## Perturbative calculations in QFT and the Laporta algorithm

### Mikołaj Misiak

University of Warsaw

"Physics and Mathematics of QFT" workshop, Banff, July 29th-August 3rd, 2018

- 1. Introduction: Feynman diagrams and integrals
- 2. Master Integrals (MIs) and differential equations
- 3. The Laporta algorithm and technical challenges
- 4. Solving differential equations for the MIs
- 5. Summary

In particle physics, results of measurements are compared to theoretical predictions, most often obtained with the help of Feynman diagrams.

## **Examples:**



Higgs boson decay to two photons  $H \rightarrow \gamma \gamma$  (t - top quark)



QCD correction to the same process (q-gluon)

In particle physics, results of measurements are compared to theoretical predictions, most often obtained with the help of Feynman diagrams.

**Examples:** 





Higgs boson decay to two photonsQCD correction to the same process $H \rightarrow \gamma \gamma$ (t - top quark)(g-gluon)

(Each Feynman diagram)  $\Leftrightarrow$  (A complex-valued function of ...)

 $(\text{Sum of diagrams}) = (\text{Quantum amplitude } \mu)$ 

(Probability of the process)  $\sim$  (  $|\mu|^2$  integrated over ...)

In particle physics, results of measurements are compared to theoretical predictions, most often obtained with the help of Feynman diagrams.

**Examples:** 

 $H_{-H_{--}} \xrightarrow{t} \gamma_{t}$ 

 $H 
ightarrow \gamma \gamma \qquad (t - {
m top \; quark})$ 



QCD correction to the same process (q-gluon)

(Each Feynman diagram)  $\Leftrightarrow$  (A complex-valued function of ...)

(Sum of diagrams) = (Quantum amplitude  $\mu$ )

(Probability of the process)  $\sim$  (  $|\mu|^2$  integrated over ...)

The initial and final particles come with their four-momenta  $p, r, \ldots$  external

Minkowskian products of the external momenta

 $pr \equiv \mathbf{E_p}\mathbf{E_r} - \vec{p} \cdot \vec{r} = \mathbf{E_p}\mathbf{E_r} - (p_x r_x + p_y r_y + p_z r_z)$ 

are the arguments of  $\mu$ .

$$J_{n_1n_2...n_k} = \frac{1}{A_1^{n_1}A_2^{n_2}...A_k^{n_k}}$$

where  $n_i \in \mathbb{Z}$ , and  $A_i$  are linear functions of momentum products.

$$\boldsymbol{J}_{n_1 n_2 \dots n_k} = \frac{1}{A_1^{n_1} A_2^{n_2} \dots A_k^{n_k}}$$

where  $n_i \in \mathbb{Z}$ , and  $A_i$  are linear functions of momentum products.



$$\boldsymbol{J}_{n_1 n_2 \dots n_k} = \frac{1}{A_1^{n_1} A_2^{n_2} \dots A_k^{n_k}}$$

where  $n_i \in \mathbb{Z}$ , and  $A_i$  are linear functions of momentum products.



Within the method of dimensional regularization, we find a contribution to  $\mu$  by replacing

$$J_{n_1n_2...n_k} \rightarrow I_{n_1n_2...n_k} \equiv F[D, J_{n_1n_2...n_k}],$$

where the r.h.s is an analytic function of  $D, M_i^2 \in \mathbb{C}$  and products of external momenta.

$$\boldsymbol{J}_{n_1 n_2 \dots n_k} = \frac{1}{A_1^{n_1} A_2^{n_2} \dots A_k^{n_k}}$$

where  $n_i \in \mathbb{Z}$ , and  $A_i$  are linear functions of momentum products.



Within the method of dimensional regularization, we find a contribution to  $\mu$  by replacing

$$J_{n_1n_2...n_k} \rightarrow I_{n_1n_2...n_k} \equiv F[D, J_{n_1n_2...n_k}],$$

where the r.h.s is an analytic function of  $D, M_j^2 \in \mathbb{C}$  and products of external momenta.

### The mapping F has the following properties:

- (i) F[D, X] is linear in X, while X is a rational function of momentum products and  $M_i^2$ .
- (ii) F[D, X] = 0 when X depends neither on the external momenta nor on  $m_j^2 \neq 0$ .
- (iii) For  $D \in \mathbb{N} \setminus \{1\}$ ,  $F[D, X] = \int (d^D q_1) \dots (d^D q_L) X$  when the integral is finite and (ii) does not apply. (iv) F[D, X] = 0 when X is a total derivative w.r.t. any of the loop momenta.

In our example 
$$F\left[D, \frac{\partial}{\partial q_i^{\alpha}}\left(r^{\alpha}J\right)\right] = 0$$
, where  $r \in \{q_1, q_2, p_1, p_2\}$ .

Vanishing of F for total derivatives provides useful identities. Let us consider, for instance,

$$F\left[D,rac{\partial}{\partial q_1^lpha}\left(q_1^lpha J_{111110}
ight)
ight]=0.$$

A straightforward calculation gives

$$egin{aligned} rac{\partial}{\partial q_1^lpha} \left( q_1^lpha J_{111110} 
ight) &= oldsymbol{m}^2 \left( J_{211110} - J_{121110} + J_{112110} 
ight) + \ &+ (oldsymbol{D}-3) J_{111110} + J_{1211010} - J_{21111(-1)} - J_{12111(-1)} - J_{11211(-1)}, \end{aligned}$$

where, for simplicity,  $p_1^2 = p_2^2 = m_2^2 = 0$ , while all the other masses  $m_i$  have been set to m. Moreover, all the  $i\varepsilon$  terms in the numerators have been tacitly set to zero. Vanishing of F for total derivatives provides useful identities. Let us consider, for instance,

$$F\left[D,rac{\partial}{\partial q_1^lpha}\left(q_1^lpha J_{111110}
ight)
ight]=0.$$

A straightforward calculation gives

$$egin{aligned} &rac{\partial}{\partial q_1^lpha} \left( q_1^lpha J_{111110} 
ight) = m{m}^2 \left( J_{211110} - J_{121110} + J_{112110} 
ight) + \ &+ (m{D}-3) J_{111110} + J_{1211010} - J_{21111(-1)} - J_{12111(-1)} - J_{11211(-1)}, \end{aligned}$$

where, for simplicity,  $p_1^2 = p_2^2 = m_2^2 = 0$ , while all the other masses  $m_i$  have been set to m. Moreover, all the  $i\varepsilon$  terms in the numerators have been tacitly set to zero.

Consequently, we get the following identity for the integrals  $I_{n_1n_2...n_7}$ :

$$egin{aligned} 0 &= m^2 \left( I_{2111110} - I_{1211110} + I_{1121110} 
ight) + \ &+ (D-3) I_{1111110} + I_{1211010} - I_{21111(-1)} - I_{12111(-1)} - I_{11211(-1)}. \end{aligned}$$

Such relations are called the Integration By Parts (IBP) identities.

