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Non-commutative recurrence

© Let 4, b be (possibly non-commuting) operators on X.
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Non-commutative recurrence

© Let 4, b be (possibly non-commuting) operators on X.
@ Let x, € X be a sequence s.t.

Xp = 8Xp—1 + bxp_2

with initial conditions xp and x; = 4xg.
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© Let 4, b be (possibly non-commuting) operators on X.
@ Let x, € X be a sequence s.t.

Xp = 8Xp—1 + bxp_2

with initial conditions xp and x; = 4xg.
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Non-commutative recurrence

© Let 4, b be (possibly non-commuting) operators on X.
@ Let x, € X be a sequence s.t.

Xp = 8Xp—1 + bxp_2

with initial conditions xp and x; = 4xg.
© Problem: Determine x,.
@ Solution 1.

Xp = Z {501)7 B(J'z)}x07

Jit+2j2=n

where {502)] I:JUZ)} is the sum over all possible distinct permutations
of factors 4, b each one appearing ji, j» > 0 times, respectively.
[Jivulescu, Messina, Napoli, Petruccione 07/08, Puhlfiirst 15]
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Non-commutative recurrence

© Let 4, b be (possibly non-commuting) operators on X.

@ Let x, € X be a sequence s.t.
Xp = 8Xp—1 + BXn—2

with initial conditions xp and x; = 4xg.
© Problem: Determine x,.
@ Solution 2.

n—1

Xp = Qé’g[exp(z b,-+17,-83,.+183,.)a,, e al]X(),
i=1

~ ~

where Qi[;[an...bj+1’j...bj/+17j/ ...31] =4...b...b... 4
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Non-commutative recurrence

The relation x, = 4x,_1 + Bx,,_z with x; = axg is solved by

n—1
S = Qéﬁ[exp(z bi41,i0s;.104)an - - - a1]xo,

i=1

where Qég[an...bj+17j...bj/+17j/...21] =4...b...b... 4
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Non-commutative recurrence

Lemma

The relation x, = 4x,_1 + Bx,,_z with x; = axg is solved by

n—1

Xn = Qg’f)[exp(z bi+1,iaa,-+laa;)an cee a]_]X(),

i=1

~

where Qig[an...bj+17j...bj/+17j/ ...21] =4...b...b... 4
Proof. Write §; := bj11,i0,,,0, and d,_1 1= Z,'-’;ll d; and compute

exp(dn—1)an ... a1
= {exp(dn—2) exp(dp—1)anan—1...a1}
= {exp(dn—2)anan—1...a1} + {exp(dn—2)(0n-1)anan-1...a1}
= ap{exp(dn—2)an—1...a1} + bpn—1{exp(dp_3)an—2...a1}. O
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Goal / Application

@ Proving infrared regularity of physical quantities which suffer from
superficial infrared divergencies even after the implementation of
multi-scale techniques
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Goal / Application

@ Proving infrared regularity of physical quantities which suffer from
superficial infrared divergencies even after the implementation of
multi-scale techniques

@ Crucial bounds for collision theory of many atoms/electrons in
Nelson model
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Outline

© The Nelson model

© Scattering states of two ‘atoms’ in the Nelson model

© Localization of atoms / electrons and non-commutative recurrence
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The Nelson model

Nelson model with many electrons/atoms

Definition

The Nelson model with many atoms/electrons is given by:
(1) Hilbert space H = I(L2(R?)4¢/e1) @ T(L2(R3)pn).
(2) Hamiltonian H = H, el + Hpn + Hj, where
(a) Hayjer = [ d*p £ c*(p)clp).
(b) Hpn = [ d®k |k|a*(k)a(k),
Hi = [ d®p d®k ALY (c*(p + k)a(k)c(p) + h.c.).

