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In particle physics, results of measurements are compared to theoretical
predictions, most often obtained with the help of Feynman diagrams..

Examples:

γ t γt t

H Ht g t

t t
γ t γ

Higgs boson decay to two photons QCD correction to the same process

H → γγ (t – top quark) (g-gluon)
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In particle physics, results of measurements are compared to theoretical
predictions, most often obtained with the help of Feynman diagrams..

Examples:

γ t γt t

H Ht g t

t t
γ t γ

Higgs boson decay to two photons QCD correction to the same process

H → γγ (t – top quark) (g-gluon)

(Each Feynman diagram) ⇔ (A complex-valued function of . . . )

(Sum of diagrams) = (Quantum amplitude µ)

(Probability of the process) ∼ ( |µ|2 integrated over . . . )

The initial and final particles come with their four-momenta p, r, . . . p =




Ep

px
py
pz


 ∈ R

4
︸ ︷︷ ︸

external

Minkowskian products of the external momenta

pr ≡ EpEr − ~p · ~r = EpEr − (pxrx + pyry + pzrz)

are the arguments of µ.
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Each Feynman diagram with loops is specified in terms of a Feynman integrand which,
after some (computer) algebra, can be written as a linear combination of expressions of the form:

Jn1n2...nk = 1

A
n1
1 A

n2
2 ...A

nk
k

,

where ni ∈ Z, and Ai are linear functions of momentum products.
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A
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where ni ∈ Z, and Ai are linear functions of momentum products.

For instance: q2 + p1 p1

q1 + p1

p1 + p2 q1−q2 q2

−q1 + p2

−q2 + p2 p2

A1 = M 2
1
− (q1 + p1)

2

A2 = M 2
2
− (q1 − q2)

2

A3 = M 2
3
− (−q1 + p2)

2 M 2
j = m2

j − iε

A4 = M 2
4
− (q2 +p1)

2 ε ∈ R+, mj ∈ R+ ∪ {0}︸ ︷︷ ︸
A5 = M 2

5
− q2

2
physical masses

A6 = M 2
6
− (−q2 + p2)

2

A7 = M 2
7
− q2

1
m7 = 0

Bases: {A1, . . . , A7} ↔ {q2
1
, q2

2
, q1q2, q1p1, q1p2, q2p1, q2p2}
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Within the method of dimensional regularization, we find a contribution to µ by replacing

Jn1n2...nk → In1n2...nk ≡ F [D, Jn1n2...nk],
where the r.h.s is an analytic function of D,M 2

j ∈ C and products of external momenta.
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1
, q2

2
, q1q2, q1p1, q1p2, q2p1, q2p2}

Within the method of dimensional regularization, we find a contribution to µ by replacing

Jn1n2...nk → In1n2...nk ≡ F [D, Jn1n2...nk],
where the r.h.s is an analytic function of D,M 2

j ∈ C and products of external momenta.

The mapping F has the following properties:
(i) F [D,X] is linear in X, while X is a rational function of momentum products and M 2

j .

(ii) F [D,X] = 0 when X depends neither on the external momenta nor on m2
j 6= 0.

(iii) For D ∈ N\{1}, F [D,X] =
∫

(dDq1) . . . (d
DqL)X when the integral is finite and (ii) does not apply.

(iv) F [D,X] = 0 when X is a total derivative w.r.t. any of the loop momenta.

In our example F
[
D, ∂

∂qα
i

(rαJ)
]

= 0, where r ∈ {q1, q2, p1, p2}. 3



Vanishing of F for total derivatives provides useful identities. Let us consider, for instance,

F
[
D, ∂

∂qα1

(
qα1 J1111110

)]
= 0.

A straightforward calculation gives

∂
∂qα1

(
qα1 J1111110

)
= m2 (J2111110 − J1211110 + J1121110) +

+(D − 3)J1111110 + J1211010 − J21111(−1) − J12111(−1) − J11211(−1),

where, for simplicity, p2
1 = p2

2 = m2
2 = 0, while all the other masses mi have been set to m.

Moreover, all the iε terms in the numerators have been tacitly set to zero.
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0 = m2 (I2111110 − I1211110 + I1121110) +

+(D − 3)I1111110 + I1211010 − I21111(−1) − I12111(−1) − I11211(−1).

Such relations are called the Integration By Parts (IBP) identities.

We can view In1n2...nk as a mapping

I : Zk → C
(
C
N
)

[Complex-valued functions of D,M 2
j ∈ C and

products of external momenta (treated as complex)]

The IBP identities give us linear relations between values of I at several nearest-neighbour points.