Vanishing of F for total derivatives provides useful identities. Let us consider, for instance,

$$F\left[D,rac{\partial}{\partial q_1^lpha}\left(q_1^lpha J_{111110}
ight)
ight]=0.$$

A straightforward calculation gives

$$egin{aligned} &rac{\partial}{\partial q_1^lpha} \left( q_1^lpha J_{111110} 
ight) = m{m}^2 \left( J_{211110} - J_{121110} + J_{112110} 
ight) + \ &+ (m{D}-3) J_{111110} + J_{1211010} - J_{21111(-1)} - J_{12111(-1)} - J_{11211(-1)}, \end{aligned}$$

where, for simplicity,  $p_1^2 = p_2^2 = m_2^2 = 0$ , while all the other masses  $m_i$  have been set to m. Moreover, all the  $i\varepsilon$  terms in the numerators have been tacitly set to zero.

Consequently, we get the following identity for the integrals  $I_{n_1n_2...n_7}$ :

$$egin{aligned} 0 &= m^2 \left( I_{2111110} - I_{1211110} + I_{1121110} 
ight) + \ &+ (D-3) I_{1111110} + I_{1211010} - I_{21111(-1)} - I_{12111(-1)} - I_{11211(-1)}. \end{aligned}$$

Such relations are called the Integration By Parts (IBP) identities.

We can view  $oldsymbol{I}_{n_1n_2...n_k}$  as a mapping

 $I: \mathbb{Z}^k \to \mathcal{C}\left(\mathbb{C}^N\right) \qquad \qquad \begin{bmatrix} \text{Complex-valued functions of } D, M_j^2 \in \mathbb{C} \text{ and} \\ \text{products of external momenta (treated as complex)} \end{bmatrix}$ 

The IBP identities give us linear relations between values of I at several nearest-neighbour points. Naively, we get "more relations than integrals".

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 

| ٠                      | •                     | •         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • 10 •                | • • | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | •            |
|------------------------|-----------------------|-----------|------------------|-----------------------|-------------------|-------------------|------------------|-------------------|-----------------------|-----|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------------------------|--------------|
| •                      | •                     | •         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • •                   | •   | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | •            |
| •                      | ٠                     | •         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | •                 | • •                   | •   | •                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | •            |
| •                      | •                     | •         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • •                   | •   | •                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | •            |
| •                      | ٠                     | •         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • •                   | •   | •                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | •            |
| •                      | ٠                     | ٠         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • 5 •                 | • • | •                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | ٠            |
| ٠                      | ٠                     | ٠         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • •                   | •   | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | ٠            |
| •                      | ٠                     | ٠         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • •                   | •   | •                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | ٠            |
| •                      | •                     | •         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | ٠                 | • •                   | •   | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | •            |
| •                      | •                     | •         | ٠                | ٠                     | ٠                 | ٠                 | ٠                | •                 | • •                   | •   | •                                       | ٠                                       | ٠                                       | ٠                     | ٠                 | ٠                 | ٠                 | ٠                                       | •            |
| +                      |                       |           | -                | -                     | +                 |                   |                  |                   | •                     |     |                                         |                                         |                                         | +                     |                   |                   | •                 |                                         | <b></b>      |
| -10                    | •                     | •         | •                | •                     | -5                | •                 | •                | •                 |                       |     | •                                       |                                         | •                                       | 5                     |                   |                   | •                 |                                         | 10           |
| -10                    | •                     | •         | •                | •                     | -5                | •                 | •                | •                 | •                     | •   | •                                       | •                                       | •                                       | 5                     | •                 | •                 | •                 | •                                       | 10           |
| -10                    | •                     | •         | •                | •                     | -5<br>•           | •                 | •                | •                 | •                     | •   | •                                       | •                                       | •                                       | 5<br>•                | •                 | •                 | •                 | •                                       | 10<br>•      |
| -10                    | •                     | •         | •                | •                     | -5<br>•           | •                 | •                | •                 | • •                   | • • | •                                       | •                                       | •                                       | 5                     | •                 | •                 | •                 | •                                       | 1,0<br>•     |
| -10                    | •                     | • • • •   | • • • •          | • • • •               | -5<br>•<br>•      | •                 | •                | • • •             |                       |     | • • • •                                 | • • • •                                 | •                                       | •<br>•<br>•           | • • •             | • • •             | • • •             | • • •                                   | 10<br>•      |
| - <u>1</u> 0<br>•      | • • • •               | • • • • • | • • • • •        | • • • • •             | -5<br>•<br>•      | • • • •           | • • • •          | • • • •           | •<br>•<br>• -5 •      |     | •                                       | • • • • •                               | • • • •                                 | -<br>-<br>-<br>-      | • • • •           | • • • •           | •                 | • • • •                                 | 10<br>•<br>• |
| - <u>1</u> 0<br>•<br>• | • • • • • • • •       | •         | •                | •                     | -5<br>•<br>•      | •                 | •                | •                 | • -5 •                |     | •                                       | •                                       | •                                       | 5<br>•<br>•           | •                 | •                 | •                 | •                                       |              |
| -10<br>•<br>•          | •<br>•<br>•<br>•      | •         | •<br>•<br>•<br>• | •<br>•<br>•<br>•      | -5<br>•<br>•<br>• | • • • • • • • • • | •<br>•<br>•<br>• | • • • • • • • •   | • -5 •                |     | • • • • • • • • • •                     | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•                        | •<br>•<br>•<br>•      | • • • • • • •     | • • • • • • •     | • • • • • • • •   | • • • • • • •                           |              |
| -10<br>•<br>•          | •<br>•<br>•<br>•<br>• |           |                  | •<br>•<br>•<br>•<br>• | -5<br>•<br>•<br>• | •<br>•<br>•<br>•  | •                | • • • • • • • • • | •<br>•<br>•<br>•<br>• |     | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •                                       | •<br>•<br>•<br>•      | • • • • • • • • • | • • • • • • • • • | • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |              |
| -10<br>•<br>•          |                       |           |                  |                       | -5<br>•<br>•<br>• | •                 | •                |                   | -5 (                  |     | •                                       | •                                       | • • • • • • • • • • • • • • • • • • • • | 5<br>•<br>•<br>•<br>• |                   |                   |                   | •                                       |              |