V2]
(3) Momentum operator: P = [ d3ppc*(p)c(p) + [ dk k a*(k)a(k).
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The Nelson model

Nelson model with one electron/atom

Definition

The Nelson model with one electron is given by:

(1) Hilbert space H®) = [2(R3), /a1 ® M(L2(R3),n).
(2) Hamiltonian H() = % + Hpn + ¢(Gx), where
(2) Hpn = [ d*k|kl|a*(k)a(k),

(b) (b(GX) = fdak)\\p/ékv(e_’kx *(k)+e/kxa(k))

(3) Momentum operator: P = p+ [ d3k k a*(k)a(k).
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The Nelson model

Neutral particle (‘atom’)

H(U

P(l)

Suppose that the 'charge’ of the massive particle is zero, i.e. 5(0) = 0.
Then (generically):

Hsp 1= {Spectral subspace of the lower boundary} # {0}
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Scattering states of two 'atoms’ in the Nelson model

Renormalized creation operators of ‘atoms’

@ For h € C§°(R3) consider W), € H, given by

52}
V), = n*/ d*P h(P)yp.
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Scattering states of two 'atoms’ in the Nelson model

Renormalized creation operators of ‘atoms’

@ For h € C§°(R3) consider W), € H, given by

52}
V), = n*/ d*P h(P)yp.

© Let us define the renormalized creation operator of Wy:
(oo} l
Ak o 3 3n n * * *
&*(h) == nEfo —m/d pd® k h(p) (ke ... kn)a* (ki) ... a" (kn)c*(p — k),

where {ff}nen are the wave-functons of vp.
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Scattering states of two 'atoms’ in the Nelson model

Renormalized creation operators of ‘atoms’

@ For h € C§°(R3) consider W), € H, given by
@
V), = n*/ d*P h(P)yp.
© Let us define the renormalized creation operator of Wy:
= 1
W= [ ok hp)  k)a" () 3" (k)" (p ),

where {ff}nen are the wave-functons of vp.
© With this definition

& (h)Q =,
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Scattering states of two 'atoms’ in the Nelson model

Asymptotic creation operators of ‘atoms’

Definition
For h € C§°(R3) let us define

é:(h) — ethé*(e_iEth)e_th.

& i (h) == lim_ oo & (h) (if it exists) is called the asymptotic creation

operator of the 'atom’ smeared with h.
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Scattering states of two 'atoms’ in the Nelson model

Scattering states of two atoms

For hy, hy € C§°(R3) with disjoint supports the limits

W, = fim & (h)éf (o)

exist and span a subspace naturally isomorphic to Hsp, ®a Hp.
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Scattering states of two 'atoms’ in the Nelson model

Scattering states of two atoms

For hy, hy € C§°(R3) with disjoint supports the limits

R, = Jim & (m)éf ()9
exist and span a subspace naturally isomorphic to Hsp, ®a Hp.

© This theorem was proven before at fixed infrared cut-off
(Fréhlich 73) and assuming non-zero photon mass (Albeverio 73).
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Scattering states of two 'atoms’ in the Nelson model

Scattering states of two atoms

For hy, hy € C§°(R3) with disjoint supports the limits

R, = Jim & (m)éf ()9
exist and span a subspace naturally isomorphic to Hsp, ®a Hp.

© This theorem was proven before at fixed infrared cut-off
(Fréhlich 73) and assuming non-zero photon mass (Albeverio 73).

@ We treat the case of massless photons and g(k) = x(k)|k|*, a >0,
X(k) > 0 near zero (no infrared cut-off in H).
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Scattering states of two 'atoms’ in the Nelson model

Scattering states of two atoms

For hy, hy € C§°(R3) with disjoint supports the limits

R, = Jim & (m)éf ()9
exist and span a subspace naturally isomorphic to Hsp, ®a Hp.

© This theorem was proven before at fixed infrared cut-off
(Fréhlich 73) and assuming non-zero photon mass (Albeverio 73).

@ We treat the case of massless photons and g(k) = x(k)|k|*, a >0,
X(k) > 0 near zero (no infrared cut-off in H).

© However, we have to replace f5 with f5 _ in & (h;) for
Iimt_>oo O = 0.
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Scattering states of two 'atoms’ in the Nelson model

|dea of the proof

Q Let ¥, := eitHé*(th)é*(hz’t)Q, with h,'7t(P) = e_itEPh,'(P).

0:Ve = e"i[[Hy, € (h1,e)], " (ha,t) 2.
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Scattering states of two 'atoms’ in the Nelson model

|dea of the proof

o Let \Ut = eitHé*(th)é*(hz’t)Q, with h,'7t(P) = e_itEPh,'(P).
OpV, = e i[[Hy, & (h1,e)], € (ha,e)IQ.

