Holographic Tensors

Vincent Rivasseau
LPT Orsay

Physics and Mathematics of Quantum Field Theory Banff International Research Station, July 302018

Random Vectors, Matrices, Tensors

Vectors

Random Vectors, Matrices, Tensors

Vectors

Random Vectors, Matrices, Tensors

Vectors
 Matrices

Random Vectors, Matrices, Tensors

Vectors

Matrices

Random Vectors, Matrices, Tensors

Vectors
XIXth century

Matrices
XXth century

Random Vectors, Matrices, Tensors

Vectors Matrices
XIXth century
$X X$ th century
TensorsXXIth century

Random Vectors, Matrices, Tensors

Vectors	Matrices	Tensors
XIXth century	XXth century	XXIth century

- Each class is richer than the previous one, having more and more invariants

Random Vectors, Matrices, Tensors

Vectors	Matrices	Tensors
XIXth century	XXth century	XXIth century

- Each class is richer than the previous one, having more and more invariants
- Each class has a different universality and a different

Random Vectors, Matrices, Tensors

Vectors
 XIXth century

Matrices
$X X$ th century

Tensors

XXIth century

- Each class is richer than the previous one, having more and more invariants
- Each class has a different universality and a different $1 / N$ expansion

Random vectors, matrices, tensors have different characteristics

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Matrices $M_{i j}$

Random vectors, matrices, tensors have different characteristics

Vectors $V_{i} \quad$ Matrices $M_{i j} \quad$ Tensors $T_{i j k} \ldots$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Matrices $M_{i j}$
Tensors $T_{i j k . . .}$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Matrices $M_{i j}$
Tensors $T_{i j k \ldots}$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$ N

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Matrices $M_{i j}$
Tensors $T_{i j k \ldots}$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$ N N^{2}

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Matrices $M_{i j}$
Tensors $T_{i j k} \ldots$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$ N N^{2}
$N^{d}, d \geq 3$

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$ N N^{2}
$N^{d}, d \geq 3$

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Matrices $M_{i j}$
Tensors $T_{i j k \ldots}$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$ N N^{2}
$N^{d}, d \geq 3$
Associated locality

Random vectors, matrices, tensors have different characteristics

Vectors V_{i} Matrices $M_{i j}$ Tensors $T_{i j k . . .}$Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$N

$$
N^{2}
$$

$$
N^{d}, d \geq 3
$$Associated localityscalar productcyclicity

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}
Matrices $M_{i j}$
Tensors $T_{i j k \ldots}$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$ N N^{2} $N^{d}, d \geq 3$
Associated locality
scalar product cyclicity

Random vectors, matrices, tensors have different characteristics

| Vectors V_{i} | Matrices $M_{i j}$ |
| :---: | :---: | Tensors $T_{i j k \ldots}$

Random vectors, matrices, tensors have different characteristics

Vectors V_{i} Matrices $M_{i j}$ Tensors $T_{i j k \ldots}$Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$$N$

$$
N^{2}
$$

$$
N^{d}, d \geq 3
$$Associated localityscalar product

cyclicity traciality

Random vectors, matrices, tensors have different characteristics

$$
\begin{array}{lcc}
\text { Vectors } V_{i} & \text { Matrices } M_{i j} & \text { Tensors } T_{i j k} \ldots \\
& \text { Data size for a } U(N)^{d} \text { symmetry of size } \simeq N^{2} \\
N^{2} & N^{d}, d \geq 3 \\
\text { calar product } & \text { Associated locality } \\
& \text { cyclicity } & \text { traciality } \\
& \text { Quartic UV behavior } &
\end{array}
$$

asymptotic slavery

Random vectors, matrices, tensors have different characteristics

Vectors V_{i} Matrices $M_{i j}$ Tensors $T_{i j k . . .}$Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$N

$$
N^{2}
$$

$$
N^{d}, d \geq 3
$$

Associated locality scalar product cyclicity traciality
Quartic UV behavior
asymptotic slavery asymptotic safety asymptotic freedom

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}	Matrices $M_{i j}$	Tensors $T_{i j k} \ldots$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$		
N^{2}	$N^{d}, d \geq 3$	
scalar product	Associated locality	
cyclicity	traciality	
asymptotic slavery	Quartic UV behavior asymptotic safety	

Random vectors, matrices, tensors have different characteristics

Vectors V_{i}	Matrices $M_{i j}$	Tensors $T_{i j k} \ldots$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$		
N^{2}	$N^{d}, d \geq 3$	
scalar product	Associated locality cyclicity	traciality
asymptotic slavery	Quartic UV behavior asymptotic safety	asymptotic freedom

Each class has its own kind of

Random vectors, matrices, tensors have different characteristics

Vectors $V_{i} \quad$ Matrices $M_{i j} \quad$ Tensors $T_{i j k} \ldots$
Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$

N
N^{2}
$N^{d}, d \geq 3$
Associated locality
scalar product
cyclicity traciality
Quartic UV behavior
asymptotic slavery asymptotic safety asymptotic freedom

Each class has its own kind of renormalization group.

Random vectors, matrices, tensors have different characteristics

Vectors $V_{i} \quad$ Matrices $M_{i j}$ Tensors $T_{i j k \ldots}$

Data size for a $U(N)^{d}$ symmetry of size $\simeq N^{2}$
N
N^{2}
$N^{d}, d \geq 3$
Associated locality
scalar product
cyclicity traciality
Quartic UV behavior
asymptotic slavery asymptotic safety asymptotic freedom
Each class has its own kind of renormalization group.

Random Vectors: de Moivre 1733, Laplace, 1778 Adrain 1808, Gauss 1809...

- Consider N iid random events. They generate a vector of random data $X_{i}, i=1, \cdots N$. - Central Limit Theorem: suppose X_{i} has mean μ and variance σ. Then under mild conditions $\sqrt{N}\left(\frac{\sum_{i} x_{i}}{N^{\prime}}-\mu\right)$ converges to a normalized Gaussian distribution when N

Random Vectors: de Moivre 1733, Laplace, 1778 Adrain 1808, Gauss 1809...

- Consider N iid random events.

They generate a vector of random data $X_{i}, i=1, \cdots N$.

- Central Limit Theorem: suppose X_{i} has mean μ and variance σ. Then under mild conditions $\sqrt{N}\left(\frac{\sum_{i} \lambda_{i}}{N}-\mu\right)$ converges to a normalized Gaussian distribution when $N \rightarrow \infty$
- Remark that the normalized Gaussian distribution $Z^{-1} e^{-N} \sum X_{i} \prod_{X} d X_{i}$ is invariant under $O(N)$. Moreover $\sum X_{i}^{2}$ is the only connected $O(N)$ polynomial invariant in the X_{i}

Random Vectors: de Moivre 1733, Laplace, 1778 Adrain 1808, Gauss 1809...

- Consider N iid random events.

They generate a vector of random data $X_{i}, i=1, \cdots N$.

- Central Limit Theorem: suppose X_{i} has mean μ and variance σ. Then under mild conditions $\sqrt{N}\left(\frac{\sum_{i} x_{i}}{N}-\mu\right)$ converges to a normalized Gaussian distribution when $N \rightarrow \infty$.
- Remark that the normalized Gaussian distribution $Z^{-1} e^{-N} X_{i} \prod d X_{i}$ is invariant under $O(N)$. Moreover $\sum X_{i}^{2}$ is the only connected $O(N)$ polynomial invariant in the X_{i}

Random Vectors: de Moivre 1733, Laplace, 1778 Adrain 1808, Gauss 1809...

- Consider N iid random events.

They generate a vector of random data $X_{i}, i=1, \cdots N$.

- Central Limit Theorem: suppose X_{i} has mean μ and variance σ. Then under mild conditions $\sqrt{N}\left(\frac{\sum_{i} x_{i}}{N}-\mu\right)$ converges to a normalized Gaussian distribution when $N \rightarrow \infty$.
- Remark that the normalized Gaussian distribution $Z^{-1} e^{-N \sum X_{i}^{2}} \prod d X_{i}$ is invariant under $O(N)$. Moreover $\sum X_{i}^{2}$ is the only connected $O(N)$ polynomial invariant in the X_{i}.
- Universality, many, many applications

Random Vectors: de Moivre 1733, Laplace, 1778 Adrain 1808, Gauss 1809...

- Consider N iid random events.

They generate a vector of random data $X_{i}, i=1, \cdots N$.

- Central Limit Theorem: suppose X_{i} has mean μ and variance σ. Then under mild conditions $\sqrt{N}\left(\frac{\sum_{i} x_{i}}{N}-\mu\right)$ converges to a normalized Gaussian distribution when $N \rightarrow \infty$.
- Remark that the normalized Gaussian distribution $Z^{-1} e^{-N \sum X_{i}^{2}} \prod d X_{i}$ is invariant under $O(N)$. Moreover $\sum X_{i}^{2}$ is the only connected $O(N)$ polynomial invariant in the X_{i}.
- Universality, many, many applications...