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 

| ٠                      | •                          | •           | ٠           | ٠                                       | ٠                 | ٠                                       | ٠                                       | ٠                     | • 10 •                | • •               | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                                       | ٠                                       | ٠                                       | ٠                                       | ٠               |
|------------------------|----------------------------|-------------|-------------|-----------------------------------------|-------------------|-----------------------------------------|-----------------------------------------|-----------------------|-----------------------|-------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------|
| •                      | •                          | •           | ٠           | ٠                                       | ٠                 | ٠                                       | ٠                                       | ٠                     | • •                   | •                 | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                                       | ٠                                       | ٠                                       | ٠                                       | •               |
| ٠                      | ٠                          | ٠           | ٠           | ٠                                       | ٠                 | ٠                                       | ٠                                       | ٠                     | • •                   | •                 | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                                       | ٠                                       | ٠                                       | ٠                                       | ٠               |
| ٠                      | ٠                          | ٠           | ٠           | ٠                                       | ٠                 | ٠                                       | ٠                                       | ٠                     | •                     | •                 | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                                       | ٠                                       | ٠                                       | ٠                                       | ٠               |
| •                      | •                          | •           | ٠           | •                                       | ٠                 | ٠                                       | ٠                                       | ٠                     | •                     | •                 | ٠                                       | ٠                                       | ٠                                       | ٠                     | ٠                                       | •                                       | ٠                                       | ٠                                       | •               |
| •                      | •                          | •           | ٠           | ٠                                       | ٠                 | ٠                                       | ٠                                       | ٠                     | • 5 •                 | • •               | •                                       | ٠                                       | ٠                                       | ٠                     | ٠                                       | •                                       | ٠                                       | •                                       | •               |
| •                      | •                          | •           | ٠           | ٠                                       | •                 | •                                       | ٠                                       | ٠                     | • •                   | •                 | ٠                                       | •                                       | ٠                                       | ٠                     | ٠                                       | ٠                                       | ٠                                       | •                                       | •               |
| ٠                      | •                          | •           | •           | ٠                                       | ٠                 | ٠                                       | ٠                                       | ٠                     | •                     | •                 | ٠                                       | ٠                                       | •                                       | ٠                     | ٠                                       | ٠                                       | ٠                                       | ٠                                       | ٠               |
| •                      | •                          | •           | ٠           | ٠                                       | ٠                 | ٠                                       | •                                       | ٠                     | • •                   | •                 | _                                       | ٠                                       | ٠                                       | ٠                     | •                                       | •                                       | •                                       | •                                       | •               |
| •                      | •                          | •           | •           | •                                       | •                 | •                                       | ٠                                       | •                     | • •                   | •                 | •                                       | •                                       | •                                       | •                     | •                                       | •                                       | ٠                                       | •                                       | •               |
|                        |                            |             |             |                                         |                   | -                                       |                                         |                       |                       |                   |                                         |                                         |                                         |                       |                                         |                                         |                                         |                                         |                 |
| -10                    | •                          |             | •           | •                                       | -5                | •                                       | •                                       | •                     | •                     |                   | •                                       | •                                       | •                                       | 5                     | •                                       | •                                       | •                                       | •                                       | 10              |
| -10                    | •                          | •           | •           | •                                       | -5                | •                                       | •                                       | •                     | • •                   | •                 | •                                       | •                                       | •                                       | •<br>5                | •                                       | •                                       | •                                       | •                                       | 10              |
| -10                    | •                          | •           | •           | •                                       | -5<br>•           | •                                       | •                                       | •                     | • •                   | , ,<br>, ,<br>, , | •                                       | •                                       | •                                       | •<br>5•<br>•          | •                                       | •                                       | •                                       | •                                       | 1,0<br>•        |
| - <u>1</u> 0<br>•      | • • •                      | • • • •     | • • • •     | •                                       | -5<br>•<br>•      | •                                       | •                                       | •                     |                       |                   | •                                       | • • • •                                 | •                                       | •<br>•<br>•           | • • •                                   | •                                       | •                                       | •                                       | 1 <u>0</u><br>• |
| -10<br>•               | • • • •                    | • • • • • • | • • • • • • | • • • • • • •                           | -5<br>•<br>•      | • • • •                                 | •                                       | • • • •               | •                     |                   | •                                       | • • • •                                 | • • • •                                 | • 5• • •              | • • • •                                 | • • • •                                 | • • • •                                 | • • • • •                               | 10<br>•<br>•    |
| - <u>1</u> 0<br>•<br>• | •<br>•<br>•<br>•           | •           | •           | • • • • • • •                           | -5<br>•<br>•      | • • • • • • •                           | •                                       | • • • • • •           | •<br>•<br>•<br>• -5 • |                   | •                                       | • • • • • • •                           | •<br>•<br>•<br>•                        | • 5• • •              | • • • • • •                             | • • • • •                               | • • • • •                               | • • • • • • • • •                       |                 |
| -10<br>•<br>•          | •<br>•<br>•<br>•<br>•      | •           | •           | • • • • • • • • • • • • • • • • • • • • | -5<br>•<br>•      | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • •                       | • • • • • • • • •     | •<br>•<br>• - 5 •     |                   | •                                       | • • • • • • • • • •                     | • • • • • • • • • •                     | •<br>•<br>•<br>•      | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•                        | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•                        |                 |
| -10<br>•<br>•          | •<br>•<br>•<br>•<br>•      | •           | •           | • • • • • • • • • • • • • • • • • • • • | -5<br>•<br>•<br>• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•<br>• | • -5 •                |                   | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | 5<br>•<br>•<br>•<br>• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•<br>•                   |                 |
| -10<br>•<br>•          | •<br>•<br>•<br>•<br>•<br>• |             |             | •                                       | -5<br>•<br>•<br>• | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•<br>•                   | •<br>•<br>•<br>•<br>• |                       |                   | •                                       | •<br>•<br>•<br>•<br>•<br>•              | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•<br>• | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•<br>•<br>•              | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                 |