@ This can be expressed by integrals of the form

APt A7) o-iten Ea)th (p — r)hg(q+r)f"+1(r FYET (k).

o
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Scattering states of two 'atoms’ in the Nelson model

|dea of the proof

o Let 'Lllt = eitHé*(th)é*(hz’t)Q, with h,'7t(P) = e_itEPh,'(P).
OpV, = e i[[Hy, & (h1,e)], € (ha,e)IQ.

@ This can be expressed by integrals of the form

APt A7) o-iten Ea)th (p — r)hg(q+r)f"+1(r FYET (k).

o

@ (Non-) stationary phase gives integrable decay of 0;W,, provided we
can control derivatives of P+ f3(k) up to second order.
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Scattering states of two 'atoms’ in the Nelson model

|dea of the proof

o Let 'Lllt = eitHé*(th)é*(hz’t)Q, with h,'7t(P) = e_itEPh,'(P).
OpV, = e i[[Hy, & (h1,e)], € (ha,e)IQ.

@ This can be expressed by integrals of the form

APt A7) o-iten Ea)th (p — r)hg(q+r)f"+1(r FYET (k).

o

@ (Non-) stationary phase gives integrable decay of 0;W,, provided we
can control derivatives of P+ f3(k) up to second order.

Q We replace P+ fg(k) with P fg (k) with lim; 0 = 0.
Using non-commutative recurrence relations we will show

L (eN)" 1 Xiow) (ki)
Opth o (ks ka)l < === ] 7757
| P P,ot( 1 )‘ \/m U?* piey ‘k,-|3/2

A. Pizzo From infrared problems to non-commutative recurrence



Localization of atoms / electrons and non-commutative recurrence

Ground-state wave-functions

Q Let vp, € [(L%(R3)) be ground-states of H,(,l,zI ie.

Hél,z,@bp,g = Ep,tp o,

where o > 0 is the infrared cut-off in the interaction
Q Let {f7 (ki,..., kn)}nen, be the wave functions of ¥p ,:

-1
Vn!
© We need, for || =0,1,2and §y =+ 0for A\ =0

flg,a(klﬂ"'vkn) <Qv b(kl)"'b(kn)'@[}P.U)'

1 (c\)" - Xlo.) (ki)
5o )
10518 (ks k) < =1 P
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Localization of atoms / electrons and non-commutative recurrence

Frohlich formula for ground-state wave-functions

© Define f"(ki,..., k) := b(k1) ... b(ks) b(k) = a(k)e™
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Localization of atoms / electrons and non-commutative recurrence

Frohlich formula for ground-state wave-functions

© Define f"(ki,..., k) := b(k1) ... b(ks) b(k) = a(k)e™
@ Using Hy = Ev), we obtain

F(ku, oy kn) = (=)Ra Y v (k) F" H(ka, o T k),

i=1

where R, == (Hp—k o — Ep.o + [kla) L v (ki) = AX[\"/’%).
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Localization of atoms / electrons and non-commutative recurrence

Frohlich formula for ground-state wave-functions

© Define f"(ki,..., k) := b(k1) ... b(ks) b(k) = a(k)e™
@ Using Hy = Ev), we obtain

F(ku, oy kn) = (=)Ra Y v (k) F" H(ka, o T k),

i=1

where R, == (Hp—k o — Ep.o + [kla) L v (ki) = AX[\"/’%).

© This has the form x, = 4x,_1 + bx,_» with b= 0.
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Localization of atoms / electrons and non-commutative recurrence

Frohlich formula for ground-state wave-functions

© Define f"(ki,..., k) := b(k1) ... b(ks) b(k) = a(k)e™
@ Using Hy = Ev), we obtain

F(ku, oy kn) = (=)Ra Y v (k) F" H(ka, o T k),

i=1

where R, == (Hp—k o — Ep.o + [kla) L v (ki) = AX[\"/’%).

© This has the form x, = 4x,_1 + bx,_» with b= 0.
@ Solution:

7 = (=1)"n!Pyn(vS .. V{)(Ra ... R1)0.
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢

@ To show: [[pF (ky, .., kn)ll < 5 TT7y i for B < 2.
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢

@ To show: [[pF (ky, .., kn)ll < 5 TT7y i for B < 2.

© Rules of the game:
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢

@ To show: [[pF (ky, .., kn)ll < 5 TT7y i for B < 2.