Naively, we get “more relations than integrals”. 4



I : Zk → C
(
C
N
)

The IBP identities give us linear relations between values of I at several nearest-neighbour points.
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(
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The IBP identities give us linear relations between values of I at several nearest-neighbour points.
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We get infinitely many linear relations among infinitely many functions.

This is similar to a linear recurrence relation, e.g., Hn+1(z) = 2zHn(z) − 2nHn−1(z).

[Here we get any Hn in terms of H0 and H1].
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determine all of these functions?
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The IBP identities give us linear relations between values of I at several nearest-neighbour points.
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We get infinitely many linear relations among infinitely many functions.

This is similar to a linear recurrence relation, e.g., Hn+1(z) = 2zHn(z) − 2nHn−1(z).

[Here we get any Hn in terms of H0 and H1].

Do the IBP give us a recurrence relation? Does a finite set of In1n2...nk
determine all of these functions?

Answer: Yes! Proof: A. V. Smirnov and A. V. Petukhov,
“The Number of Master Integrals is Finite,”
Lett. Math. Phys. 97 (2011) 37 [arXiv:1004.4199]. 5



Thanks to the fact that the number of Master Integrals (MIs) is finite,

we can derive closed sets of differential equations (DEs) for them.
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we can derive closed sets of differential equations (DEs) for them.

In our example, when the integrand J1111110 is differentiated w.r.t. m2
, we get:

∂
∂(m2)

J1111110 = −J2111110 − J1121110 − J1112110 − J1111210 − J1111120.

Thus:

∂
∂(m2)

I1111110 = ∂
∂(m2)

F [D,J1111110] = F
[
D, ∂

∂(m2)
J1111110

]
=

= −I2111110 − I1121110 − I1112110 − I1111210 − I1111120.

Writing such derivatives for all the MIs and expressing the r.h.s. in terms of the MIs (using

the IBP identities), we obtain a closed set of linear DEs for the MIs.
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Analogously, for an integral I(p1 · p2,m
2) = F [D, J ]:
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= (linear combination of MIs).
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∂
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[
D,

pα1
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= (linear combination of MIs).

Initial conditions for the DEs are set in regions where the evaluation

of MIs is easier, e.g., for (masses) ≫ (products of external momenta).
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The recurrence relations following from the IBP have been solved analytically in several cases

[e.g., K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159;

F.V. Tkachov, Phys. Lett. B100 (1981) 65].

However, in general, brute-force computer algebra methods are applied.

The most popular approach is the Laporta algorithm [S. Laporta, hep-ph/0102033].
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Consider a family of integrals In1...nk
defined by a set of denominators {A1, . . . , Ak}.

In any particular physical calculation only a finite set of them is relevant.

(i) We extend this set by including all the integrals with

(sum of positive indices) ≤ N1 and |sum of negative indices| ≤ N2,

with Nj fixed in a quasi-intuitive manner.

(ii) Derive all the IBP relations involving only the selected integrals.

(iii) Establish an absolute “simplicity” ordering in the selected set. Roughly:

First criterion: number of positive indices,

Second criterion: sum of positive indices,

Third criterion: |sum of positive indices|,

Next criteria: values of indices at particular positions.

(iv) Solve the system of linear equations, expressing the

“least simple” integral in terms of “simpler” ones.
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(sum of positive indices) ≤ N1 and |sum of negative indices| ≤ N2,

with Nj fixed in a quasi-intuitive manner.

(ii) Derive all the IBP relations involving only the selected integrals.

(iii) Establish an absolute “simplicity” ordering in the selected set. Roughly:

First criterion: number of positive indices,

Second criterion: sum of positive indices,

Third criterion: |sum of positive indices|,

Next criteria: values of indices at particular positions.

(iv) Solve the system of linear equations, expressing the

“least simple” integral in terms of “simpler” ones.

Unfortunately, this method is computationally heavy.

My current project: 451 families with O(1000) integrals each, depending on two variables: D and m1/m2.

For some families, few weeks with 1TB RAM and 2TB disk space are insufficient. 7



Structure of the IBP relations [see R.N. Lee, arXiv:0804.3008]

Let us consider the operators Oik = ∂
∂qi
rk acting on the integrands J , where rk ∈ {q1, . . . , qL, p1, . . . pE}.