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 

| •                      | •                     | • | ٠               | ٠           | ٠                 | ٠         | ٠         | ٠           | • 10 •         | •   | ٠             | ٠ | ٠ | ٠                     | ٠ | ٠ | ٠ | ٠ | ٠            |
|------------------------|-----------------------|---|-----------------|-------------|-------------------|-----------|-----------|-------------|----------------|-----|---------------|---|---|-----------------------|---|---|---|---|--------------|
| •                      | •                     | • | ٠               | ٠           | ٠                 | ٠         | ٠         | ٠           | • •            | •   | ٠             | ٠ | ٠ | ٠                     | ٠ | ٠ | ٠ | ٠ | ٠            |
| ٠                      | •                     | • | ٠               | ٠           | ٠                 | ٠         | •         | ٠           | • •            | •   | ٠             | ٠ | • | ٠                     | ٠ | ٠ | ٠ | ٠ | •            |
| ٠                      | ٠                     | • | ٠               | ٠           | ٠                 | ٠         | ٠         | ٠           | • •            | •   | ٠             | ٠ | ٠ | ٠                     | ٠ | ٠ | ٠ | ٠ | •            |
| ٠                      | •                     | • | ٠               | ٠           | ٠                 | ٠         | ٠         | ٠           | • •            | •   | ٠             | ٠ | ٠ | ٠                     | ٠ | ٠ | ٠ | ٠ | •            |
| ٠                      | ٠                     | ٠ | ٠               | ٠           | ٠                 | ٠         | ٠         | ٠           | • 5 •          | • • | ٠             | ٠ | ٠ | ٠                     | ٠ | ٠ | ٠ | ٠ | ٠            |
| ٠                      | ٠                     | ٠ | ٠               | ٠           | ٠                 | ٠         | ٠         | ٠           | • •            | •   | ٠             | ٠ | ٠ | ٠                     | ٠ | ٠ | ٠ | ٠ | ٠            |
| •                      | •                     | • | ٠               | •           | ٠                 | ٠         | ٠         | ٠           | • •            | •   | •             | • | ٠ | ٠                     | ٠ | • | ٠ | • | •            |
| ٠                      | •                     | • | ٠               | ٠           | ٠                 | ٠         | ٠         | ٠           | • •            | •   | $\rightarrow$ | • | ٠ | ٠                     | ٠ | ٠ | ٠ | • | •            |
| ٠                      | •                     | • | ٠               | ٠           | •                 | •         | •         | ٠           | • •            | • 🖌 | •             | ٠ | • | ٠                     | ٠ | ٠ | ٠ | ٠ | •            |
|                        | -                     | - |                 | -           | 1                 | -         | -         |             |                |     |               |   |   | <b></b>               |   |   |   |   | <b></b>      |
| -10                    | •                     | • | •               | •           | -5                | •         | •         | •           | -•(            | •   | •             |   | • | 5                     |   |   | • |   | 10           |
| -10                    | •                     | • | •               | •           | -5                | •         | •         | •           | • •            | •   | •             | • | • | 5                     | • | • | • | • | 10           |
| -10                    | •                     | • | •               | •           | -5                | •         | •         | •           | • •            |     | •             | • | • | 5                     | • | • | • | • | 10           |
| -10                    | •                     | • | •               | •           | -5<br>•           | •         | •         | •           | • •            |     | •             | • | • | 5                     | • | • | • | • | 1,0<br>•     |
| - <u>1</u> 0<br>•      | •                     | • | •               | •           | -5<br>•<br>•      | •         | •         | •           |                |     | •             | • | • | 5<br>•<br>•           | • | • | • | • | 10<br>•      |
| -10                    | •                     | • | • • • • • • • • | • • • • • • | -5<br>•<br>•      | • • • • • | • • • • • | • • • • • • | • -5           |     | •             | • | • | 5                     | • | • | • | • | 10<br>•<br>• |
| - <u>1</u> 0<br>•<br>• | •                     | • | •               | •           | -5<br>•<br>•      | •         | •         | •           | • -5           |     | •             | • | • | 5<br>•<br>•           | • | • | • | • |              |
| -10<br>•<br>•          | •                     | • | •               | •           | -5<br>•<br>•<br>• | •         | •         | •           | •<br>•<br>• -5 |     |               | • | • | 5<br>•<br>•<br>•      | • | • | • | • |              |
| -10<br>•<br>•          | •<br>•<br>•<br>•<br>• | • | •               | •           | -5<br>•<br>•<br>• | •         | •         | •           | •<br>• -5      |     |               | • | • | •<br>•<br>•<br>•      | • | • | • | • |              |
| -10<br>•               | •<br>•<br>•<br>•<br>• |   | •               |             | -5<br>•<br>•<br>• | •         |           | •           | 5<br>5         |     |               | • |   | 5<br>•<br>•<br>•<br>• |   | • |   | • |              |

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 

| •                 | •                          | •                     | •                     | ٠ | ٠                 | •                                       | ٠                     | ٠                     | • 10   | • • | •    | • | •        | • | • | •                   | •                     | ٠                                       | •                                       | •                 |
|-------------------|----------------------------|-----------------------|-----------------------|---|-------------------|-----------------------------------------|-----------------------|-----------------------|--------|-----|------|---|----------|---|---|---------------------|-----------------------|-----------------------------------------|-----------------------------------------|-------------------|
| •                 | ٠                          | ٠                     | ٠                     | ٠ | ٠                 | ٠                                       | ٠                     | ٠                     | •      | • • | •    | • | •        |   |   | •                   | •                     | ٠                                       | ٠                                       | ٠                 |
| ٠                 | ٠                          | ٠                     | •                     | ٠ | •                 | •                                       | •                     | •                     | •      | • • | •    | • | •        |   | • | •                   | •                     | •                                       | •                                       | •                 |
| •                 | •                          | •                     | •                     | • | •                 | •                                       | •                     | •                     | •      |     |      | • | •        |   |   | •                   | •                     | •                                       | •                                       | •                 |
| •                 | •                          | •                     | •                     | • | •                 | •                                       | •                     | •                     | • 5    |     |      | • | •        |   | • | •                   | •                     | •                                       | •                                       | •                 |
| •                 | •                          | ٠                     | •                     | ٠ | ٠                 | •                                       | ٠                     | ٠                     | •      | • • | •    | • | •        | • | • | •                   | •                     | •                                       | •                                       | ٠                 |
| ٠                 | •                          | ٠                     | ٠                     | ٠ | ٠                 | •                                       | ٠                     | ٠                     | •      | • • | •    |   | <b>_</b> | • | • | •                   | •                     | ٠                                       | ٠                                       | ٠                 |
| •                 | •                          | ٠                     | ٠                     | ٠ | ٠                 | •                                       | ٠                     | ٠                     | •      | •   | • >• | - | •        | • |   | •                   | •                     | •                                       | ٠                                       | ٠                 |
| •                 | •                          | •                     | •                     | • | •                 | •                                       | •                     | •                     | •      |     | •    | • | •        |   | • | •                   | •                     | •                                       | •                                       | •                 |
|                   |                            |                       |                       |   |                   |                                         |                       |                       |        |     |      |   |          |   |   |                     |                       |                                         |                                         |                   |
| -10               | •                          | •                     | •                     | • | -5                | •                                       | •                     | •                     | •      |     |      | • |          |   | 5 | •                   | •                     | •                                       | •                                       | 10                |
| - <u>1</u> 0      | •                          | •                     | •                     | • | -5<br>•           | •                                       | •                     | •                     | •      |     | •    | • | •        |   | 2 | •                   | •                     | •                                       | •                                       | 10                |
| - <u>1</u> 0      | •                          | •                     | •                     | • | -5<br>•           | •                                       | •                     | •                     | •      |     |      |   |          |   |   | •                   | •                     | •                                       | •                                       | 10                |
| - <u>1</u> 0<br>• | •                          | •                     | • • • •               | • | -5<br>•           | •                                       | •                     | •                     |        |     |      |   |          |   |   | •                   | • • • •               | •                                       | •                                       | 10<br>•<br>•      |
| - <u>1</u> 0<br>• | •                          | •                     | •                     | • | -5                | •                                       | •                     | •                     | • -5   |     |      |   |          |   |   | •                   | •                     | •                                       | •                                       | 10                |
| -10<br>•<br>•     | • • • • • • •              | •                     | •                     | • | -5<br>•<br>•      | •                                       | •                     | •                     | • -5 · |     |      |   |          |   |   | • • • • • • • • • • | • • • • • • • • •     | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | 10<br>•<br>•<br>• |
| -10<br>•          | •<br>•<br>•<br>•<br>•      | •                     | •<br>•<br>•<br>•<br>• | • | -5<br>•<br>•<br>• | •<br>•<br>•<br>•                        | •                     | •                     | • -5 • |     |      |   |          |   |   | •                   | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•                        | •<br>•<br>•<br>•<br>•                   | 10<br>•<br>•<br>• |
| -10<br>•<br>•     | •<br>•<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• |                       |   | -5<br>•<br>•<br>• | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | • -5 • |     |      |   |          |   |   | •                   | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>•                   | •<br>•<br>•<br>•<br>•<br>•              |                   |

