a stationary probability distribution on RY, that is for
all times t > 0 and Borel sets A € R?

v

[ B0 € Aude = [ ly)ay.
R4 A



» Recall that the paths of t — W; are not smooth, they belong
1 1
only to C27" for any x > 0 (not C2).

» This makes calculus more interesting: for a smooth
¥ : R? — R it holds

RO = B[~ TV(X) - VUO) + 50°80()].

Averaging over x € RY with respect to j gives

0=3 / )0 (y) + O(y)] ly)dy
2

=3 [ OIAHBVOI) + % dnly)]dy

This leads to the familiar u(y) = Cexp(—ﬁ V(y)).



Stochastic Quantization of @4

O =Au—ud+¢

v

¢ is a space/time white noise

E[£(t, x)&(s, y)] = 6(t — 5)d(x — y).

Note that Au — u® = —V V/(u), where
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V() :/|vuy2+ Jut o
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Formally, the invariant measure for the (infinite dimensional)
stochastic dynamics is again Cexp(—V/(u))du.

(Parisi-Wu) Try to understand the measure Cexp(—V/(u))du
through the (infinite dimensional) stochastic dynamics.
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A Fundamental Difficulty
O = Au— 1P + €, V(u)—/Vu\2+iu4 dx

» If the noise £ is not too rough, the PDE above is well-posed
(and well understood in the deterministic literature). For
instance, if £ = 0 one has

d
ayuyfz + V(u) <0.

» However, space-time white noise £ is very singular, it is not a
L _d42
function, it belongs to C~ 2 ~* for all kK > 0. .
» Consider the solution v to the linearized problem

(at - AX)V = 67

By Schauder theory for parabolic equations, v belongs to
1—-9_« . .

C*7 27", so0 at best u belongs to this space, and there is no

canonical meaning of 3.



2d Case: Da-Prato/Debussche

o= Au—:u®:+6 on T? xR,

1. Earlier work by Jona Lasinio/Mitter, Albeverio/Rockner, and
Mikulevicius/Rozovsky with different methods

2. Da-Prato/Debussche gave the first pathwise approach,
dividing the problem into a probabilistic step and an analytic
step.

» Key Idea: Split the solution into a rough peice v and a more
regular peice u — v = w and re-write the equation as

ow = Aw—: (w +v)*:



A Detour into Rough Paths

Return to the finite dimensional case and consider instead the
(driftless) ODE with multiplicative noise

X =o(X)W,

where o is some smooth function.
» Similar power counting issue, o(X) € C2* for all &, while
W € C27*, so no canonical meaning for o(X)W.
» Classical approach of Ito is probabilistic, searches for a
solution in a class of (adapted), random processes.

» Approach by Terry Lyons and further developed by
Massimilliano Gubinelli is pathwise. Efficient splitting into a
probabilistic step and an analytic step.



X =o(X)W,

» (Analytic Step) Define a class of “controlled rough paths” X
for which there exists a o such that

Xe = X5+ 05(W, = Wo) + O(]s — t172")

1. (Reconstruction) Given X controlled and a meaning for
W o W, give a meaning to o(X)oW.

2. (Integration) Given a meaning for o(X) o W and a solution X
to the ODE, show that X is controlled.

» (Probabilistic Step) Use stochastic analysis to define W o /.

» Better to think of the solution as a linear form acting on
vectors (1, W) € R? via

t— Xt]. +O'tW



d = 3 and beyond

Theorem (Hairer)

There exists a choice of constants C. such that the sequence of
solutions to

Otue = Aue + Ceuc + & on T3 x R4
converges to a limit (for small times).

» Alternative proof using Paracontrolled Calculus by
Catellier/Chouk.

» Global a priori bounds derived by Mourrat and Weber (should
yield an invariant measure). Alternative, direct construction of
an invariant measure by Albeverio/Kusuoka.

> (Highly non-trivial) Extension to ®4° as a culmination of
work by Bruned, Chandra, Chevrev, Hairer, Zambotti.



Singular SPDE Philosophy

Heightened interest in Singular SPDE:
» Regularity Structures: Hairer

» Paracontrolled Distributions: Gubinelli/Imkeller/Perkowski,
Bailleul /Bernicot

» Renormalization group: Kupainen

General themes
» Models: building blocks
» Modelled Distributions: “regularity” in quotation marks
> Integration: gaining “regularity” through the PDE

» Reconstruction: using “regularity” + off-line inputs to give a
meaning to the non-linearity



Quasi-linear SPDE

Oru — A(u)d2u = f.



Quasi-linear SPDE

Oru — A(u)d2u = f.

Motivation: Toy model for PDE’s of a more geometric nature,
intrinsic interest in PDE and probability, Feynmac-Kac
representation (for regular enough f).

For notational convenience, one space dimension. For simplicity,
periodic in space/time, re-label coordinates

dou — A(n)2u = f,

for x = (x1,x2) € [0, 1] where x; is for space, x, is for time.