© Rules of the game:

IRl < clkl;*
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢

@ To show: [[pF (ky, .., kn)ll < 5 TT7y i for B < 2.

© Rules of the game:

IRi] < clkl .
8p’l/) = R/\w, aPR,' = R,'/\’R,', where A := VP(E - H)
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢

@ To show: [[pF (ky, .., kn)ll < 5 TT7y i for B < 2.

© Rules of the game:

IRi] < clkl .
8p’l/) = R/\w, aPR,' = R,'/\’R,', where A := VP(E - H)
C — C —
IRAY| < =, [QRARAY|| < — where Q = 1)) (4.
(o g

A. Pizzo From infrared problems to non-commutative recurrence



Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢

@ To show: [[pF (ky, .., kn)ll < 5 TT7y i for B < 2.

© Rules of the game:

IRi] < clkl .
8p’l/) = R/\w, aPR,' = R,'/\’R,', where A := VP(E - H)
C — C —
IRAY| < =, [QRARAY|| < — where Q = 1)) (4.
(o g

@ This gives the first derivative.
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of Frohlich formula

© Frohlich formula:

f" = (_]')nr'!Psylrn(V,l77 ce V](_r)(Rn ... R1)¢

@ To show: [[pF (ky, .., kn)ll < 5 TT7y i for B < 2.

© Rules of the game:

IRi] < clkl .
8p’l/) = R/\w, aPR,' = R,'/\’R,', where A := VP(E - H)
C — C —
IRAY| < =, [QRARAY|| < — where Q = 1)) (4.
(o g

@ This gives the first derivative. But not the second one:

flk)) = —v{Rip = 02F' (ki) > —vJ(RIA'R))RAY
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© £ (k.o k) = bw(ka)... bw(ka)e,

by (k) := W*b(k)W :
W = b (Kl 2v)=b(lk ~v?)

A. Pizzo From infrared problems to non-commutative recurrence



Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© £ (k.o k) = bw(ka)... bw(ka)e,

bw (k) := W*b(k)W = b(k) + |k|"*vZ(k),
W = eb" (K 7vD)=b(Ik|*ve)
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© £ (k.o k) = bw(ka)... bw(ka)e,

bw (k) := W*b(k)W = b(k) + |k|"*vZ(k),
W = eb" (K 7vD)=b(Ik|*ve)

@ To control 6£f” it suffices to control 8ng’".
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© £ (k.o k) = bw(ka)... bw(ka)e,

bw (k) := W*b(k)W = b(k) + |k|"*vZ(k),
W = eb" (K 7vD)=b(Ik|*ve)

@ To control 6£f” it suffices to control 8ng’".
@ Using the Schrodinger equation, we obtain

n
FYV ko k) = v (k) (RaN) " ke, T k)
i=1
+ VO (kWO (ki \RaFYV "2 (kyy . 1.1 k)
1<i<i’<n
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

Q V' (ky,. .. ko) = bw(k)...bw(kn),
bw (k) := W*b(k)W = b(k) + |k|"*vZ(k),

* —1 0\ __ -1 0
W = e (KIT7v)=b(k|2vT)

@ To control 6£f” it suffices to control 8ng’".
@ Using the Schrodinger equation, we obtain

n

FYV ko k) = v (k) (RaN) " ke, T k)
i=1

+ > (k) (ki )Raf R (T T k)
1<i<i’<n
© This is a recurrence x, = 4x,_1 + bx,_» for B;ﬁ 0.
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© Using the Schrodinger equation, we obtain

£V ks k) = > v (k) (RN )EY " e, T k)
i=1
+ > (kI (ki ) Raf ™Y P kT T k)
1<i<i’<n

@ This is a recurrence x, = 4x,_1 + bx,_» for b # 0.

n—1
Xn = Qé’g[exp(z b,-+17,-83,.+183,.)a,, e al]Xo
i=1
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© Using the Schrodinger equation, we obtain

£V ks k) = > v (k) (RN )EY " e, T k)
i=1
+ > (kI (ki ) Raf ™Y P kT T k)
1<i<i’<n

@ This is a recurrence x, = 4x,_1 + bx,_» for b # 0.

n—1
Xn o = Qs,B[eXP(Zbi+1,i5.a,-+laa,)a,,...al]xo
i=1
n—1
- eXp(Z bi+1’iaaf+1aai) [é\n 51]Xo
i=1
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© Using the Schrodinger equation, we obtain

£V ks k) = > v (k) (RN )EY " e, T k)
i=1
+ > (kI (ki ) Raf ™Y P kT T k)

1<i<i'<n
@ This is a recurrence x, = 4x,_1 + bx,_» for b # 0.