They form a closed Lie algebra with the commutation relations

[Oik, Ojl] = δilOjk − δjkOil.
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Thus, we may consider the IBP relations as following from the fact that the integrals are constant on

the orbits corresponding to the generators Qik.
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Thus, we may consider the IBP relations as following from the fact that the integrals are constant on

the orbits corresponding to the generators Qik.

This is the starting point of the proof that the number of MIs is finite.

Details in arXiv:1004.4199: “The reader familiar with the theory of holonomic D-modules

should consider Theorem 2 as an exercise.”

Algorithms and codes for solving the IBP relations based on their “group structure” have been developed.

[R.N. Lee, arXiv:1212.2685, 1310.1145]. However, they are not general. 8



Description in terms of functions on Z
k [see: R.N. Lee, arXiv:0804.3008]

[more: T. Bitoun, C. Bogner, R.P. Klausen,

E. Panzer, arXiv:1712:09215]Change of notation: In1,...,nk = f(n1, . . . , nk)

Keep the external momenta and parameters fixed, so now f : Zk → C.
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(Bαf)(n1, . . . , nk) = f(n1, . . . , nα − 1, . . . , nk)

It is straightforward to verify that [Aα, Bβ] = δαβ.

Let W be the (Weyl) algebra of all possible polynomials in such operators.

Let L be the left ideal in W generated byPij : Pijf(n1, . . . , nk) = F [D,OijJn1,...,nk].

It consists of all operators of the form
∑

ij CijPij with Cij ∈ W.

All the Pij have the form aαβij AαBβ + bαijAα + cij , with aαβij , b
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ij, cj ∈ C.
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E. Panzer, arXiv:1712:09215]Change of notation: In1,...,nk = f(n1, . . . , nk)

Keep the external momenta and parameters fixed, so now f : Zk → C.

We introduce two types of operators acting on such functions:

(Aαf)(n1, . . . , nk) = nα f(n1, . . . , nα + 1, . . . , nk)
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∑
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Let R be the right ideal in W that consists of all operators
∑

αBαAαCα with Cα ∈ W.

For any R ∈ R, we have (Rf)(1, . . . , 1) = 0.

Our goal is to find a decomposition w = L+R+ r for any w ∈ W such that L ∈ L,

R ∈ R, and r is the simplest possible.

Next, we focus on suchw that (wf)(1, . . . , 1) = f(n1, . . . , nk) for all the indices of interest.

To my knowledge, this problem still awaits a solution for generic k ∈ N and aαβij , b
α
ij, cj ∈ C. 9



Structure of the differential equations [see J.M. Henn, arXiv:1412.2296]

Suppose our MIs depend only on two parameters: ǫ = (4 −D)/2 and a single

dimensionless ratio t of two kinematical variables (masses or momentum products).
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with H̃ = X−1HX −X−1 ∂
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Dedicated codes (see, e.g., arXiv:1705.06252) search (often successfully) for such matrices X that

H̃(t, ǫ) = ǫ d
dt

∑
jKj lnhk(t),

where Kj are constant matrices, while the scalar functions hk(t) are called “letters”.
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where the N ×N matrix H is a rational function of t and ǫ.

A simplification of the DEs can often be achieved via redefining the MI basis according to

ψ = Xψ̃, where X(t, ǫ) is an invertible matrix. Then:

∂
∂t
ψ̃(t, ǫ) = H̃(t, ǫ) ψ̃(t, ǫ),

with H̃ = X−1HX −X−1 ∂
∂t
X .

Dedicated codes (see, e.g., arXiv:1705.06252) search (often successfully) for such matrices X that

H̃(t, ǫ) = ǫ d
dt

∑
jKj lnhk(t),

where Kj are constant matrices, while the scalar functions hk(t) are called “letters”.

This is advantageous because in practice we are interested in Laurent expansions

ψ̃(t, ǫ) =
∑∞
n=nmin

ǫn ψ̃n(t).

Next: Getting ψ̃n(t) via iterative integration. Harmonic Polylogarithms (HPLs). 10
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of MIs, with the help of IBP relations.

• Thanks to the IBP reduction, we are able to derive DEs for the MIs
that can be solved either analytically or numerically, with initial
conditions in “easy” regions.

• Unfortunately, the IBP reduction is often computationally heavy,
mainly due to simplification of huge numbers of rational functions.
Further progress in understanding the algebraic structure of the
IBP relations is necessary.

• The DEs can often be brought to a “canonical” form with the help of
“gauge-like” transformations. In such cases, analytical solutions can
be found via iterative integration.
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