Renormalized Stochastic PDE's

Scott Smith

Max Planck Institute for Mathematics in the Sciences, Leipzig

July 5, 2018

The Finite Dimensional Case

$$
\dot{X}_{t}=-\nabla V\left(X_{t}\right)+\sigma \xi_{t}, \quad X_{0}=x
$$

- $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a potential, $\sigma \in \mathbb{R}$ is a scalar
- ξ_{t} is a white noise is time $\mathbb{E}\left[\xi_{t} \xi_{s}\right]=\delta(t-s)$
- Equivalently, $\xi=\dot{W}$, where W is a Brownian motion on \mathbb{R}^{d}
- The solution X_{t}^{x} is a stochastic process indexed by time t and the initial condition $x \in \mathbb{R}^{d}$
- Let μ be a stationary probability distribution on \mathbb{R}^{d}, that is for all times $t>0$ and Borel sets $A \in \mathbb{R}^{d}$

$$
\int_{\mathbb{R}^{d}} \mathbb{P}\left(X_{t}^{x} \in A\right) \mu(x) d x=\int_{A} \mu(y) d y
$$

- Recall that the paths of $t \mapsto W_{t}$ are not smooth, they belong only to $C^{\frac{1}{2}-\kappa}$ for any $\kappa>0\left(\operatorname{not} C^{\frac{1}{2}}\right)$.
- This makes calculus more interesting: for a smooth $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ it holds

$$
\frac{d}{d t} \mathbb{E}^{\times}\left[\psi\left(X_{t}^{\times}\right)\right]=\mathbb{E}^{\times}\left[-\nabla V\left(X_{t}^{\times}\right) \cdot \nabla \psi\left(X_{t}^{x}\right)+\frac{1}{2} \sigma^{2} \Delta \psi\left(X_{t}^{\times}\right)\right]
$$

Averaging over $x \in \mathbb{R}^{d}$ with respect to μ gives

$$
\begin{aligned}
0 & =\sum_{i} \int_{\mathbb{R}^{d}}\left[-\partial_{i} V(y) \partial_{i} \psi(y)+\partial_{i}^{2} \psi(y)\right] \mu(y) d y \\
& =\sum_{i} \int_{\mathbb{R}^{d}} \psi(y) \partial_{i}\left[\partial_{i} V(y) \mu(y)+\frac{\sigma^{2}}{2} \partial_{i} \mu(y)\right] d y
\end{aligned}
$$

This leads to the familiar $\mu(y)=\operatorname{Cexp}\left(-\frac{1}{2 \sigma^{2}} V(y)\right)$.

Stochastic Quantization of Φ_{4}

$$
\partial_{t} u=\Delta u-u^{3}+\xi
$$

- ξ is a space/time white noise

$$
\mathbb{E}[\xi(t, x) \xi(s, y)]=\delta(t-s) \delta(x-y)
$$

- Note that $\Delta u-u^{3}=-\nabla V(u)$, where

$$
V(u)=\int|\nabla u|^{2}+\frac{1}{4} u^{4} d x .
$$

- Formally, the invariant measure for the (infinite dimensional) stochastic dynamics is again $C \exp (-V(u)) d u$.
- (Parisi-Wu) Try to understand the measure $C \exp (-V(u)) d u$ through the (infinite dimensional) stochastic dynamics.

A Fundamental Difficulty

$$
\partial_{t} u=\Delta u-u^{3}+\xi, \quad V(u)=\int|\nabla u|^{2}+\frac{1}{4} u^{4} d x
$$

- If the noise ξ is not too rough, the PDE above is well-posed (and well understood in the deterministic literature). For instance, if $\xi=0$ one has

$$
\frac{d}{d t}|u|_{L^{2}}^{2}+V(u) \leq 0 .
$$

- However, space-time white noise ξ is very singular, it is not a function, it belongs to $C^{-\frac{d+2}{2}-\kappa}$ for all $\kappa>0$. .
- Consider the solution v to the linearized problem

$$
\left(\partial_{t}-\Delta_{x}\right) v=\xi
$$

By Schauder theory for parabolic equations, v belongs to $C^{1-\frac{d}{2}-\kappa}$, so at best u belongs to this space, and there is no canonical meaning of u^{3}.