Random Matrices: Wishart 1928, Wigner 1955, Dyson 1970, 'tHooft 1974...

- M an N by N random Hermitian matrix. \exists unique Gaussian $U(N)$ invariant measure (GUE)
- Universality (eg of Wigner's semi circle law), many many applications: heavy nuclei, perching birds, stability of species, neurosciences, optimal control, Riemann zeta function.

Random Matrices: Wishart 1928, Wigner 1955, Dyson 1970, 'tHooft 1974...

- M an N by N random Hermitian matrix. \exists unique Gaussian $U(N)$ invariant measure (GUE)

$$
e^{-N \operatorname{Tr} M^{2}} d M=\prod_{i} e^{-N \sum \lambda_{i}^{2}} d \lambda_{i} \prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

- Universality (eg of Wigner's semi circle law), many many applications: heavy nuclei, perching birds, stability of species, neurosciences, optimal control, Riemann zeta function.

Random Matrices: Wishart 1928, Wigner 1955, Dyson 1970, 'tHooft 1974...

- M an N by N random Hermitian matrix. \exists unique Gaussian $U(N)$ invariant measure (GUE)

$$
e^{-N \operatorname{Tr} M^{2}} d M=\prod_{i} e^{-N \sum \lambda_{i}^{2}} d \lambda_{i} \prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

- Universality (eg of Wigner's semi circle law), many many applications: heavy nuclei, perching birds, stability of species, neurosciences, optimal control, Riemann zeta function...
- Many connected $U(N)$-invariant polynomials, namely $\operatorname{Tr} M^{P}$ for any integer p.
- Interacting Matrix Models have a $1 / N$ expansion which is topological ('tHooft) $=>$ random surfaces and 2 dimensional quantum gravity...

Random Matrices: Wishart 1928, Wigner 1955, Dyson 1970, 'tHooft 1974...

- M an N by N random Hermitian matrix. \exists unique Gaussian $U(N)$ invariant measure (GUE)

$$
e^{-N \operatorname{Tr} M^{2}} d M=\prod_{i} e^{-N \sum \lambda_{i}^{2}} d \lambda_{i} \prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

- Universality (eg of Wigner's semi circle law), many many applications: heavy nuclei, perching birds, stability of species, neurosciences, optimal control, Riemann zeta function...
- Many connected $U(N)$-invariant polynomials, namely $\operatorname{Tr} M^{p}$ for any integer p.
- Interacting Matrix Models have a $1 / \mathrm{N}$ expansion which is topological ('tHooft) $=>$ random surfaces and 2 dimensional quantum gravity..

Random Matrices: Wishart 1928, Wigner 1955, Dyson 1970, 'tHooft 1974...

- M an N by N random Hermitian matrix. \exists unique Gaussian $U(N)$ invariant measure (GUE)

$$
e^{-N \operatorname{Tr} M^{2}} d M=\prod_{i} e^{-N \sum \lambda_{i}^{2}} d \lambda_{i} \prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

- Universality (eg of Wigner's semi circle law), many many applications: heavy nuclei, perching birds, stability of species, neurosciences, optimal control, Riemann zeta function...
- Many connected $U(N)$-invariant polynomials, namely $\operatorname{Tr} M^{p}$ for any integer p.
- Interacting Matrix Models have a $1 / N$ expansion which is topological ('tHooft) $=>$ random surfaces and 2 dimensional quantum gravity...

Random Matrices and Random Surfaces

Consider eg GUE model perturbed by a connected interaction

$$
Z(\lambda, N)=Z_{0}^{-1} \int e^{-N\left(\operatorname{Tr} M^{2}+\lambda \operatorname{Tr} M^{p}\right)} d M
$$

where $a(g, V)$ is the number of connected graphs embedded on a surface with $V p$-valent vertices, so that $2-2 g=V-L+F$.

Random Matrices and Random Surfaces

Consider eg GUE model perturbed by a connected interaction

$$
Z(\lambda, N)=Z_{0}^{-1} \int e^{-N\left(\operatorname{Tr} M^{2}+\lambda \operatorname{Tr} M^{p}\right)} d M
$$

where $a(g, V)$ is the number of connected graphs embedded on a genus g surface with $V p$-valent vertices, so that $2-2 g=V-L+F$

Random Matrices and Random Surfaces

Consider eg GUE model perturbed by a connected interaction

$$
\begin{gathered}
Z(\lambda, N)=Z_{0}^{-1} \int e^{-N\left(\operatorname{Tr} M^{2}+\lambda \operatorname{Tr} M^{p}\right)} d M \\
\log Z(\lambda, N)=\sum_{V \geq 1} \lambda^{V} a(V, N) \\
a(V, N)=\sum_{g \geq 0} N^{2-2 g} a(g, V)
\end{gathered}
$$

where $a(g, V)$ is the number of connected graphs embedded on a genus g surface with $V p$-valent vertices, so that $2-2 g=V-L+F$.

Random Matrices Feynman Graphs

- Indeed one factor N per vertex
- one factor N^{-1} per line

Random Matrices Feynman Graphs

- Indeed one factor N per vertex
- one factor N^{-1} per line

Random Matrices Feynman Graphs

- Indeed one factor N per vertex
- one factor N^{-1} per line
- one factor N per face

Random Matrices Feynman Graphs

- Indeed one factor N per vertex
- one factor N^{-1} per line
- one factor N per face
- hence $N^{V-L+F}=N^{2-2 g}$

Random Matrices Feynman Graphs

- Indeed one factor N per vertex
- one factor N^{-1} per line
- one factor N per face
- hence $N^{V-L+F}=N^{2-2 g}$

Why Random Surfaces?

Matrix Feynman Graphs are dual to triangulated (or p-angulated) surfaces $=>$
dynamical triangulations.
Planar $g=0$ graphis lead the $1 / \mathrm{N}$ matrix expansion.

Why Random Surfaces?

Matrix Feynman Graphs are dual to triangulated (or p-angulated) surfaces $=>$ dynamical triangulations.

[^0]
Why Random Surfaces?

Matrix Feynman Graphs are dual to triangulated (or p-angulated) surfaces $=>$ dynamical triangulations.

Planar $g=0$ graphs lead the $1 / N$ matrix expansion.

Random Tensors: Ambjorn, Gross, Sasakura (1990's...), Gurau + R + many people (2010...)

- Random tensor T of rank D have N^{D} components $T_{i_{1}, \ldots i_{D}}$. Simplest case: complex, not symmetric model of $D+1$ rank D tensors with complete graph interaction $=>$ the colored random tensor model, which has $U(N)^{\otimes D(D+1) / 2}$

Random Tensors: Ambjorn, Gross, Sasakura (1990's...), Gurau + R + many people

 (2010...)- Random tensor T of rank D have N^{D} components $T_{i_{1}, \cdots i_{D}}$. Simplest case: complex, not symmetric model of $D+1$ rank D tensors with complete graph interaction $=>$ the colored random tensor model, which has

$$
U(N)^{\otimes D(D+1) / 2}
$$

- For a single rank D tensor, many connected $U(N)^{\otimes D}$ polynomial invariants $=>$ a vast family of uncolored random tensor models,

Random Tensors: Ambjorn, Gross, Sasakura (1990's...), Gurau + R + many people (2010...)

- Random tensor T of rank D have N^{D} components $T_{i_{1}, \cdots i_{D}}$. Simplest case: complex, not symmetric model of $D+1$ rank D tensors with complete graph interaction $=>$ the colored random tensor model, which has

$$
U(N)^{\otimes D(D+1) / 2}
$$

- For a single rank D tensor, many connected $U(N)^{\otimes D}$ polynomial invariants $=>$ a vast family of uncolored random tensor models,
- Universality, many
- Random tensors have a new kind of $1 / N$ expansion which is not
R
quantum gravity

Random Tensors: Ambjorn, Gross, Sasakura (1990's...), Gurau + R + many people (2010...)

- Random tensor T of rank D have N^{D} components $T_{i_{1}, \cdots i_{D}}$. Simplest case: complex, not symmetric model of $D+1$ rank D tensors with complete graph interaction $=>$ the colored random tensor model, which has

$$
U(N)^{\otimes D(D+1) / 2}
$$

- For a single rank D tensor, many connected $U(N)^{\otimes D}$ polynomial invariants $=>$ a vast family of uncolored random tensor models,
- Universality, many expected future applications,
- Random tensors have a new kind of $1 / \mathrm{N}$ expansion which is not topological (Gurau, R., 2010) $=>$ random spaces and $D \geq 3$ dimensional quantum gravity.