/2] o

Xn = Z Z (Bii+1,i1 éailﬂéail) s (b’.ﬁ‘lv’.‘iaa%*l éa"ti)
£=0 1< < Kip<n—1
[5,, e §1]X0.

A. Pizzo From infrared problems to non-commutative recurrence



Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© Using the Schrodinger equation, we obtain

£V ks k) = > v (k) (RN )EY " e, T k)
i=1
+ > (kI (ki ) Raf ™Y P kT T k)

1<i<i'<n
@ This is a recurrence x, = 4x,_1 + bx,_» for b # 0.

/2] o

Xn = Z Z (Bii+1,i1 éailﬂéail) s (b’.ﬁ‘lv’.‘iaa%*l éa"ti)
£=0 1< < <Kig<n—1
[é\n ces 51]X0.
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© Using the Schrodinger equation, we obtain

£V ks k) = > v (k) (RN )EY " e, T k)
i=1
+ > (kI (ki ) Raf YR kT T k)

1<i<i’<n
@ This is a recurrence x, = dx,_1 + bx,_» for b # 0.
[n/2]
Xn = E E (bii+1,i1aai1+1aail) s (biz+1,izaaiz+1a

(=0 1< < <ip<n—1

i, )

[é\n e 51]X0.
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Localization of atoms / electrons and non-commutative recurrence

Novel formula for ground-state wave-functions

© Using the Schrodinger equation, we obtain

£V ks k) = > v (k) (RN )EY " e, T k)
i=1
+ > (kI (ki ) Raf YR kT T k)
1<i<i’<n
[n/2] (_1)£

W,n
f = nlPsym E E T Vel - Viin X

=0 2<ih K- <KLig<n

X(Rhéhéil—l)"'(Ri/éizéie—l)|:(Rn/\n)"'(R2/\2)(R1A1) Y,
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of the novel formula

© Novel formula:

[n/2] (71)Z

W.,n o o
f = nlPsym g g g Ve Viin X

£=0 2<i K-+ <Kip<n

PN

X(Rh@héh—l)"'(Rizéizéiz—l){(RnAn)"'(R2A2)(Rl/\1) P,
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of the novel formula

© Novel formula:

[n/2] (71)Z

W.,n o o
f = nlPsym g g g Ve Viin X

£=0 2<i K-+ <Kip<n

x(R;lé,-lé,-l_l)...(R,-lé,-zé,-z_l){(Rn/\n)...(RgAQ)(RlAl) ¥,

[T, ) for 8] = 2.

© Toshow: [|OpF" " (ki, ... ki)l < 5 o
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of the novel formula

© Novel formula:

[n/2] ( 1)[

W.,n — o o
f = nlPsym g g g Ve Viin X

£=0 2<i K-+ <Kip<n

x(R;lé,-lé,-l_l)...(R,-lé,-zé,-z_l){(Rn/\n)...(RgAQ)(RlAl) ¥,

[T, ) for 8] = 2.

© To show: [|OpF" " (ki,... ki)l < 5 o

A
© Rules of the game:
IRill < clkl ,
apﬂ} = R/\’(l)7 apR,' = R,'/\’R,‘, where A := VP(E — H)

c =1 c
IRAG] < 5=, IQ-RARAY < .
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Localization of atoms / electrons and non-commutative recurrence

Derivatives of the novel formula

© Novel formula:

[n/2] (71)Z
v = n!PsymZ Z 5 Vi Ve, X

£=0 2<i K-+ <Kip<n

x(R;lé,-lé,-l_l)...(R,-lé,-zé,-z_l){(Rn/\n)...(RgAQ)(RlAl) ¥,

Q To show: [|92FY"(ky, ... ko)l < 5= TT1_y S for (8] = 2.