2d Case: Da-Prato/Debussche

$$
\partial_{t} u=\Delta u-: u^{3}:+\xi \quad \text { on } \quad \mathbb{T}^{2} \times \mathbb{R}_{+}
$$

1. Earlier work by Jona Lasinio/Mitter, Albeverio/Rockner, and Mikulevicius/Rozovsky with different methods
2. Da-Prato/Debussche gave the first pathwise approach, dividing the problem into a probabilistic step and an analytic step.

- Key Idea: Split the solution into a rough peice v and a more regular peice $u-v=w$ and re-write the equation as

$$
\partial_{t} w=\Delta w-:(w+v)^{3}:
$$

A Detour into Rough Paths

Return to the finite dimensional case and consider instead the (driftless) ODE with multiplicative noise

$$
\dot{X}=\sigma(X) \dot{W}
$$

where σ is some smooth function.

- Similar power counting issue, $\sigma(X) \in C^{\frac{1}{2}-\kappa}$ for all κ, while $\dot{W} \in C^{-\frac{1}{2}-\kappa}$, so no canonical meaning for $\sigma(X) \dot{W}$.
- Classical approach of Ito is probabilistic, searches for a solution in a class of (adapted), random processes.
- Approach by Terry Lyons and further developed by Massimilliano Gubinelli is pathwise. Efficient splitting into a probabilistic step and an analytic step.

$$
\dot{X}=\sigma(X) \dot{W}
$$

- (Analytic Step) Define a class of "controlled rough paths" X for which there exists a σ such that

$$
X_{t}=X_{s}+\sigma_{s}\left(W_{t}-W_{s}\right)+O\left(|s-t|^{1-2 \kappa}\right)
$$

1. (Reconstruction) Given X controlled and a meaning for $W \diamond \dot{W}$, give a meaning to $\sigma(X) \diamond \dot{W}$.
2. (Integration) Given a meaning for $\sigma(X) \diamond \dot{W}$ and a solution X to the ODE, show that X is controlled.

- (Probabilistic Step) Use stochastic analysis to define $W \diamond \dot{W}$.
- Better to think of the solution as a linear form acting on vectors $(1, W) \in \mathbb{R}^{2}$ via

$$
t \mapsto X_{t} 1+\sigma_{t} W
$$

$d=3$ and beyond

Theorem (Hairer)

There exists a choice of constants C_{ϵ} such that the sequence of solutions to

$$
\partial_{t} u_{\epsilon}=\Delta u_{\epsilon}+C_{\epsilon} u_{\epsilon}+\xi_{\epsilon} \quad \text { on } \quad \mathbb{T}^{3} \times \mathbb{R}_{+}
$$

converges to a limit (for small times).

- Alternative proof using Paracontrolled Calculus by Catellier/Chouk.
- Global a priori bounds derived by Mourrat and Weber (should yield an invariant measure). Alternative, direct construction of an invariant measure by Albeverio/Kusuoka.
- (Highly non-trivial) Extension to $\Phi_{4}^{4-\delta}$ as a culmination of work by Bruned, Chandra, Chevrev, Hairer, Zambotti.

Singular SPDE Philosophy

Heightened interest in Singular SPDE:

- Regularity Structures: Hairer
- Paracontrolled Distributions: Gubinelli/Imkeller/Perkowski, Bailleul/Bernicot
- Renormalization group: Kupainen

General themes

- Models: building blocks
- Modelled Distributions: "regularity" in quotation marks
- Integration: gaining "regularity" through the PDE
- Reconstruction: using "regularity" + off-line inputs to give a meaning to the non-linearity

Quasi-linear SPDE

$$
\partial_{t} u-A(u) \partial_{x}^{2} u=f
$$

Quasi-linear SPDE

$$
\partial_{t} u-A(u) \partial_{x}^{2} u=f
$$

Motivation: Toy model for PDE's of a more geometric nature, intrinsic interest in PDE and probability, Feynmac-Kac representation (for regular enough f).