Random Tensors: Ambjorn, Gross, Sasakura (1990's...), Gurau + R + many people (2010...)

- Random tensor T of rank D have N^{D} components $T_{i_{1}, \cdots i_{D}}$. Simplest case: complex, not symmetric model of $D+1$ rank D tensors with complete graph interaction $=>$ the colored random tensor model, which has

$$
U(N)^{\otimes D(D+1) / 2}
$$

- For a single rank D tensor, many connected $U(N)^{\otimes D}$ polynomial invariants $=>$ a vast family of uncolored random tensor models,
- Universality, many expected future applications,
- Random tensors have a new kind of $1 / N$ expansion which is not topological (Gurau, R., 2010) $=>$ random spaces and $D \geq 3$ dimensional quantum gravity...

Tensors Entrance Door

Alice's wonderland has a modest entrance door, namely a rabbit hole.

Similarly random tensors have a modest entrance door, the melonic graphs.

Tensors Entrance Door

Alice's wonderland has a modest entrance door, namely a rabbit hole.

Similarly random tensors have a modest entrance door, the melonic graphs.

Tensors Wonderland

Although melonic graphs are simpler than planar graphs, behind this door lies a mathematical and physical wonderland, still largely to be explored.

Tensors Wonderland

Although melonic graphs are simpler than planar graphs, behind this modest door lies a mathematical and physical wonderland, still largely to be explored.

The Colored $U(N)$ Tensor Model

[^1]
The Colored $U(N)$ Tensor Model

- uses $D+1$ random tensors;
uses a canonical complete graph-based interaction;

The Colored $U(N)$ Tensor Model

- uses $D+1$ random tensors;
- uses a canonical complete graph-based interaction;
- its Feynman graphs are dual to simplicial (orientable) triangulations

The Colored $U(N)$ Tensor Model

- uses $D+1$ random tensors;
- uses a canonical complete graph-based interaction;
- its Feynman graphs are dual to simplicial (orientable) triangulations

Probability measure

The Colored $U(N)$ Tensor Model

- uses $D+1$ random tensors;
- uses a canonical complete graph-based interaction;
- its Feynman graphs are dual to simplicial (orientable) triangulations

Probability measure

$$
d \nu=\prod_{i, n_{i}} \frac{d T_{n_{i}}^{i} d \bar{T}_{\bar{n}_{i}}^{i}}{2 \pi} e^{-S(T, \bar{T})}
$$

The Colored $U(N)$ Tensor Model

- uses $D+1$ random tensors;
- uses a canonical complete graph-based interaction;
- its Feynman graphs are dual to simplicial (orientable) triangulations

Probability measure

$$
\begin{gathered}
d \nu=\prod_{i, n_{i}} \frac{d T_{n_{i}}^{i} d \bar{T}_{\overline{n_{i}}}^{i}}{2 \pi} e^{-S(T, \bar{T})} \\
S=\sum_{i=0}^{D} \bar{T}^{i} \cdot T^{i}+\frac{\lambda}{N^{D(D-1) / 4}} \sum_{\{n\}} \prod_{i=0}^{D} T_{n_{i}}^{i} \prod_{i<j} \delta_{n^{i j}, n^{i}}+c c
\end{gathered}
$$

where $\sum_{\vec{n}}$ denotes the sum over all indices $n_{i j}$ from 1 to N. The $\frac{(D+1) D}{2}$ identifying δ functions follow the pattern of edges of the K_{D+1} complete graph on $D+1$ vertices.

The Colored $U(N)$ Tensor Model

- uses $D+1$ random tensors;
- uses a canonical complete graph-based interaction;
- its Feynman graphs are dual to simplicial (orientable) triangulations

Probability measure

$$
\begin{gathered}
d \nu=\prod_{i, n_{i}} \frac{d T_{n_{i}}^{i} d \bar{T}_{\bar{n}_{i}}^{i}}{2 \pi} e^{-S(T, \bar{T})} \\
S=\sum_{i=0}^{D} \bar{T}^{i} \cdot T^{i}+\frac{\lambda}{N^{D(D-1) / 4}} \sum_{\{n\}} \prod_{i=0}^{D} T_{n_{i}}^{i} \prod_{i<j} \delta_{n^{i j}, n^{i}}+c c
\end{gathered}
$$

where $\sum_{\vec{n}}$ denotes the sum over all indices $n_{i j}$ from 1 to N. The $\frac{(D+1) D}{2}$ identifying δ functions follow the pattern of edges of the K_{D+1} complete graph on $D+1$ vertices.

Feynman Graphs

- Colors can conveniently encode strands

- and gluing rules for dual triangulations

Feynman Graphs

- Colors can conveniently encode strands

- and gluing rules for dual triangulations

Feynman Graphs

- Colors can conveniently encode strands

- and gluing rules for dual triangulations

Feynman Graphs

- Colors can conveniently encode strands

- and gluing rules for dual triangulations

Feynman Graphs

Feynman Graphs

D-Homology

- For D-regular edge-colored graphs there is a simple canonical definition of

D-Homology

- For D-regular edge-colored graphs there is a simple canonical definition of faces
- k-dimensional objects $=$ connected components with k colors

D-Homology

- For D-regular edge-colored graphs there is a simple canonical definition of faces
- k-dimensional objects $=$ connected components with k colors
- hence edges $=1$-colored components, faces $=2$-colored components

D-Homology

- For D-regular edge-colored graphs there is a simple canonical definition of faces
- k-dimensional objects $=$ connected components with k colors
- hence edges $=1$-colored components, faces $=2$-colored components
- Faces exist without any embedding in a surface!

D-Homology

- For D-regular edge-colored graphs there is a simple canonical definition of faces
- k-dimensional objects $=$ connected components with k colors
- hence edges $=1$-colored components, faces $=2$-colored components
- Faces exist without any embedding in a surface!

Jackets, Degree, 1/N Expansion

$=$ color cycle up to orientation $(D!/ 2$ at rank $D)$

Defines à ribbon graph G with same number of lines and vertices than G This ribbon graph has a

Jackets, Degree, 1/N Expansion

Jacket $J=$ color cycle up to orientation ($D!/ 2$ at rank D)
Defines a ribbon graph $G \jmath$ with same number of lines and vertices than G This ribbon graph has a

$A(G) \propto N^{D-\frac{2}{D!} \omega(G)}$, where $\omega=\sum_{J} g(J) \geq 0$, the Gurau degree, governs the
expansion

Jackets, Degree, 1/N Expansion

Jacket $J=$ color cycle up to orientation ($D!/ 2$ at rank D)
Defines a ribbon graph $G J$ with same number of lines and vertices than G. This ribbon graph has a genus g_{μ}.

$A(G) \propto N^{D-\frac{2}{D!} \omega(G)}$, where $\omega=\sum_{J} g(J) \geq 0$, the Gurau degree, governs the expansion

For $D \geq 3$ this degree is not a topological invariant of the space dual to G.

Jackets, Degree, 1/N Expansion

Jacket $J=$ color cycle up to orientation ($D!/ 2$ at rank D)
Defines a ribbon graph $G J$ with same number of lines and vertices than G. This ribbon graph has a genus g_{μ}.

$A(G) \propto N^{D-\frac{2}{D!} \omega(G)}$, where $\omega=\sum_{J} g(J) \geq 0$, the Gurau degree, governs the expansion.

For $D \geq 3$ this degree is not a topological invariant of the space dual to G.

Jackets, Degree, 1/N Expansion

Jacket $J=$ color cycle up to orientation ($D!/ 2$ at rank D)
Defines a ribbon graph $G J$ with same number of lines and vertices than G. This ribbon graph has a genus g_{J}.

$A(G) \propto N^{D-\frac{2}{D!} \omega(G)}$, where $\omega=\sum_{J} g(J) \geq 0$, the Gurau degree, governs the expansion.

For $D \geq 3$ this degree is not a topological invariant of the space dual to G.

Counting Faces with Jackets

Each face $f_{i j}$ belongs to ($D-1$)! jackets (the ones in which i and j are adjacent).