B i=1 ‘k,l

© Rules of the game:
IRill < clkl ,
apﬂ} = R/\’(l)7 apR,' = R,'/\’R,‘, where A := VP(E — H)
c =1 c
IRAGI < S IQ-RARA| < 5

@ New mechanism for absorbing resolvents saves the game:
(R;,0;,0i,—1) effectively removes one resolvent.
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Example

© Consider a contribution to the two-point function

B2 5 (—1)PymvI1vIa(9p Rod201) [(RaA2) (R )] Dpep
(_1)'DsymV$;1 Vf;g [8PR2] op1p

(—1) Py V21 V7o [RoN? Ro] R
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Example

© Consider a contribution to the two-point function

B2 5 (—1)PymvI1vIa(9p Rod201) [(RaA2) (R )] Dpep
(_1)'DsymV$;1 Vf;g [8PR2] op1p

(—1) Py V21 V7o [RoN? Ro] R

@ Rules of the game:
IRill < elkl ,
Opty = RN,  9pR; = RiN'R;, where A := Vp(E — H)

c = c
IRAG] < =, 1|1 Q RARAY < —.
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Localization of atoms / electrons and non-commutative recurrence

Example

© Consider a contribution to the two-point function
B2 5 (—1)PymvI1vIa(9p Rod201) [(RaA2) (R )] Dpep
(_1)'DsymV$;1 Vf;g [8PR2] op1p

1 vo(ky) v7(kz)
. o o 2 = Y
( ]-)Psymv*;lv*;2 [Rz/\ R2] R/\w 0(0'5>‘ ‘kl‘ ‘k2‘

@ Rules of the game:
IRill < clkl ,
Opty = RN,  9pR; = RiN'R;, where A := Vp(E — H)

c = c
IRAG] < =, 1| Q@ RARAY < —.
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Localization of atoms / electrons and non-commutative recurrence

Example

© Consider a contribution to the two-point function

B2 5 (—1)PymvI1vIa(9p Rod201) [(RaA2) (R )] Dpep
(_1)'DsymV$;1 Vf;g [8PR2] op1p

(—1) Py V21 V7o [RoN Ro| Ry = (9(

1 vo(ky) vo(ka)
T STRT Y )

@ Rules of the game:

IRill < clkl ,
optp = R/\z/), dpR; = RIN'R;, where A := Vp(E — H)
~ c
RNV < =50 Q@ RARNY|| < —-.
g

© Compare with 92f*(k;) 3 v RiALR RAY = (’)< L ‘I’k(fll’)
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Localization of atoms / electrons and non-commutative recurrence

Summary

@ We proved, for |3] <2 and ) — 0for A = 0

1 C/\) X[o,x) k)
B rn [
|0p 1 5 (ku, - s kn)| < N II PECE
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Summary

@ We proved, for |3] <2 and ) — 0for A = 0

n 1 c/\) X[o.x) (ki)
|8I€fP,a(klv~-~akn)| H |k|3/2 .

@ The estimate quantifies localization of atoms / electrons in space.
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Summary

@ We proved, for |3] <2 and ) — 0for A = 0

1 c/\) X(ox) (ki)
B rn [
|8pr)g(k1,...,kn)|§ H PR

@ The estimate quantifies localization of atoms / electrons in space.

© For this purpose, we exhibited interesting algebraic structure of these
wave-functions encoded in a non-commutative recurrence relation.
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Summary

@ We proved, for |3] <2 and ) — 0for A = 0

1 c/\) X(ox) (ki)
B rn [
|8pr)g(k1,...,kn)|§ H PR

@ The estimate quantifies localization of atoms / electrons in space.

© For this purpose, we exhibited interesting algebraic structure of these
wave-functions encoded in a non-commutative recurrence relation.

@ Starting from LSZ and FK ideas and using this estimate we could
construct atom-atom and atom-electron scattering states in the
Nelson model.
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Localization of atoms / electrons and non-commutative recurrence

Summary

@ We proved, for |3] <2 and ) — 0for A = 0

n 1 c/\) X[o.x) (ki)
|8I€fP,a(klv~-~akn)| H |k|3/2 .

@ The estimate quantifies localization of atoms / electrons in space.

© For this purpose, we exhibited interesting algebraic structure of these
wave-functions encoded in a non-commutative recurrence relation.

@ Starting from LSZ and FK ideas and using this estimate we could
construct atom-atom and atom-electron scattering states in the
Nelson model.

Wojciech Dybalski, A. P. Coulomb scattering in the massless Nelson model
LI

Wojciech Dybalski From Faddeev-Kulish to LSZ...
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