For notational convenience, one space dimension. For simplicity, periodic in space/time, re-label coordinates

$$
\partial_{2} u-A(u) \partial_{1}^{2} u=f,
$$

for $x=\left(x_{1}, x_{2}\right) \in[0,1]^{2}$ where x_{1} is for space, x_{2} is for time.

A Fundamental Difficulty

$$
\partial_{2} u-A(u) \partial_{1}^{2} u=f,
$$

A Fundamental Difficulty

$$
\partial_{2} u-A(u) \partial_{1}^{2} u=f,
$$

1. (Integration) For $f \in C^{\alpha-2}$, expect $u \in C^{\alpha}$.
2. (Reconstruction) For $A(u) \in C^{\alpha}$ and $\partial_{1}^{2} u \in C^{\alpha-2}$, meaning of $A(u) \partial_{1}^{2} u$?

Classical view: regularity α of $A(u)$ must over-compensate for the irregularity $\alpha-2$ of $\partial_{1}^{2} u$.

- $\alpha \in(2, \infty)$: Pointwise solutions
- $\alpha \in(1,2)$: Distributional solutions

$$
(\alpha-2<0, \quad \alpha+\alpha-2>0)
$$

Modern view: need an enhanced definition of regularity of u and additional off-line structure of f

- $\alpha \in(0,1)$: Active area, focus of the remainder of the talk $(\alpha+\alpha-2<0)$

Related Singular SPDE Literature

Quasi-linear

1. Otto-Weber $\left(\alpha \in\left(\frac{2}{3}, 1\right)\right.$, parametric model $)$

$$
\begin{aligned}
& \left(\partial_{2}-a_{0} \partial_{1}^{2}\right) v_{\alpha}\left(\cdot, a_{0}\right)=f . \\
& \quad u(y)-u(x) \stackrel{2 \alpha}{\approx} \delta_{A(u(x))} \cdot\left(v_{\alpha}(y)-v_{\alpha}(x)\right) \\
& \quad\left[(\cdot)_{T}, A(u)\right] \diamond \partial_{1}^{2} u \stackrel{3 \alpha-2}{\approx} A^{\prime}(u) \delta_{A(u)} \cdot\left[(\cdot)_{T}, v_{\alpha}\right] \diamond \partial_{1}^{2} v_{\alpha}
\end{aligned}
$$

2. Furlan-Gubinelli, Bailleul-Debussche-Hofmanova ($\alpha \in\left(\frac{2}{3}, 1\right)$ paracontrolled approach with and without a parametric ansatz, respectively)
3. Gerenscer-Hairer (parametric model, regularity structures: big progress for $\alpha>0$, one (crucial) step working only for $\alpha>\frac{1}{2}$) Transformation method
4. Otto-Sauer-Smith-Weber (parametric, regularity structures (with some twists); abstract tools work for $\alpha>0$, concrete results for $\alpha>\frac{1}{2}$ posted, $\alpha>\frac{2}{5}$ also checked) Direct approach