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 

| •             | •                     | •                     | •                     | •                     | ٠                     | •                     | •                     | •                | •10            | •   | •   | •                                       | •                                       | •                                       | •                | • | •                | •                                       | •                     | •                |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|----------------|-----|-----|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------|---|------------------|-----------------------------------------|-----------------------|------------------|
| ٠             | ٠                     | ٠                     | ٠                     | ٠                     | ٠                     | ٠                     | ٠                     | ٠                | • •            |     | •   | •                                       | ٠                                       | ٠                                       | ٠                | • | •                | •                                       | ٠                     | •                |
| ٠             | •                     | •                     | •                     | •                     | •                     | •                     | ٠                     | ٠                | • •            |     | •   | •                                       | •                                       | •                                       | ٠                | • |                  | •                                       | •                     | ٠                |
| •             | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •                | • •            |     | •   | •                                       | •                                       | •                                       | •                | • |                  | •                                       | •                     | •                |
| •             | •                     | •                     | •                     |                       | •                     | •                     | •                     | •                | • 5            |     |     |                                         |                                         |                                         |                  |   |                  | •                                       |                       | •                |
| •             | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •                | • •            |     |     | •                                       |                                         | •                                       | •                |   | •                | •                                       | •                     | •                |
| ٠             | ٠                     | ٠                     | ٠                     | •                     | ٠                     | ٠                     | ٠                     | ٠                | •              | •   | •   | >                                       |                                         | •                                       | ٠                | • | •                | •                                       | •                     | •                |
| ٠             | ٠                     | •                     | ٠                     | •                     | ٠                     | ٠                     | ٠                     | ٠                | $\rightarrow$  | · · |     |                                         | •                                       | ٠                                       | ٠                | • | •                | •                                       | •                     | ٠                |
| •             | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •                | •              |     | •   | •                                       | •                                       | •                                       | •                | • | •                | •                                       | •                     | •                |
| -10           | •                     | •                     | •                     | •                     | -5                    | •                     | •                     | •                | •              |     | •   |                                         |                                         | 5                                       | •                |   |                  | •                                       | •                     | 10               |
|               |                       |                       |                       |                       |                       |                       |                       |                  |                |     |     |                                         |                                         |                                         |                  |   | -                |                                         |                       |                  |
| •             | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •                | • •            | •   | •   | •                                       | •                                       | •                                       | •                | • | •                | •                                       | •                     | •                |
| •             | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •                | • •            |     | •   | •                                       | •                                       | •                                       | •                | • | •                | •                                       | •                     | •                |
| •<br>•        | •                     | •<br>•                | •<br>•                | •<br>•                | •<br>•<br>•           | •<br>•                | •<br>•                | •<br>•<br>•      | • •            |     | • • | •<br>•                                  | •                                       | •                                       | •                |   | •                | •                                       | •                     | •<br>•           |
| •<br>•<br>•   | • • •                 | • • •                 | • • •                 | • • •                 | •<br>•<br>•           | • • •                 | •<br>•<br>•           | •<br>•<br>•      | •<br>•<br>• -5 |     |     | •<br>•<br>•                             | •<br>•<br>•                             | •<br>•<br>•                             | •<br>•<br>•      |   | •                | • • • •                                 | •<br>•<br>•           | •<br>•<br>•      |
| • • • •       | • • • • •             | • • • • •             | • • • •               | • • • • •             | • • • • • •           | • • • • •             | • • • • •             | • • • • •        | •<br>• -5      |     |     | •                                       | •                                       | • • • •                                 | •                |   | )<br>)<br>)      | •                                       | •<br>•<br>•           | • • • •          |
| • • • • • • • | •<br>•<br>•<br>•      | •<br>•<br>•<br>• | • -5 •         |     |     | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •                |   | )<br>)<br>)<br>) | • • • • • • • • • • • • • • • • • • • • | •<br>•<br>•<br>•      | •<br>•<br>•<br>• |
| • • • • • • • | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>• | •<br>• -5<br>• |     |     | •<br>•<br>•<br>•<br>•                   | •<br>•<br>•<br>•<br>•                   | •<br>•<br>•<br>•<br>•                   | •<br>•<br>•<br>• |   | •<br>•<br>•<br>• | •<br>•<br>•<br>•<br>•                   | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>• |