Counting Faces with Jackets

Each face $f_{i j}$ belongs to ($D-1$)! jackets (the ones in which i and j are adjacent).

$$
2-2 g_{J}=V-L+F_{J} .
$$

Since $L=\frac{D+1}{2} V$, summing over all jackets we get

Counting Faces with Jackets

Each face $f_{i j}$ belongs to ($D-1$)! jackets (the ones in which i and j are adjacent).

$$
2-2 g_{J}=V-L+F_{J} .
$$

Since $L=\frac{D+1}{2} V$, summing over all jackets we get

$$
\sum_{J} F_{J}=(D-1)!F=-2 \sum_{J} g_{J}+\frac{D!}{2}\left(2+\frac{D-1}{2} V\right)
$$

Counting Faces with Jackets

Each face $f_{i j}$ belongs to $(D-1)$! jackets (the ones in which i and j are adjacent).

$$
2-2 g_{J}=V-L+F_{J} .
$$

Since $L=\frac{D+1}{2} V$, summing over all jackets we get

$$
\begin{gathered}
\sum_{J} F_{J}=(D-1)!F=-2 \sum_{J} g_{J}+\frac{D!}{2}\left(2+\frac{D-1}{2} V\right) \\
(D-1)!F-\frac{D!(D-1) V}{4}=D!-2 \omega
\end{gathered}
$$

Counting Faces with Jackets

Each face $f_{i j}$ belongs to $(D-1)$! jackets (the ones in which i and j are adjacent).

$$
2-2 g_{J}=V-L+F_{J}
$$

Since $L=\frac{D+1}{2} V$, summing over all jackets we get

$$
\begin{gathered}
\sum_{J} F_{J}=(D-1)!F=-2 \sum_{J} g_{J}+\frac{D!}{2}\left(2+\frac{D-1}{2} V\right) \\
(D-1)!F-\frac{D!(D-1) V}{4}=D!-2 \omega \\
F=D+\frac{D(D-1)}{4} V-\frac{2}{D!} \omega
\end{gathered}
$$

Choosing the $N^{-\frac{D(D-1)}{4}}$ scaling we get

Counting Faces with Jackets

Each face $f_{i j}$ belongs to $(D-1)$! jackets (the ones in which i and j are adjacent).

$$
2-2 g_{J}=V-L+F_{J}
$$

Since $L=\frac{D+1}{2} V$, summing over all jackets we get

$$
\begin{gathered}
\sum_{J} F_{J}=(D-1)!F=-2 \sum_{J} g_{J}+\frac{D!}{2}\left(2+\frac{D-1}{2} V\right) \\
(D-1)!F-\frac{D!(D-1) V}{4}=D!-2 \omega \\
F=D+\frac{D(D-1)}{4} V-\frac{2}{D!} \omega
\end{gathered}
$$

Choosing the $N^{-\frac{D(D-1)}{4}}$ scaling we get

$$
A_{G}=|\lambda|^{V} N^{F-\frac{D(D-1)}{4} V}=|\lambda|^{V} N^{D-\frac{2 \omega}{D!}}
$$

Elementary Melon

Vacuum elementary melon: two vertices, $D+1$ edges, $F=D(D+1) / 2$ faces

Elementary Melon

Vacuum elementary melon: two vertices, $D+1$ edges, $F=D(D+1) / 2$ faces

Elementary Melon

Vacuum elementary melon: two vertices, $D+1$ edges, $F=D(D+1) / 2$ faces

2-point elementary melon of color $i \in\{0,1, \cdots, D\}$: cut the line of color i
Definition Vacuum melonic graphs are the graphs obtained from the
elementary vacuum melon by finitely many recursive insertions of a 2-point elementary melon of color $i \in\{0,1, \cdots, D\}$ on any edge of the same color

Elementary Melon

Vacuum elementary melon: two vertices, $D+1$ edges, $F=D(D+1) / 2$ faces

2-point elementary melon of color $i \in\{0,1, \cdots, D\}$: cut the line of color i. Definition Vacuum melonic graphs are the graphs obtained from the elementary vacuum melon by finitely many recursive insertions of a 2-point elementary melon of color $i \in\{0,1, \cdots, D\}$ on any edge of the same color i

Elementary Melon

Vacuum elementary melon: two vertices, $D+1$ edges, $F=D(D+1) / 2$ faces

2-point elementary melon of color $i \in\{0,1, \cdots, D\}$: cut the line of color i.
Definition Vacuum melonic graphs are the graphs obtained from the elementary vacuum melon by finitely many recursive insertions of a 2-point elementary melon of color $i \in\{0,1, \cdots, D\}$ on any edge of the same color i.

The Result of the Recursion

The Basic Theorem (Colored Model Case)

Zero degree graphs (ZDG) are graphs with $\omega=0$. Equivalently they are planar in each jacket. They form the leading sector of the tensorial $1 / N$ expansion.

The Basic Theorem (Colored Model Case)

Zero degree graphs (ZDG) are graphs with $\omega=0$. Equivalently they are planar in each jacket. They form the leading sector of the tensorial $1 / N$ expansion.

Zero Degree Graphs = Melonic Graphs (Bonzom, Gurau, Riello, R., 2011)

The Basic Theorem (Colored Model Case)

Zero degree graphs (ZDG) are graphs with $\omega=0$. Equivalently they are planar in each jacket. They form the leading sector of the tensorial $1 / N$ expansion. Zero Degree Graphs $=$ Melonic Graphs (Bonzom, Gurau, Riello, R., 2011)

Let's prove it!

Melons are ZDG

Recall that $F=D+\frac{D(D-1)}{4} V-\frac{2}{D!} \omega$ hence

$$
\begin{equation*}
\omega=0<=>F=D+\frac{D(D-1)}{4} V \tag{A}
\end{equation*}
$$

Melons are ZDG

Recall that $F=D+\frac{D(D-1)}{4} V-\frac{2}{D!} \omega$ hence

$$
\begin{equation*}
\omega=0<=>F=D+\frac{D(D-1)}{4} V \tag{A}
\end{equation*}
$$

The elementary melon has $V=2$ and $F=D(D+1) / 2=D+2 \frac{D(D-1)}{4}$.
By induction, since melonic insertion increases V by 2 and F by $\frac{D(D-1)}{2}$, any melonic graph has $F=D+\frac{D(D-1)}{4} V$ hence has $\omega=0$, hence is a ZDG.

Melons are ZDG

Recall that $F=D+\frac{D(D-1)}{4} V-\frac{2}{D!} \omega$ hence

$$
\begin{equation*}
\omega=0<=>F=D+\frac{D(D-1)}{4} V \tag{A}
\end{equation*}
$$

The elementary melon has $V=2$ and $F=D(D+1) / 2=D+2 \frac{D(D-1)}{4}$. By induction, since melonic insertion increases V by 2 and F by $\frac{D(D-1)}{2}$, any melonic graph has $F=D+\frac{D(D-1)}{4} V$ hence has $\omega=0$, hence is a ZDG.

ZDG are melons

Consider a ZDG. Call F_{k} the number of its faces of length $2 k$. Recall that

$$
\begin{equation*}
F=\sum_{k \geq 1} F_{k}=D+\frac{D(D-1)}{4} V \tag{A}
\end{equation*}
$$

- Check by edge counting that

ZDG are melons

Consider a ZDG. Call F_{k} the number of its faces of length $2 k$. Recall that

$$
\begin{equation*}
F=\sum_{k \geq 1} F_{k}=D+\frac{D(D-1)}{4} V \tag{A}
\end{equation*}
$$

- Check by edge counting that

$$
\begin{equation*}
2 F_{1}+4 F_{2}+\sum_{k \geq 3} 2 k F_{k}=\frac{D(D+1)}{2} v \tag{B}
\end{equation*}
$$

- Compute $2 \mathrm{~A}-\mathrm{B} / 2$ to prove that

Conclude that vacuum (and also 2-point) ZDG's have
\qquad

ZDG are melons

Consider a ZDG. Call F_{k} the number of its faces of length $2 k$. Recall that

$$
\begin{equation*}
F=\sum_{k \geq 1} F_{k}=D+\frac{D(D-1)}{4} V \tag{A}
\end{equation*}
$$

- Check by edge counting that

$$
\begin{equation*}
2 F_{1}+4 F_{2}+\sum_{k \geq 3} 2 k F_{k}=\frac{D(D+1)}{2} V \tag{B}
\end{equation*}
$$

- Compute $2 A-B / 2$ to prove that

$$
F_{1}=2 D+\sum_{k \geq 3}(k-2) F_{k}+\frac{D(D-3)}{4} V \geq 2 D
$$

Conclude that vacuum (and also 2-point) ZDG's have faces of length 2.

- Conclude that any ZDG is a melon, hence $Z D G=$ Melons.

ZDG are melons

Consider a ZDG. Call F_{k} the number of its faces of length $2 k$. Recall that

$$
\begin{equation*}
F=\sum_{k \geq 1} F_{k}=D+\frac{D(D-1)}{4} V \tag{A}
\end{equation*}
$$

- Check by edge counting that

$$
\begin{equation*}
2 F_{1}+4 F_{2}+\sum_{k \geq 3} 2 k F_{k}=\frac{D(D+1)}{2} V \tag{B}
\end{equation*}
$$

- Compute $2 A-B / 2$ to prove that

$$
F_{1}=2 D+\sum_{k \geq 3}(k-2) F_{k}+\frac{D(D-3)}{4} V \geq 2 D
$$

Conclude that vacuum (and also 2-point) ZDG's have faces of length 2.