Flexible Approach

Study (linear) parabolic PDE's with $a \in C^{\alpha}$ and $f \in C^{\alpha-2}$

$$
\partial_{2} u-a \diamond \partial_{1}^{2} u=f
$$

- Off-line step: Given a (small) model $f, v_{\alpha}, v_{\alpha} \diamond \partial_{1}^{2} v_{\alpha}, w_{2 \alpha}$, $w_{2 \alpha} \diamond \partial_{1}^{2} v_{\alpha}, v_{2 \alpha} \diamond \partial_{1}^{2} w_{2 \alpha}, w_{3 \alpha}, \ldots$
- Functional framework: Modelled distributions V, linear forms acting on (abstract) functions of several parameters $\left(a_{0}, a_{0}^{\prime}, \ldots\right)$.
- The solution map: Build the (non-linear) map $V_{a} \mapsto V_{u}$ which takes a modelled distribution describing a into a modelled distribution describing u.
- Reconstruction: Given V_{a} and V_{u}, build and characterize $a \diamond \partial_{1}^{2} u$.
- Integration: Given $a \diamond \partial_{1}^{2} u$ and the solution u to the PDE, show that that V_{u} is a modelled distribution.
Non-linear problem follows via a straightforward iteration

$$
V_{\tilde{u}} \mapsto V_{a} \mapsto V_{u}, \quad a=A(\tilde{u}) .
$$

Abstract Integration Theorem (Local Splitting Method)

Let $\eta \in(1,2)$ and $(x, y) \mapsto U(x, y)$ be a bounded, continuous function (periodic in y) with the following properties:

1. For all base points x and length scales $T^{\frac{1}{4}}, R \leq 1$ it holds

$$
\begin{aligned}
& \inf _{a_{0} \in I}\left\|\left(\partial_{2}-a_{0} \partial_{1}^{2}\right)(\cdot)_{T} U(x, \cdot)\right\|_{B_{R}(x)} \\
& \quad \leq \sum_{\beta \in \mathrm{A}}\left(T^{\frac{1}{4}}\right)^{\eta-2-\beta} R^{\beta} .
\end{aligned}
$$

2. For all x, y, z it holds

$$
\begin{gathered}
\left|U(x, y)-U(x, z)-U(y, y)+U(y, z)-\gamma(x, y)(z-y)_{1}\right| \\
\leq \sum_{\beta \in \mathrm{A}} d^{\eta-\beta}(y, x) d^{\beta}(z, y)
\end{gathered}
$$

for some function $(x, y) \mapsto \gamma(x, y)$.
Then there exists a continuous function ν such that for all x, y

$$
\left|U(x, y)-U(x, x)-\nu(x)(y-x)_{1}\right| \lesssim d^{\eta}(y, x) .
$$

Main (Concrete) Theorem

Given:

- $\alpha \in\left(\frac{2}{5}, 1\right)$ and a (small) model consisting of $C^{\alpha-2}$ distributions $v_{+} \diamond v_{-}$and C^{α} functions v_{+}.
- modelled distribution V_{a} of order η (large enough) describing a with $[a]_{\alpha}$ small
There exists a unique modelled distribution V_{u} of order η (describing to lowest order a function u) with the following properties.
- $V_{\partial_{1}^{2} u}$ is algebraically determined by V_{a}.
- There exists a unique distribution $a \diamond \partial_{1}^{2} u$ such that

$$
\begin{aligned}
& \lim _{T \rightarrow 0}\left\|\left(a \diamond \partial_{1}^{2} u\right)_{T}-a\left(\partial_{1}^{2} u\right)_{T}-\left(\bar{V}_{a} \otimes V_{\partial_{1}^{2} u}\right)^{\prime} \cdot\left(v_{+} \diamond v_{-}\right)_{T}\right\|=0, \\
& \text { where } \bar{V}_{a}=V_{a}-a .
\end{aligned}
$$

- $\partial_{2} u-a \diamond \partial_{1}^{2} u=f$ in the sense of distributions.

Moreover, the map $V_{a} \mapsto V_{u}$ is bounded. For $\alpha \in\left(\frac{1}{2}, 1\right)$, also locally Lipschitz.