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 

| •                          | •                     | ٠                     | ٠                     | ٠                                       | •                               | •                     | •                     | •                          | • 10          | • •        | ٠                          | •                     | ٠                     | •                     | •                     | •                     | •                     | ٠                     | •          |
|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------------------------|---------------------------------|-----------------------|-----------------------|----------------------------|---------------|------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|
| ٠                          | ٠                     | ٠                     | ٠                     | ٠                                       | •                               | •                     | ٠                     | •                          | • •           | •          | ٠                          | ٠                     | ٠                     | ٠                     | ٠                     | ٠                     | ٠                     | ٠                     | ٠          |
| ٠                          | •                     | •                     | •                     | •                                       | •                               | •                     | •                     | ٠                          | • •           | •          | ٠                          | •                     | •                     | •                     | •                     | •                     | •                     | ٠                     | •          |
| •                          | •                     | •                     | •                     | •                                       | •                               | •                     | •                     | •                          | •             | •          | •                          | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •          |
| •                          | •                     | •                     | •                     | •                                       | •                               | •                     | •                     | •                          | • 5           | ,<br>⊦ . • | •                          | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •          |
| •                          | •                     | •                     | •                     | ٠                                       | •                               | •                     | ٠                     | •                          | • •           | •          | ٠                          | •                     | •                     | •                     | •                     | ٠                     | •                     | ٠                     | •          |
| •                          | •                     | •                     | •                     | ٠                                       | •                               | •                     | ٠                     | •                          |               |            | •                          | >                     | -                     | •                     | ٠                     | ٠                     | •                     | ٠                     | •          |
| •                          | •                     | ٠                     | ٠                     | ٠                                       | •                               | •                     | ٠                     | •                          | $\rightarrow$ | •          |                            | •                     | ٠                     | •                     | ٠                     | ٠                     | •                     | ٠                     | •          |
| •                          | •                     | •                     | •                     | •                                       | •                               | •                     | •                     | •                          | •             |            | •                          | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •          |
| -10                        | •                     | •                     | •                     | •                                       | -5                              | •                     | •                     | •                          | •             | •          | •                          | •                     | •                     | 5                     | •                     | •                     | •                     |                       | 10         |
|                            | •                     | •                     | •                     | •                                       | ĕ                               | •                     | •                     | •                          | •             | •          | •                          | •                     | •                     | ້                     | •                     | ٠                     | •                     | •                     | <b>T</b> 0 |
| •                          | •                     | •                     | •                     | •                                       | •                               | •                     | •                     | •                          | • •           | • •        | •                          | •                     | •                     | •                     | •                     | •                     | •                     | •                     | •          |
| •                          | •                     | •                     | •                     | •<br>•                                  | •                               | •                     | •<br>•                | •<br>•<br>•                | • •           | • •        | •<br>•                     | •<br>•<br>•           | •<br>•                | •<br>•<br>•           | •<br>•                | •<br>•                | •<br>•                | •<br>•                | •          |
| •                          | •<br>•<br>•           | • • •                 | • • •                 | •<br>•<br>•                             | •<br>•<br>•                     | • • •                 | •<br>•<br>•           | •<br>•<br>•                | • •           |            | •<br>•<br>•                | •<br>•<br>•           | •<br>•<br>•           | •                     | •<br>•<br>•           | •<br>•<br>•           | •<br>•<br>•           | •<br>•<br>•           | •          |
| •                          | • • • •               | • • • •               | • • • •               | • • • •                                 | •                               | •                     | • • • • •             | • • • •                    | • -5          |            | • • • •                    | • • • •               | • • • •               | •                     | • • • • •             | • • • • •             | • • • • •             | • • • •               | •          |
| • • • • • •                | • • • • • •           | • • • • • •           | • • • • • •           | • • • • • • • • • • • • • • • • • • • • | •                               | •<br>•<br>•<br>•      | •<br>•<br>•<br>•      | • • • • • •                | •<br>• -5     |            | •<br>•<br>•<br>•           | •<br>•<br>•<br>•      | • • • • • •           | •<br>•<br>•<br>•      | • • • • • •           | • • • • • •           | • • • • • •           | •<br>•<br>•<br>•      | •          |
| • • • • • • • • •          | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•                        | •<br>•<br>•<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>•      | •<br>• -5     |            | •<br>•<br>•<br>•<br>•      | •<br>•<br>•<br>•      | •<br>•<br>•<br>•      | ·<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•      | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•      |            |
| •<br>•<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>•                   | •<br>•<br>•<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>•<br>• | -5            |            | •<br>•<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>• |            |

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 



We get infinitely many linear relations among infinitely many functions. This is similar to a linear recurrence relation, e.g.,  $H_{n+1}(z) = 2zH_n(z) - 2nH_{n-1}(z).$ 

[Here we get any  $H_n$  in terms of  $H_0$  and  $H_1$ ].

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 



We get infinitely many linear relations among infinitely many functions. This is similar to a linear recurrence relation, e.g.,  $H_{n+1}(z) = 2zH_n(z) - 2nH_{n-1}(z)$ . [Here we get any  $H_n$  in terms of  $H_0$  and  $H_1$ ].

Do the IBP give us a recurrence relation? Does a finite set of  $I_{n_1n_2...n_k}$  determine all of these functions?

 $I\colon \mathbb{Z}^k o \mathcal{C}\left(\mathbb{C}^N
ight)$ 



We get infinitely many linear relations among infinitely many functions. This is similar to a linear recurrence relation, e.g.,  $H_{n+1}(z) = 2zH_n(z) - 2nH_{n-1}(z)$ .

[Here we get any  $H_n$  in terms of  $H_0$  and  $H_1$ ].

Do the IBP give us a recurrence relation? Does a finite set of  $I_{n_1n_2...n_k}$  determine all of these functions?

Answer: Yes!

Proof: A. V. Smirnov and A. V. Petukhov, "The Number of Master Integrals is Finite," Lett. Math. Phys. 97 (2011) 37 [arXiv:1004.4199].

In our example, when the integrand  $J_{1111110}$  is differentiated w.r.t.  $m^2$ , we get:

$$rac{\partial}{\partial (m^2)} J_{1111110} = -J_{2111110} - J_{1121110} - J_{1112110} - J_{1111210} - J_{1111210} - J_{111120}.$$

Thus:

$$egin{aligned} rac{\partial}{\partial(m^2)} \, I_{1111110} &= rac{\partial}{\partial(m^2)} \, F[D, J_{111110}] = F\left[D, rac{\partial}{\partial(m^2)} \, J_{111110}
ight] = \ &= -I_{2111110} - I_{1121110} - I_{1112110} - I_{1111210} - I_{1111210} \ \end{aligned}$$

Writing such derivatives for all the MIs and expressing the r.h.s. in terms of the MIs (using the IBP identities), we obtain a closed set of linear DEs for the MIs.

In our example, when the integrand  $J_{1111110}$  is differentiated w.r.t.  $m^2$ , we get:

$$rac{\partial}{\partial (m^2)} \, J_{1111110} = - J_{2111110} - J_{1121110} - J_{1112110} - J_{1111210} - J_{1111210} - J_{1111120}.$$

Thus:

$$egin{aligned} rac{\partial}{\partial(m^2)} \, I_{111110} &= rac{\partial}{\partial(m^2)} \, F[D, J_{111110}] = F\left[D, rac{\partial}{\partial(m^2)} \, J_{111110}
ight] = \ &= -I_{2111110} - I_{1121110} - I_{1112110} - I_{1111210} - I_{1111210}. \end{aligned}$$

Writing such derivatives for all the MIs and expressing the r.h.s. in terms of the MIs (using the IBP identities), we obtain a closed set of linear DEs for the MIs.