A Fundamental Difficulty

Dou — A(u)O2u = f,



A Fundamental Difficulty

Dou — A(u)O2u = f,

1. (Integration) For f € C® 2, expect u € C“.
2. (Reconstruction) For A(u) € C* and 0?u € C% 2, meaning of
A(u)o3u ?
Classical view: regularity o of A(u) must -compensate for the
irregularity o — 2 of d2u.
» o € (2,00): Pointwise solutions
» o € (1,2): Distributional solutions
(e —2<0, +a-—2 )

Modern view: need an enhanced definition of regularity of v and
additional off-line structure of f

» o € (0,1): Active area, focus of the remainder of the talk
(v+a—2<0)



Related Singular SPDE Literature

Quasi-linear
1. Otto-Weber ( v € (3,1), parametric model )

(82 - aoa%) (', ao) =f.

u(y) = u(x) B S aup- (v (y) = va (%))
()7, A(u)] 0 Bu * 5 A(1)3 a0 [() 7 valoD? ve

2. Furlan-Gubsinelli , Bailleul-Debussche-Hofmanova ( a € (3, 1)
paracontrolled approach with and without a parametric
ansatz, respectively )

3. Gerenscer-Hairer ( parametric model, regularity structures: big
progress for o > 0, one (crucial) step working only for o > %
) Transformation method

4. Otto-Sauer-Smith-Weber ( parametric, regularity structures
(with some twists); abstract tools work for & > 0, concrete
results for a > % posted, o > % also checked ) Direct
approach



Flexible Approach
Study (linear) parabolic PDE's with 2 € C* and f € C®~2

Do —a0diu="f

» Off-line step: Given a (small) model f, v, v, © 97v,,
Wog OG%VQ, Voo <>8fW2a, -

» Functional framework: Modelled distributions V/, linear forms
acting on (abstract) functions of several parameters
(a0, ag; - - - )

» The solution map: Build the (non-linear) map V. — V|, which
takes a modelled distribution describing a into a modelled
distribution describing u.

» Reconstruction: Given V; and V,, build and characterize
ao du.

» Integration: Given ao d2u and the solution u to the PDE,
show that that V,, is a modelled distribution.

Non-linear problem follows via a straightforward iteration

Vi Vo=V, = A(0).



Abstract Integration Theorem (Local Splitting Method)

Let n € (1,2) and (x, y) — U(x,y) be a bounded, continuous
function (periodic in y) with the following properties:

1. For all base points x and length scales T%, R <1 it holds
inf [[(82 — a007)(-) T U(x, )l Bax)
ENEl
<N (TEy 2R
BeA

2. For all x,y, z it holds

|U(x,y) = U(x,2) = Uly,y) + Uly, z) = v(x,y)(z = y)1]

<Y d" Py, x)d%(z,y)
BEA

for some function (x,y) — v(x,y).
Then there exists a continuous function v such that for all x, y

|U(x,y) = Ulx, %) = v(x)(y = x| < d'(y.x).



Main (Concrete) Theorem
Given:
> € (%, 1) and a (small) model consisting of C*~2
distributions v ¢ v_ and C% functions

» modelled distribution V., of order 7 (large enough) describing
with [a], small

There exists a unique modelled distribution V/,, of order n
(describing to lowest order a function ) with the following
properties.

> Vaf is algebraically determined by V..

» There exists a unique distribution a o d2u such that

lim [[(aodfu)T — a(870)1 — (V. ® Vip,) (v ov )| =0,
T—0 1

where V, =V, — a.
» Oau—aod2u = f in the sense of distributions.

Moreover, the map V, — V/, is bounded. For o € (%, 1), also
locally Lipschitz.



The Positive Model: a € (3, %)

(82 — 308%) (-, ao) =f

(02 —308%) (-,36,80) = (Vaoa%‘/a)('7a6’ao)a

where f and vy © 02v,(a), a0) in C®~2 satisfy
(T2l < N, (T3)272|(va 0 Bva) T — va (3va) 7] < N2,

Lemma
For all x,y it holds (for some function w)

’ v, 36730)_ (x, 36730)
(X’ 36)( (y’ 30) - (X’ 30))

—W(X7 30’36)(.)/_)()1‘ S N2d (va)'

(va) = (Xaya 36730) = (}/736730) - (X7 8/0) (yaaO)-



Function-like Modelled Distributions
Define a graded Banach space for placeholders
Vi = (17 Vo, X1, W2a)-
T+ :To@T @Tl@T
=RaeC(HeRa C (I xI),
where C=' (I x 1) = C*(I)® C'(1).

A modelled distribution V/,, describing u to order 1) is a family of
linear forms on T indexed by points x € R? such that

Continuity condition: For each x,y € R? and placeholder v, € T
|(Vily) = Vi(x))-v4 |
< d'(y, ¥+ d"" (y, ¥)lva = va ()1
+d7 Ny, x)[waa = wan (x)1
= Vo (%) ® (Gagva — CADIlT

(v) = Vu(x).vi(y) = O(d"(x,y)) (by prev. Lemma).



Algebraic Lemma

Given V; on T, define Va%u on placeholders v_ = (vaa,afwm)
in T_ = 02T, by

— 83 62‘/&
Vafu.v_ = (53.8]2_Va + (Va ® 53) <8§W;o“>

where. V! is the reduction of the form V; to act only on the
placeholders (1,v,) € To @ T,.

Lemma

Given a modelled distribution V, of order 1 on T, the above
definition of Vyz,, yields a modelled distribution of order n — 2 on
T_.



The Negative Model: « € (3, 3)

Recall that the rough diffusion operator is characterized by

lim H(a<>8%u)r — a(@% )T —(Va® Vi) vy ov_)7| = 0.
T—0 1
Need additional distributions wa,, oafva, Vo oﬁfwm

_ 8% Vo Vo © 8% Vo xlaf Vo Wog © af Vo
IW2oe Vi © O] W2g

Level 3cv — 2:

1
(T%)**7?[[1() 7, waa] © 0F va(ag., 20, 20)

- [()7 va] © 0% va(ap, 20) || < N°

1 o—
(T4)** ()T, va] © 9F waa(aG, a5, 20)

- [()7: val © 91 va(ag, a0)|| < N°



Thanks for your attention