- Conclude that any ZDG is a melon, hence $Z D G=$ Melons.

Melons also dominate symmetrized tensors

It is more difficult to count faces for symmetrized or antisymmetrized tensors... because the colors are no longer there to help.

Klebanov-Tarnopolosky: should melons also dominate at large N for symmetric traceless tensors?

Melons also dominate symmetrized tensors

It is more difficult to count faces for symmetrized or antisymmetrized tensors... because the colors are no longer there to help.

Klebanov-Tarnopolosky: should melons also dominate at large N for symmetric traceless tensors?

Symmetric Traceless Rank 3 Tensors

Symmetric Traceless Rank 3 Tensors

B

Klebanov-Tarnopolosky: Computer Study, order 7

(

Klebanov-Tarnopolosky: Computer Study, order 8, Part 1

Klebanov-Tarnopolosky: Computer Study, order 8, Part 2
(2)

Klebanov-Tarnopolosky: Computer Study, order 8, Part 3
(

Complete Proof

Carrozza et al (2017-2018) : melons dominate all rank-three irreducible representations of $O(N)$

$$
1 \otimes 2 \otimes \square=\begin{array}{|l|l|l|}
\hline 1|2| 3 \\
\hline \frac{1}{2} \\
\hline 3 \\
\hline
\end{array} \oplus \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline 1 & 2 \\
\hline
\end{array}
$$

- traceless symmetric: arXiv:1712.00249

Complete Proof

Carrozza et al (2017-2018) : melons dominate all rank-three irreducible representations of $O(N)$

$$
1 \otimes 2 \otimes 3=\begin{array}{|l|l|l|l|}
\hline 1|2| 3 \\
\hline \frac{1}{2} \\
\hline 3
\end{array} \oplus \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

- traceless symmetric: arXiv:1712.00249
- fully anti-symmetric: arXiv:1712.00249 - mixed: arXiv:1803.02496

Complete Proof

Carrozza et al (2017-2018) : melons dominate all rank-three irreducible representations of $O(N)$

$$
1 \otimes 2 \otimes 3=\begin{array}{|l|l|l|l|}
\hline 1|2| 3 \\
\hline \frac{1}{2} \\
\hline 3
\end{array} \oplus \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

- traceless symmetric: arXiv:1712.00249
- fully anti-symmetric: arXiv:1712.00249
- mixed: arXiv:1803.02496 Conjecture: melons dominate all irreducible $O(N)$ representations at any finite

Complete Proof

Carrozza et al (2017-2018) : melons dominate all rank-three irreducible representations of $O(N)$

$$
1 \otimes 2 \otimes 3=\begin{array}{|l|l|l|l|}
\hline 1|2| 3 \\
\hline \frac{1}{2} \\
\hline 3
\end{array} \oplus \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

- traceless symmetric: arXiv:1712.00249
- fully anti-symmetric: arXiv:1712.00249
- mixed: arXiv:1803.02496

Conjecture: melons dominate all irreducible $O(N)$ representations at any finite rank ≥ 3.

Klebanov Conjecture, order 8

The MSS bound

In March 2015 Maldacena, Shenker and Stanford wrote that in any quantum system at temperature T the Lyapunov exponent for transient chaos in a four point correlator maximally spaced on the thermal circle

The MSS bound

In March 2015 Maldacena, Shenker and Stanford wrote that in any quantum system at temperature T the Lyapunov exponent for transient chaos in a four point correlator maximally spaced on the thermal circle

$$
F(t)=\operatorname{Tr} r[y V y W(t) y V y W(t)],
$$

strip of width $\beta / 2$ in complex time and reasonable decay at infinity)

The MSS bound

In March 2015 Maldacena, Shenker and Stanford wrote that in any quantum system at temperature T the Lyapunov exponent for transient chaos in a four point correlator maximally spaced on the thermal circle

$$
F(t)=\operatorname{Tr} r[y V y W(t) y V y W(t)], \quad y:=Z^{-1 / 4} e^{-\beta H / 4}
$$

is bounded by $\lambda_{L} \leq 2 \pi T / \hbar$ under very general assumptions (analyticity in a strip of width $\beta / 2$ in complex time and reasonable decay at infinity) (work by A. I. Larkin and Y. N. Ovchinnikov on quantum chaos, 1969)

The MSS bound

In March 2015 Maldacena, Shenker and Stanford wrote that in any quantum system at temperature T the Lyapunov exponent for transient chaos in a four point correlator maximally spaced on the thermal circle

$$
F(t)=\operatorname{Tr} r[y V y W(t) y V y W(t)], \quad y:=Z^{-1 / 4} e^{-\beta H / 4}
$$

is bounded by $\lambda_{L} \leq 2 \pi T / \hbar$ under very general assumptions (analyticity in a strip of width $\beta / 2$ in complex time and reasonable decay at infinity).

[^2]
The MSS bound

In March 2015 Maldacena, Shenker and Stanford wrote that in any quantum system at temperature T the Lyapunov exponent for transient chaos in a four point correlator maximally spaced on the thermal circle

$$
F(t)=\operatorname{Tr} r[y V y W(t) y V y W(t)], \quad y:=Z^{-1 / 4} e^{-\beta H / 4}
$$

is bounded by $\lambda_{L} \leq 2 \pi T / \hbar$ under very general assumptions (analyticity in a strip of width $\beta / 2$ in complex time and reasonable decay at infinity). (work by A. I. Larkin and Y. N. Ovchinnikov on quantum chaos, 1969).

The MSS bound, II

More precisely they found that

$$
F \simeq\left(a-\frac{b}{N^{2}} e^{\lambda_{L} t}\right)^{-b}, t_{d}<t<t_{s}
$$

and that $\lambda_{L} \leq 2 \pi T / \hbar$.
They argued convincingly that saturation of this bound is a strong indication of the presence of quantum gravity. (Regge trajectory for a "graviton")

The MSS bound, II

More precisely they found that

$$
F \simeq\left(a-\frac{b}{N^{2}} e^{\lambda_{L} t}\right)^{-b}, t_{d}<t<t_{s}
$$

and that $\lambda_{L} \leq 2 \pi T / \hbar$.
They argued convincingly that saturation of this bound is a strong indication of the presence of quantum gravity. (Regge trajectory for a "graviton").

The Sachdev-Ye-Kitaev Model

In 2015 Kitaev found a very simple quasi-conformal one dimensional quantum mechanics model which saturates the MSS bound, indicating the

The Sachdev-Ye-Kitaev Model

In 2015 Kitaev found a very simple quasi-conformal one dimensional quantum mechanics model which saturates the MSS bound, indicating the surprising presence of a gravitational dual.

The action is

The Sachdev-Ye-Kitaev Model

In 2015 Kitaev found a very simple quasi-conformal one dimensional quantum mechanics model which saturates the MSS bound, indicating the surprising presence of a gravitational dual.

The action is

$$
\begin{equation*}
I=\int d t\left(\frac{i}{2} \sum_{i} \psi_{i} \frac{d}{d t} \psi_{i}-i^{q / 2} \sum_{1 \leq i_{1}<\cdots<i_{q} \leq N} J_{i_{1}, \cdots, i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}\right) \tag{3.1}
\end{equation*}
$$

with J a quenched iid random tensor $\left(<J_{I} J_{\|^{\prime \prime}}>=\delta_{I^{\prime}} J^{2}(q-1)!N^{-(q-1)}\right)$, and
ψ an N-vector Majorana Fermion.

The Sachdev-Ye-Kitaev Model

In 2015 Kitaev found a very simple quasi-conformal one dimensional quantum mechanics model which saturates the MSS bound, indicating the surprising presence of a gravitational dual.

The action is

$$
\begin{equation*}
I=\int d t\left(\frac{i}{2} \sum_{i} \psi_{i} \frac{d}{d t} \psi_{i}-i^{q / 2} \sum_{1 \leq i_{1}<\cdots<i_{q} \leq N} J_{i_{1}, \cdots, i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}\right) \tag{3.1}
\end{equation*}
$$

with J a quenched iid random tensor $\left(<J_{I} J_{I^{\prime}}>=\delta_{I I^{\prime}} J^{2}(q-1)!N^{-(q-1)}\right)$, and ψ an N-vector Majorana Fermion.

The SYK Model

This model is solvable as $N \rightarrow \infty$, being approximately conformal and reparametrization invariant in the infra-red limit.

The SYK Model

This model is solvable as $N \rightarrow \infty$, being approximately conformal and reparametrization invariant in the infra-red limit. For instance the two point function in that limit reads

$$
G(\tau)=b_{q}\left[\frac{\pi}{\beta \sin (\pi \tau / \beta)}\right]^{2 / q} \operatorname{sgn} \tau
$$

This so-called $N A d S_{2} / N C F T_{1}$ holographic correspondence is a currently hot topic (more than 300 papers...)