Analogously, for an integral  $I(p_1 \cdot p_2, m^2) = F[D, J]$ :

$$rac{\partial}{\partial(p_1\cdot p_2)} I = rac{p_1^lpha}{p_1\cdot p_2} rac{\partial}{\partial p_1^lpha} I = F \left[ D, rac{p_1^lpha}{p_1\cdot p_2} rac{\partial}{\partial p_1^lpha} J 
ight] = ( ext{linear combination of MIs}).$$

In our example, when the integrand  $J_{1111110}$  is differentiated w.r.t.  $m^2$ , we get:

$$rac{\partial}{\partial (m^2)} \, J_{1111110} = -J_{2111110} - J_{1121110} - J_{1112110} - J_{1111210} - J_{1111210} - J_{111120}.$$

Thus:

$$egin{aligned} rac{\partial}{\partial(m^2)} \, I_{1111110} &= rac{\partial}{\partial(m^2)} \, F[D, J_{111110}] = F\left[D, rac{\partial}{\partial(m^2)} \, J_{111110}
ight] = \ &= -I_{2111110} - I_{1121110} - I_{1112110} - I_{1111210} - I_{1111210} - I_{1111120} \ \end{aligned}$$

Writing such derivatives for all the MIs and expressing the r.h.s. in terms of the MIs (using the IBP identities), we obtain a closed set of linear DEs for the MIs.

Analogously, for an integral  $I(p_1 \cdot p_2, m^2) = F[D, J]$ :

$$rac{\partial}{\partial(p_1\cdot p_2)} I = rac{p_1^{lpha}}{p_1\cdot p_2} rac{\partial}{\partial p_1^{lpha}} I = F \left[ D, rac{p_1^{lpha}}{p_1\cdot p_2} rac{\partial}{\partial p_1^{lpha}} J 
ight] = ( ext{linear combination of MIs}).$$

Initial conditions for the DEs are set in regions where the evaluation of MIs is easier, e.g., for (masses)  $\gg$  (products of external momenta).

The recurrence relations following from the IBP have been solved analytically in several cases [e.g., K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159; F.V. Tkachov, Phys. Lett. B100 (1981) 65].

However, in general, brute-force computer algebra methods are applied.

The most popular approach is the Laporta algorithm [S. Laporta, hep-ph/0102033].

The recurrence relations following from the IBP have been solved analytically in several cases [e.g., K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159; F.V. Tkachov, Phys. Lett. B100 (1981) 65].

However, in general, brute-force computer algebra methods are applied.

The most popular approach is the Laporta algorithm [S. Laporta, hep-ph/0102033].

Consider a family of integrals  $I_{n_1...n_k}$  defined by a set of denominators  $\{A_1, \ldots, A_k\}$ . In any particular physical calculation only a finite set of them is relevant.

- (i) We extend this set by including all the integrals with  $(\text{sum of positive indices}) \le N_1$  and  $|\text{sum of negative indices}| \le N_2$ , with  $N_i$  fixed in a quasi-intuitive manner.
- (ii) Derive all the IBP relations involving only the selected integrals.
- (iii) Establish an absolute "simplicity" ordering in the selected set. Roughly: First criterion: number of positive indices, Second criterion: sum of positive indices, Third criterion: |sum of positive indices|, Next criteria: values of indices at particular positions.
- (iv) Solve the system of linear equations, expressing the "least simple" integral in terms of "simpler" ones.

The recurrence relations following from the IBP have been solved analytically in several cases [e.g., K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159; F.V. Tkachov, Phys. Lett. B100 (1981) 65].

However, in general, brute-force computer algebra methods are applied.

The most popular approach is the Laporta algorithm [S. Laporta, hep-ph/0102033].

Consider a family of integrals  $I_{n_1...n_k}$  defined by a set of denominators  $\{A_1, \ldots, A_k\}$ . In any particular physical calculation only a finite set of them is relevant.

- (i) We extend this set by including all the integrals with (sum of positive indices)  $\leq N_1$  and |sum of negative indices|  $\leq N_2$ , with  $N_j$  fixed in a quasi-intuitive manner.
- (ii) Derive all the IBP relations involving only the selected integrals.

(iii) Establish an absolute "simplicity" ordering in the selected set. Roughly: First criterion: number of positive indices, Second criterion: sum of positive indices, Third criterion: |sum of positive indices|, Next criteria: values of indices at particular positions.

(iv) Solve the system of linear equations, expressing the "least simple" integral in terms of "simpler" ones.

### Unfortunately, this method is computationally heavy.

My current project: 451 families with  $\mathcal{O}(1000)$  integrals each, depending on two variables: D and  $m_1/m_2$ . For some families, few weeks with 1TB RAM and 2TB disk space are insufficient.

Let us consider the operators  $O_{ik} = \frac{\partial}{\partial q_i} r_k$  acting on the integrands J, where  $r_k \in \{q_1, \ldots, q_L, p_1, \ldots, p_E\}$ . They form a closed Lie algebra with the commutation relations

 $[O_{ik},O_{jl}]=\delta_{il}O_{jk}-\delta_{jk}O_{il}.$ 

Let us consider the operators  $O_{ik} = \frac{\partial}{\partial q_i} r_k$  acting on the integrands J, where  $r_k \in \{q_1, \ldots, q_L, p_1, \ldots, p_E\}$ . They form a closed Lie algebra with the commutation relations

$$[O_{ik},O_{jl}]=\delta_{il}O_{jk}-\delta_{jk}O_{il}.$$

They are related to infinitesimal redefinitions of loop momenta  $q_i \rightarrow q'_i = q_i + \eta_{ik}r_k$  with constant  $\eta_{ik}$ , under which the integrals are invariant:

$$F[D,J(q',p)]=F\left[D,\;J(q,p)+arphi_{ik}O_{ik}J(q,p)
ight]+\mathcal{O}(\eta^2).$$
zero by IBP

Let us consider the operators  $O_{ik} = \frac{\partial}{\partial q_i} r_k$  acting on the integrands J, where  $r_k \in \{q_1, \ldots, q_L, p_1, \ldots, p_E\}$ . They form a closed Lie algebra with the commutation relations

$$[O_{ik},O_{jl}]=\delta_{il}O_{jk}-\delta_{jk}O_{il}.$$

They are related to infinitesimal redefinitions of loop momenta  $q_i \rightarrow q'_i = q_i + \eta_{ik}r_k$  with constant  $\eta_{ik}$ , under which the integrals are invariant:

$$F[D,J(q',p)] = F\left[D, \; J(q,p) + \underbrace{\eta_{ik}O_{ik}J(q,p)}_{ ext{zero by IBP}} \; 
ight] + \mathcal{O}(\eta^2).$$

A one-dimensional analogy:

$$f(x) = (1+\eta) g[(1+\eta)x+2\eta] \quad \Rightarrow \quad \int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} g(x) dx.$$

Thus, we may consider the IBP relations as following from the fact that the integrals are constant on the orbits corresponding to the generators  $Q_{ik}$ .