The Positive Model: $\alpha \in\left(\frac{1}{2}, \frac{2}{3}\right)$
$v_{+}:=\left(1, v_{\alpha}, x_{1}, w_{2 \alpha}\right)$

$$
\begin{aligned}
\left(\partial_{2}-a_{0} \partial_{1}^{2}\right) v_{\alpha}\left(\cdot, a_{0}\right) & =f \\
\left(\partial_{2}-a_{0} \partial_{1}^{2}\right) w_{2 \alpha}\left(\cdot, a_{0}^{\prime}, a_{0}\right) & =\left(v_{\alpha} \diamond \partial_{1}^{2} v_{\alpha}\right)\left(\cdot, a_{0}^{\prime}, a_{0}\right),
\end{aligned}
$$

where f and $v_{\alpha} \diamond \partial_{1}^{2} v_{\alpha}\left(a_{0}^{\prime}, a_{0}\right)$ in $C^{\alpha-2}$ satisfy

$$
\left(T^{\frac{1}{4}}\right)^{2-\alpha}\left\|f_{T}\right\| \leq N, \quad\left(T^{\frac{1}{4}}\right)^{2-2 \alpha}\left\|\left(v_{\alpha} \diamond \partial_{1}^{2} v_{\alpha}\right)_{T}-v_{\alpha}\left(\partial_{1}^{2} v_{\alpha}\right)_{T}\right\| \leq N^{2} .
$$

Lemma
For all x, y it holds (for some function ω)

$$
\begin{aligned}
\mid w_{2 \alpha}\left(y, a_{0}^{\prime}, a_{0}\right) & -w_{2 \alpha}\left(x, a_{0}^{\prime}, a_{0}\right) \\
& -v_{\alpha}\left(x, a_{0}^{\prime}\right)\left(\partial_{a_{0}} v_{\alpha}\left(y, a_{0}\right)-\partial_{a_{0}} v_{\alpha}\left(x, a_{0}\right)\right) \\
& -\omega\left(x, a_{0}, a_{0}^{\prime}\right)(y-x)_{1} \mid \lesssim N^{2} d^{2 \alpha}(x, y)
\end{aligned}
$$

$$
(x, y) \mapsto U\left(x, y, a_{0}^{\prime}, a_{0}\right):=w_{2 \alpha}\left(y, a_{0}^{\prime}, a_{0}\right)-v_{\alpha}\left(x, a_{0}^{\prime}\right) \partial_{a_{0}} v_{\alpha}\left(y, a_{0}\right)
$$

Function-like Modelled Distributions

Define a graded Banach space for placeholders
$v_{+}=\left(1, v_{\alpha}, x_{1}, w_{2 \alpha}\right)$.

$$
\begin{aligned}
\mathrm{T}_{+} & =\mathrm{T}_{0} \oplus \mathrm{~T}_{\alpha} \oplus \mathrm{T}_{1} \oplus \mathrm{~T}_{2 \alpha} \\
& :=\mathbb{R} \oplus C^{2}(I) \oplus \mathbb{R} \oplus C^{2,1}(I \times I)
\end{aligned}
$$

where $C^{2,1}(I \times I)=C^{2}(I) \otimes C^{1}(I)$.
A modelled distribution V_{u} describing u to order η is a family of linear forms on T_{+}indexed by points $x \in \mathbb{R}^{2}$ such that
Continuity condition: For each $x, y \in \mathbb{R}^{2}$ and placeholder $v_{+} \in \mathrm{T}_{+}$

$$
\begin{aligned}
& \left|\left(V_{u}(y)-V_{u}(x)\right) \cdot v_{+}\right| \\
& \qquad \begin{aligned}
\leq d^{\eta}(y, x)|1| & +d^{\eta-\alpha}(y, x) \| \\
& +v_{\alpha}-v_{\alpha}(x) 1 \|_{\mathbf{T}_{\alpha}} \\
& \quad-2 \alpha(y, x) \| w_{2 \alpha}-w_{2 \alpha}(x) 1 \\
& -v_{\alpha}(x) \otimes\left(\partial_{a_{0}} v_{\alpha}-\partial_{a_{0}} v_{\alpha}(x) 1\right) \|_{\mathbf{T}_{2 \alpha}} .
\end{aligned}
\end{aligned}
$$

$u(y)-V_{u}(x) \cdot v_{+}(y)=O\left(d^{\eta}(x, y)\right)($ by prev. Lemma).