The SYK Model

This model is solvable as $N \rightarrow \infty$, being approximately conformal and reparametrization invariant in the infra-red limit. For instance the two point function in that limit reads

$$
G(\tau)=b_{q}\left[\frac{\pi}{\beta \sin (\pi \tau / \beta)}\right]^{2 / q} \operatorname{sgn} \tau
$$

This so-called $N A d S_{2} / N C F T_{1}$ holographic correspondence is a currently hot topic (more than 300 papers...).

The reason it can be solved in the limit $N \rightarrow \infty$ is because the leading Feynman graphs are melons

The SYK Model

This model is solvable as $N \rightarrow \infty$, being approximately conformal and reparametrization invariant in the infra-red limit. For instance the two point function in that limit reads

$$
G(\tau)=b_{q}\left[\frac{\pi}{\beta \sin (\pi \tau / \beta)}\right]^{2 / q} \operatorname{sgn} \tau
$$

This so-called $N A d S_{2} / N C F T_{1}$ holographic correspondence is a currently hot topic (more than 300 papers...).

The reason it can be solved in the limit $N \rightarrow \infty$ is because the leading Feynman graphs are melons.

The SYK Model, II

Let us define $\Delta=1 / q, \mathcal{J}^{2}=\frac{q J^{2}}{2 q-1}$, and $\omega=\frac{2 \pi}{\beta}(n+1 / 2)$ be the momentum dual to Euclidean time τ (Matsubara frequency)
The Schwinger Dyson Equation in Melonic limit is

The SYK Model, II

Let us define $\Delta=1 / q, \mathcal{J}^{2}=\frac{q J^{2}}{2^{q-1}}$, and $\omega=\frac{2 \pi}{\beta}(n+1 / 2)$ be the momentum dual to Euclidean time τ (Matsubara frequency)
The Schwinger Dyson Equation in Melonic limit is

$$
\begin{gathered}
G^{-1}(\omega)=G_{0}^{-1}(\omega)-\Sigma(\omega) \\
\Sigma(\tau)=J^{2} G(\tau)^{q-1}
\end{gathered}
$$

Since $G_{0}^{-1}(\omega)=i \omega$, at small ω we can neglect the first term in the SD equation and get to solve

The SYK Model, II

Let us define $\Delta=1 / q, \mathcal{J}^{2}=\frac{q J^{2}}{2^{q-1}}$, and $\omega=\frac{2 \pi}{\beta}(n+1 / 2)$ be the momentum dual to Euclidean time τ (Matsubara frequency)
The Schwinger Dyson Equation in Melonic limit is

$$
\begin{gathered}
G^{-1}(\omega)=G_{0}^{-1}(\omega)-\Sigma(\omega) \\
\Sigma(\tau)=J^{2} G(\tau)^{q-1}
\end{gathered}
$$

Since $G_{0}^{-1}(\omega)=i \omega$, at small ω we can neglect the first term in the SD equation and get to solve

$$
J^{2} G \star G(\tau)^{q-1}=\delta
$$

The SYK Model, III

The melonic equation can be sketched as

There is also an equation for the four-point function in the melonic limit

The SYK Model, III

The melonic equation can be sketched as

There is also an equation for the four-point function in the melonic limit

The SYK Model, III

The melonic equation can be sketched as

There is also an equation for the four-point function in the melonic limit

The SYK Model, IV

Reparametrization invariance of the equation

$$
\begin{gathered}
G\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta} G\left(f(\tau), f\left(\tau^{\prime}\right)\right) \\
\Sigma\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta(q-1)} \Sigma\left(f(\tau), f\left(\tau^{\prime}\right)\right)
\end{gathered}
$$

suggests to search for a particular solution of type

The SYK Model, IV

Reparametrization invariance of the equation

$$
\begin{gathered}
G\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta} G\left(f(\tau), f\left(\tau^{\prime}\right)\right) \\
\Sigma\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta(q-1)} \Sigma\left(f(\tau), f\left(\tau^{\prime}\right)\right)
\end{gathered}
$$

suggests to search for a particular solution of type

The SYK Model, IV

Reparametrization invariance of the equation

$$
\begin{gathered}
G\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta} G\left(f(\tau), f\left(\tau^{\prime}\right)\right) \\
\Sigma\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta(q-1)} \Sigma\left(f(\tau), f\left(\tau^{\prime}\right)\right)
\end{gathered}
$$

suggests to search for a particular solution of type

$$
G_{c}(\tau)=b|\tau|^{-2 \Delta} \operatorname{sign} \tau, \quad J^{2} b^{q} \pi=\left(\frac{1}{2}-\Delta\right) \tan (\pi \Delta)
$$

The equation for b comes from the formula

Applying reparametrization $f_{\beta}(\tau)=\tan \tau \pi \beta$ leads to the announced form

The SYK Model, IV

Reparametrization invariance of the equation

$$
\begin{gathered}
G\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta} G\left(f(\tau), f\left(\tau^{\prime}\right)\right) \\
\Sigma\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta(q-1)} \Sigma\left(f(\tau), f\left(\tau^{\prime}\right)\right)
\end{gathered}
$$

suggests to search for a particular solution of type

$$
G_{c}(\tau)=b|\tau|^{-2 \Delta} \operatorname{sign} \tau, \quad J^{2} b^{q} \pi=\left(\frac{1}{2}-\Delta\right) \tan (\pi \Delta)
$$

The equation for b comes from the formula

$$
\int_{-\infty}^{+\infty} d \tau e^{i \omega \tau} \operatorname{sign} \tau|\tau|^{-2 \Delta}=2^{1-2 \Delta} i \sqrt{\pi} \frac{\Gamma(1-\Delta)}{\Gamma\left(\frac{1}{2}+\Delta\right.}|\omega|^{2 \Delta-1} \operatorname{sign} \omega
$$

Applying reparametrization $f_{\beta}(\tau)=\tan \tau \pi \beta$ leads to the announced form

The SYK Model, IV

Reparametrization invariance of the equation

$$
\begin{gathered}
G\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta} G\left(f(\tau), f\left(\tau^{\prime}\right)\right) \\
\Sigma\left(\tau, \tau^{\prime}\right)->\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta(q-1)} \Sigma\left(f(\tau), f\left(\tau^{\prime}\right)\right)
\end{gathered}
$$

suggests to search for a particular solution of type

$$
G_{c}(\tau)=b|\tau|^{-2 \Delta} \operatorname{sign} \tau, \quad J^{2} b^{q} \pi=\left(\frac{1}{2}-\Delta\right) \tan (\pi \Delta)
$$

The equation for b comes from the formula

$$
\int_{-\infty}^{+\infty} d \tau e^{i \omega \tau} \operatorname{sign} \tau|\tau|^{-2 \Delta}=2^{1-2 \Delta} i \sqrt{\pi} \frac{\Gamma(1-\Delta)}{\Gamma\left(\frac{1}{2}+\Delta\right.}|\omega|^{2 \Delta-1} \operatorname{sign} \omega
$$

Applying reparametrization $f_{\beta}(\tau)=\tan \tau \pi \beta$ leads to the announced form

$$
G(\tau)=\left[\frac{\pi}{\beta \sin (\pi \tau / \beta)}\right]^{2 \Delta} b \operatorname{sign} \tau
$$

Some Remarks

The conformal decay $G_{c}(\tau) \simeq \tau^{2 / q}$ at small ω corresponds to the theory being a just renormalizable tensor field theory (Ben Geloun, Dine, Carrozza, Oriti, R. Toriumi...)

The SYK papers did not pay initially too much attention to proving that the leading graphs were melonic. Indeed this property of quenched models was known before Kitaev in the condensed matter community (Georges, Parcollet, Sachdev, Ye...)

Some Remarks

The conformal decay $G_{c}(\tau) \simeq \tau^{2 / q}$ at small ω corresponds to the theory being a just renormalizable tensor field theory (Ben Geloun, Dine, Carrozza, Oriti, R. Toriumi...)

The SYK papers did not pay initially too much attention to proving that the leading graphs were melonic. Indeed this property of quenched models was known before Kitaev in the condensed matter community (Georges, Parcollet, Sachdev, Ye...).

A spin-glass model with quenched tensor goes back to Derrida, Gross and Mezard. See also Bonzom-Gurau-Smerlak arXiv:1206.5539.

Some Remarks

The conformal decay $G_{c}(\tau) \simeq \tau^{2 / q}$ at small ω corresponds to the theory being a just renormalizable tensor field theory (Ben Geloun, Dine, Carrozza, Oriti, R. Toriumi...)

The SYK papers did not pay initially too much attention to proving that the leading graphs were melonic. Indeed this property of quenched models was known before Kitaev in the condensed matter community (Georges, Parcollet, Sachdev, Ye...).

A spin-glass model with quenched tensor goes back to Derrida, Gross and Mezard. See also Bonzom-Gurau-Smerlak arXiv:1206.5539.

Gurau-Witten Models

Late in 2016 E. Witten remarked the link between the SYK model and random tensors.

Gurau-Witten Models

Late in 2016 E. Witten remarked the link between the SYK model and random tensors.

> He proposed a modification to eliminate the quenched disorder with action $I=\int d t\left(\frac{i}{2} \sum_{i} \psi_{i} \frac{d}{d t} \psi_{i}-i^{q / 2} j \psi_{0} \psi_{1} \cdots \psi_{D}\right)$

Gurau-Witten Models

Late in 2016 E. Witten remarked the link between the SYK model and random tensors.

He proposed a modification to eliminate the quenched disorder with action

$$
\begin{equation*}
I=\int d t\left(\frac{i}{2} \sum_{i} \psi_{i} \frac{d}{d t} \psi_{i}-i^{q / 2} j \psi_{0} \psi_{1} \cdots \psi_{D}\right) \tag{3.2}
\end{equation*}
$$

where ψ 's are $D+1$ fermionic tensors and the pattern of index contraction is exactly the one of Gurau's initial colored tensor model, hence this new model is called the Gurau-Witten model

Gurau-Witten Models

Late in 2016 E. Witten remarked the link between the SYK model and random tensors.

He proposed a modification to eliminate the quenched disorder with action

$$
\begin{equation*}
I=\int d t\left(\frac{i}{2} \sum_{i} \psi_{i} \frac{d}{d t} \psi_{i}-i^{q / 2} j \psi_{0} \psi_{1} \cdots \psi_{D}\right) \tag{3.2}
\end{equation*}
$$

where ψ 's are $D+1$ fermionic tensors and the pattern of index contraction is exactly the one of Gurau's initial colored tensor model, hence this new model is called the Gurau-Witten model.

An uncolored, i.e. single tensor model with similar properties was soon
developped by Klebanov and Tarnopolsky (arXiv:1611.08915), based on the
three dimensional $O(N)$ tensor model of Carrozza and Tanasa.
(arXiv:1512.06718)

Gurau-Witten Models

Late in 2016 E. Witten remarked the link between the SYK model and random tensors.

He proposed a modification to eliminate the quenched disorder with action

$$
\begin{equation*}
I=\int d t\left(\frac{i}{2} \sum_{i} \psi_{i} \frac{d}{d t} \psi_{i}-i^{q / 2} j \psi_{0} \psi_{1} \cdots \psi_{D}\right) \tag{3.2}
\end{equation*}
$$

where ψ 's are $D+1$ fermionic tensors and the pattern of index contraction is exactly the one of Gurau's initial colored tensor model, hence this new model is called the Gurau-Witten model.

An uncolored, i.e. single tensor model with similar properties was soon developped by Klebanov and Tarnopolsky (arXiv:1611.08915), based on the three dimensional $O(N)$ tensor model of Carrozza and Tanasa. (arXiv:1512.06718).

The SYK 4-point-Function and MSS Bound

The 4-point-Function and the MSS Bound

References

The Kitaev video lectures are difficult to use. Computations are long and technical, implying special functions. They are detailed in either Polchinski \& Rosenhaus ($q=4$), arXiv:1601.06768

References

The Kitaev video lectures are difficult to use. Computations are long and technical, implying special functions. They are detailed in either

Polchinski \& Rosenhaus ($q=4$), arXiv:1601.06768
Maldacena \& Stanford, arXiv:1604.07818

References

The Kitaev video lectures are difficult to use. Computations are long and technical, implying special functions. They are detailed in either

Polchinski \& Rosenhaus ($q=4$), arXiv:1601.06768
Maldacena \& Stanford, arXiv:1604.07818
For pedagogical summary I used reports by Nicolas Delporte and Romain Pascalie.

References

The Kitaev video lectures are difficult to use. Computations are long and technical, implying special functions. They are detailed in either

Polchinski \& Rosenhaus ($q=4$), arXiv:1601.06768
Maldacena \& Stanford, arXiv:1604.07818
For pedagogical summary I used reports by Nicolas Delporte and Romain Pascalie.

The 4-point Function in Melonic Limit

$$
\frac{1}{N^{2}} \sum_{1 \leq i, j \leq N} \exp T\left(\psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right) \psi_{j}\left(\tau_{3}\right) \psi_{j}\left(\tau_{4}\right)\right)=G\left(\tau_{12}\right) G\left(\tau_{34}\right)+\frac{1}{N} \mathcal{F}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)+\cdots
$$

where we write $\tau_{12}=\tau_{1}-\tau_{2}$.
The function \mathcal{F} then develops graphically as

The 4-point Function in Melonic Limit

$$
\frac{1}{N^{2}} \sum_{1 \leq i, j \leq N} \exp T\left(\psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right) \psi_{j}\left(\tau_{3}\right) \psi_{j}\left(\tau_{4}\right)\right)=G\left(\tau_{12}\right) G\left(\tau_{34}\right)+\frac{1}{N} \mathcal{F}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)+\cdots
$$

where we write $\tau_{12}=\tau_{1}-\tau_{2}$.
The function \mathcal{F} then develops graphically as

The 4-point Function in Melonic Limit

$$
\frac{1}{N^{2}} \sum_{1 \leq i, j \leq N} \exp T\left(\psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right) \psi_{j}\left(\tau_{3}\right) \psi_{j}\left(\tau_{4}\right)\right)=G\left(\tau_{12}\right) G\left(\tau_{34}\right)+\frac{1}{N} \mathcal{F}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)+\cdots
$$

where we write $\tau_{12}=\tau_{1}-\tau_{2}$.
The function \mathcal{F} then develops graphically as

Ladders and Rungs

Calling \mathcal{F}_{n} the ladder with n "rungs" we have $\mathcal{F}=\sum_{n \geq 0} \mathcal{F}_{n}$.

$$
\begin{aligned}
\mathcal{F}_{0}= & -G\left(\tau_{13}\right) G\left(\tau_{24}\right)+G\left(\tau_{14}\right) G\left(\tau_{23}\right) \\
\mathcal{F}_{n+1}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)= & J^{2}(q-1) \int d \tau d \tau^{\prime} G\left(\tau_{1}-\tau\right) G\left(\tau_{2}-\tau^{\prime}\right) G^{q-2}\left(\tau-\tau^{\prime}\right) \\
& G\left(\tau-\tau_{3}\right) G\left(\tau^{\prime}-\tau_{4}\right)-\left[\tau_{3}<->\tau_{4}\right] \\
= & \int \partial \tau \partial \tau^{\prime} K\left(\tau_{1}, \tau_{2}, \tau, \tau^{\prime}\right) \mathcal{F}_{n}\left(\tau, \tau^{\prime}, \tau_{3}, \tau_{4}\right)
\end{aligned}
$$

The rung operator

K is the "rung" operator adding one rung to the ladder. It acts on the space of "bilocal" functions with kernel

The rung operator

K is the "rung" operator adding one rung to the ladder. It acts on the space of "bilocal" functions with kernel

$$
K\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=-J^{2}(q-1) G\left(\tau_{13}\right) G\left(\tau_{24}\right) G\left(\tau_{34}\right)^{(q-2)}
$$

The rung operator

K is the "rung" operator adding one rung to the ladder. It acts on the space of "bilocal" functions with kernel

$$
K\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=-J^{2}(q-1) G\left(\tau_{13}\right) G\left(\tau_{24}\right) G\left(\tau_{34}\right)^{(q-2)}
$$

The rung operator, II

The main problem is therefore to diagonalize this rung operator K. In particular if 1 is an eigenvalue of K, it signals a divergent mode. Indeed

$$
\mathcal{F}=\sum_{n \geq 0} \mathcal{F}_{n}=\sum_{n \geq 0} K^{n} \mathcal{F}_{0}=\frac{1}{1-K} \mathcal{F}_{0}
$$

or, more explicitly

The rung operator, II

The main problem is therefore to diagonalize this rung operator K. In particular if 1 is an eigenvalue of K, it signals a divergent mode. Indeed

$$
\mathcal{F}=\sum_{n \geq 0} \mathcal{F}_{n}=\sum_{n \geq 0} K^{n} \mathcal{F}_{0}=\frac{1}{1-K} \mathcal{F}_{0}
$$

or, more explicitly

$$
\mathcal{F}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=\int \partial \tau \partial \tau^{\prime} \frac{1}{1-K}\left(\tau_{1}, \tau_{2}, \tau, \tau^{\prime}\right) \mathcal{F}_{0}\left(\tau, \tau^{\prime}, \tau_{3}, \tau_{4}\right)
$$