Algebraic Lemma

Given V_{a} on T_{+}, define $V_{\partial_{1}^{2} u}$ on placeholders $v_{-}=\left(\partial_{1}^{2} v_{\alpha}, \partial_{1}^{2} w_{2 \alpha}\right)$ in $T_{-}=\partial_{1}^{2} T_{+}$by

$$
V_{\partial_{1}^{2} u} \cdot v_{-}=\delta_{a} \cdot \partial_{1}^{2} v_{\alpha}+\left(\bar{V}_{a}^{\prime} \otimes \delta_{a}\right) \cdot\binom{\partial_{a_{0}} \partial_{1}^{2} v_{\alpha}}{\partial_{1}^{2} w_{2 \alpha},}
$$

where. V_{a}^{\prime} is the reduction of the form V_{a} to act only on the placeholders $\left(1, v_{\alpha}\right) \in \mathrm{T}_{0} \oplus \mathrm{~T}_{\alpha}$.
Lemma
Given a modelled distribution V_{a} of order η on T_{+}, the above definition of $V_{\partial_{1}^{2} u}$ yields a modelled distribution of order $\eta-2$ on T_.

The Negative Model: $\alpha \in\left(\frac{1}{2}, \frac{2}{3}\right)$
Recall that the rough diffusion operator is characterized by

$$
\lim _{T \rightarrow 0}\left\|\left(a \diamond \partial_{1}^{2} u\right)_{T}-a\left(\partial_{1}^{2} u\right)_{T}-\left(\bar{V}_{a} \otimes V_{\partial_{1}^{2} u}\right)^{\prime} \cdot\left(v_{+} \diamond v_{-}\right)_{T}\right\|=0 .
$$

Need additional distributions $w_{2 \alpha} \diamond \partial_{1}^{2} v_{\alpha}, v_{\alpha} \diamond \partial_{1}^{2} w_{2 \alpha}$

$$
v_{+} \diamond v_{-}=\left(\begin{array}{ccc}
\partial_{1}^{2} v_{\alpha} & v_{\alpha} \diamond \partial_{1}^{2} v_{\alpha} & x_{1} \partial_{1}^{2} v_{\alpha} \\
\partial_{1}^{2} w_{2 \alpha} & w_{2 \alpha} \diamond \partial_{1}^{2} w_{1}^{2} v_{\alpha} \\
v_{2 \alpha} & &
\end{array}\right)
$$

Level $3 \alpha-2$:

$$
\begin{aligned}
\left(T^{\frac{1}{4}}\right)^{3 \alpha-2} \| & {\left[(\cdot)_{T}, w_{2 \alpha}\right] \diamond \partial_{1}^{2} v_{\alpha}\left(a_{0}^{\prime \prime}, a_{0}^{\prime}, a_{0}\right) } \\
& \quad-v_{\alpha}\left(a_{0}^{\prime \prime}\right) \partial_{a_{0}^{\prime}}\left[(\cdot)_{T}, v_{\alpha}\right] \diamond \partial_{1}^{2} v_{\alpha}\left(a_{0}^{\prime}, a_{0}\right) \| \leq N^{3} \\
\left(T^{\frac{1}{4}}\right)^{3 \alpha-2} \| & {\left[(\cdot)_{T}, v_{\alpha}\right] \diamond \partial_{1}^{2} w_{2 \alpha}\left(a_{0}^{\prime \prime}, a_{0}^{\prime}, a_{0}\right) } \\
& \quad-v_{\alpha}\left(a_{0}^{\prime}\right) \partial_{a_{0}}\left[(\cdot)_{T}, v_{\alpha}\right] \diamond \partial_{1}^{2} v_{\alpha}\left(a_{0}^{\prime \prime}, a_{0}\right) \| \leq N^{3}
\end{aligned}
$$

Thanks for your attention