The rung kernel

Recalling the formula for the two point function in the approximate conformal (infrared) limit at zero temperature

$$
G_{c}(\tau)=\frac{b}{|\tau|^{2 \Delta}} \operatorname{sign} \tau
$$

with

$$
b^{q} J^{2} \pi=\left(\frac{1}{2}-\Delta\right) \tan (\pi \Delta)
$$

we find that in this limit the kernel K becomes

The rung kernel

Recalling the formula for the two point function in the approximate conformal (infrared) limit at zero temperature

$$
G_{c}(\tau)=\frac{b}{|\tau|^{2 \Delta}} \operatorname{sign} \tau
$$

with

$$
b^{q} J^{2} \pi=\left(\frac{1}{2}-\Delta\right) \tan (\pi \Delta)
$$

we find that in this limit the kernel K becomes

$$
\begin{gathered}
K_{c}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=-\frac{1}{\alpha_{0}} \frac{\operatorname{sign}\left(\tau_{13}\right) \operatorname{sign}\left(\tau_{24}\right)}{\left|\tau_{13}\right|^{2 \Delta}\left|\tau_{24}\right|^{2 \Delta}\left|\tau_{34}\right|^{2-4 \Delta}} \\
\alpha_{0}=\frac{2 \pi q}{(q-1)(q-2) \tan (\pi / q)}
\end{gathered}
$$

The rung kernel

Recalling the formula for the two point function in the approximate conformal (infrared) limit at zero temperature

$$
G_{c}(\tau)=\frac{b}{|\tau|^{2 \Delta}} \operatorname{sign} \tau
$$

with

$$
b^{q} J^{2} \pi=\left(\frac{1}{2}-\Delta\right) \tan (\pi \Delta)
$$

we find that in this limit the kernel K becomes

$$
\begin{gathered}
K_{c}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=-\frac{1}{\alpha_{0}} \frac{\operatorname{sign}\left(\tau_{13}\right) \operatorname{sign}\left(\tau_{24}\right)}{\left|\tau_{13}\right|^{2 \Delta}\left|\tau_{24}\right|^{2 \Delta}\left|\tau_{34}\right|^{2-4 \Delta}} \\
\alpha_{0}=\frac{2 \pi q}{(q-1)(q-2) \tan (\pi / q)}
\end{gathered}
$$

Reformulation with cross ratios

Conformal invariance allows us to simplify the problem by reexpressing K as a function of the cross ratio $\chi=\frac{\tau_{12} \tau_{34}}{\tau_{13} \tau_{24}}$ acting on single variable rung functions

$$
\mathcal{F}_{n+1}(\chi)=\int \frac{d \tilde{\chi}}{\tilde{\chi}^{2}} K_{c}(\chi, \tilde{\chi}) \mathcal{F}_{n}(\tilde{\chi})
$$

To further simplify the diagonalization it is important to find out operators commuting with K. The Casimir operator $C=\chi^{2}(1-\chi) \partial_{\chi}^{2}-\chi^{2} \partial_{\chi}$ is such an operator, with a known complete set of eigenvectors $\Psi_{h}(\chi)$ with eigenvalues $h(h-1)$, which are therefore also the eigenvectors of $K_{c}(\chi, \tilde{\chi})$

Reformulation with cross ratios

Conformal invariance allows us to simplify the problem by reexpressing K as a function of the cross ratio $\chi=\frac{\tau_{12} \tau_{34}}{\tau_{13} \tau_{24}}$ acting on single variable rung functions

$$
\mathcal{F}_{n+1}(\chi)=\int \frac{d \tilde{\chi}}{\tilde{\chi}^{2}} K_{c}(\chi, \tilde{\chi}) \mathcal{F}_{n}(\tilde{\chi})
$$

To further simplify the diagonalization it is important to find out operators commuting with K. The Casimir operator $C=\chi^{2}(1-\chi) \partial_{\chi}^{2}-\chi^{2} \partial_{\chi}$ is such an operator, with a known complete set of eigenvectors $\Psi_{h}(\chi)$ with eigenvalues $h(h-1)$, which are therefore also the eigenvectors of $K_{c}(\chi, \tilde{\chi})$.

The strategy

The strategy to compute \mathcal{F} can then be summarized as

- Find properties of $\mathcal{F}_{n}(\tilde{\chi})$ and the eigenvectors $\Psi_{h}(\chi)$ of the Casimir operator C with these properties.

The strategy

The strategy to compute \mathcal{F} can then be summarized as

- Find properties of $\mathcal{F}_{n}(\tilde{\chi})$ and the eigenvectors $\Psi_{h}(\chi)$ of the Casimir operator C with these properties.
- Deduce conditions on h. One finds two families, $h=2 n$ with $n \in \mathbb{N}^{*}$ and $h=\frac{1}{2}+i s, s \in \mathbb{R}$

The strategy

The strategy to compute \mathcal{F} can then be summarized as

- Find properties of $\mathcal{F}_{n}(\tilde{\chi})$ and the eigenvectors $\Psi_{h}(\chi)$ of the Casimir operator C with these properties.
- Deduce conditions on h. One finds two families, $h=2 n$ with $n \in \mathbb{N}^{\star}$ and $h=\frac{1}{2}+i s, s \in \mathbb{R}$
- Compute the eigenvalues $k_{c}(h)$ of the kernel K_{c} and the inner products $<\Psi_{h}, \mathcal{F}_{0}>$ and $<\Psi_{h}, \Psi_{h}$

The strategy

The strategy to compute \mathcal{F} can then be summarized as

- Find properties of $\mathcal{F}_{n}(\tilde{\chi})$ and the eigenvectors $\Psi_{h}(\chi)$ of the Casimir operator C with these properties.
- Deduce conditions on h. One finds two families, $h=2 n$ with $n \in \mathbb{N}^{\star}$ and $h=\frac{1}{2}+i s, s \in \mathbb{R}$
- Compute the eigenvalues $k_{c}(h)$ of the kernel K_{c} and the inner products $<\Psi_{h}, \mathcal{F}_{0}>$ and $<\Psi_{h}, \Psi_{h}>$.
- Conclude that the 4 point function is

The strategy

The strategy to compute \mathcal{F} can then be summarized as

- Find properties of $\mathcal{F}_{n}(\tilde{\chi})$ and the eigenvectors $\Psi_{h}(\chi)$ of the Casimir operator C with these properties.
- Deduce conditions on h. One finds two families, $h=2 n$ with $n \in \mathbb{N}^{\star}$ and $h=\frac{1}{2}+i s, s \in \mathbb{R}$
- Compute the eigenvalues $k_{c}(h)$ of the kernel K_{c} and the inner products $<\Psi_{h}, \mathcal{F}_{0}>$ and $<\Psi_{h}, \Psi_{h}>$.
- Conclude that the 4 point function is

$$
\mathcal{F}=\frac{1}{1-K} \mathcal{F}_{0}=\sum_{h} \Psi_{h}(\chi) \frac{1}{1-k_{c}(h)} \frac{<\Psi_{h}, \mathcal{F}_{0}>}{<\Psi_{h}, \Psi_{h}>}
$$

- But... one finds a single $h=2$ mode with $k_{c}(h)=1$. It requires special desingularization!

The strategy

The strategy to compute \mathcal{F} can then be summarized as

- Find properties of $\mathcal{F}_{n}(\tilde{\chi})$ and the eigenvectors $\Psi_{h}(\chi)$ of the Casimir operator C with these properties.
- Deduce conditions on h. One finds two families, $h=2 n$ with $n \in \mathbb{N}^{\star}$ and $h=\frac{1}{2}+i s, s \in \mathbb{R}$
- Compute the eigenvalues $k_{c}(h)$ of the kernel K_{c} and the inner products $<\Psi_{h}, \mathcal{F}_{0}>$ and $<\Psi_{h}, \Psi_{h}>$.
- Conclude that the 4 point function is

$$
\mathcal{F}=\frac{1}{1-K} \mathcal{F}_{0}=\sum_{h} \Psi_{h}(\chi) \frac{1}{1-k_{c}(h)} \frac{<\Psi_{h}, \mathcal{F}_{0}>}{<\Psi_{h}, \Psi_{h}>}
$$

- But... one finds a single $h=2$ mode with $k_{c}(h)=1$. It requires special desingularization!

Conclusion

Thank you for your attention!

[^0]: Planar $g=0$ graphs lead the $1 / N$ matrix expansion

[^1]: uses $D+1$ random tensors;

[^2]: (work by A. I. Larkin and Y. N. Ovchinnikov on quantum chaos, 1969)