Let us consider the operators  $O_{ik} = \frac{\partial}{\partial q_i} r_k$  acting on the integrands J, where  $r_k \in \{q_1, \ldots, q_L, p_1, \ldots, p_E\}$ . They form a closed Lie algebra with the commutation relations

$$[O_{ik},O_{jl}]=\delta_{il}O_{jk}-\delta_{jk}O_{il}.$$

They are related to infinitesimal redefinitions of loop momenta  $q_i \rightarrow q'_i = q_i + \eta_{ik}r_k$  with constant  $\eta_{ik}$ , under which the integrals are invariant:

$$F[D,J(q',p)] = F\left[D, \; J(q,p) + \underbrace{\eta_{ik}O_{ik}J(q,p)}_{ ext{zero by IBP}} \; 
ight] + \mathcal{O}(\eta^2).$$

A one-dimensional analogy:

$$f(x) \;=\; (1+\eta)\,g[(1+\eta)x+2\eta] \quad\Rightarrow\quad \int_{-\infty}^{+\infty}f(x)dx \;=\; \int_{-\infty}^{+\infty}g(x)dx.$$

Thus, we may consider the IBP relations as following from the fact that the integrals are constant on the orbits corresponding to the generators  $Q_{ik}$ .

This is the starting point of the proof that the number of MIs is finite.

Details in arXiv:1004.4199: "The reader familiar with the theory of holonomic D-modules should consider Theorem 2 as an exercise."

Let us consider the operators  $O_{ik} = \frac{\partial}{\partial q_i} r_k$  acting on the integrands J, where  $r_k \in \{q_1, \ldots, q_L, p_1, \ldots, p_E\}$ . They form a closed Lie algebra with the commutation relations

$$[O_{ik},O_{jl}]=\delta_{il}O_{jk}-\delta_{jk}O_{il}.$$

They are related to infinitesimal redefinitions of loop momenta  $q_i \rightarrow q'_i = q_i + \eta_{ik}r_k$  with constant  $\eta_{ik}$ , under which the integrals are invariant:

$$F[D,J(q',p)] = F\left[D, \; J(q,p) + \underbrace{\eta_{ik}O_{ik}J(q,p)}_{ ext{zero by IBP}} \; 
ight] + \mathcal{O}(\eta^2).$$

A one-dimensional analogy:

$$f(x) \;=\; (1+\eta)\,g[(1+\eta)x+2\eta] \quad\Rightarrow\quad \int_{-\infty}^{+\infty}f(x)dx \;=\; \int_{-\infty}^{+\infty}g(x)dx.$$

Thus, we may consider the IBP relations as following from the fact that the integrals are constant on the orbits corresponding to the generators  $Q_{ik}$ .

This is the starting point of the proof that the number of MIs is finite.

Details in arXiv:1004.4199: "The reader familiar with the theory of holonomic D-modules should consider Theorem 2 as an exercise."

Algorithms and codes for solving the IBP relations based on their "group structure" have been developed. [R.N. Lee, arXiv:1212.2685, 1310.1145]. However, they are not general.  $ext{Description in terms of functions on } \mathbb{Z}^k$ Change of notation:  $I_{n_1,...,n_k} = f(n_1,\ldots,n_k)$ 

Keep the external momenta and parameters fixed, so now

[see: R.N. Lee, arXiv:0804.3008] [more: T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, arXiv:1712:09215]

$$f:\mathbb{Z}^k
ightarrow\mathbb{C}.$$

Keep the external momenta and parameters fixed, so now ~~f

We introduce two types of operators acting on such functions:

$$egin{aligned} &(A_lpha f)(n_1,\ldots,n_k) = n_lpha \, f(n_1,\ldots,n_lpha+1,\ldots,n_k) \ &(B_lpha f)(n_1,\ldots,n_k) = f(n_1,\ldots,n_lpha-1,\ldots,n_k) \end{aligned}$$

It is straightforward to verify that  $[A_lpha,B_eta]=\delta_{lphaeta}.$ 

[see: R.N. Lee, arXiv:0804.3008] [more: T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, arXiv:1712:09215]

$$f:\mathbb{Z}^k
ightarrow\mathbb{C}.$$

Description in terms of functions on  $\mathbb{Z}^k$ Change of notation:  $I_{n_1,\dots,n_k}=f(n_1,\dots,n_k)$ Keep the external momenta and parameters fixed, so now [see: R.N. Lee, arXiv:0804.3008] [more: T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, arXiv:1712:09215]

$$f:\mathbb{Z}^k
ightarrow\mathbb{C}.$$

We introduce two types of operators acting on such functions:

$$egin{aligned} &(A_lpha f)(n_1,\ldots,n_k) = n_lpha \,f(n_1,\ldots,n_lpha+1,\ldots,n_k) \ &(B_lpha f)(n_1,\ldots,n_k) = f(n_1,\ldots,n_lpha-1,\ldots,n_k) \end{aligned}$$
 It is straightforward to verify that  $[A_lpha,B_eta] = \delta_{lphaeta}.$ 

Let  $\mathcal{W}$  be the (Weyl) algebra of all possible polynomials in such operators.

Let  $\mathcal{L}$  be the left ideal in  $\mathcal{W}$  generated by  $P_{ij}: P_{ij}f(n_1, \ldots, n_k) = F[D, O_{ij}J_{n_1, \ldots, n_k}].$ It consists of all operators of the form  $\sum_{ij} C_{ij}P_{ij}$  with  $C_{ij} \in \mathcal{W}.$ 

All the  $\ P_{ij}$  have the form  $a_{ij}^{lphaeta}A_{lpha}B_{eta}+b_{ij}^{lpha}A_{lpha}+c_{ij},$  with  $a_{ij}^{lphaeta},b_{ij}^{lpha},c_{j}\in\mathbb{C}.$ 

Description in terms of functions on  $\mathbb{Z}^k$ Change of notation:  $I_{n_1,...,n_k}=f(n_1,\ldots,n_k)$ Keep the external momenta and parameters fixed, so now [see: R.N. Lee, arXiv:0804.3008] [more: T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, arXiv:1712:09215]

$$f:\mathbb{Z}^k
ightarrow\mathbb{C}.$$

We introduce two types of operators acting on such functions:

$$egin{aligned} &(A_lpha f)(n_1,\ldots,n_k) = n_lpha \,f(n_1,\ldots,n_lpha+1,\ldots,n_k) \ &(B_lpha f)(n_1,\ldots,n_k) = f(n_1,\ldots,n_lpha-1,\ldots,n_k) \ & ext{it is straightforward to verify that } [A_lpha,B_eta] = \delta_{lphaeta}. \end{aligned}$$

Let  $\mathcal{W}$  be the (Weyl) algebra of all possible polynomials in such operators.

Let  $\mathcal{L}$  be the left ideal in  $\mathcal{W}$  generated by  $P_{ij}: P_{ij}f(n_1, \ldots, n_k) = F[D, O_{ij}J_{n_1, \ldots, n_k}].$ It consists of all operators of the form  $\sum_{ij} C_{ij}P_{ij}$  with  $C_{ij} \in \mathcal{W}.$ 

All the  $P_{ij}$  have the form  $a_{ij}^{lphaeta}A_{lpha}B_{eta}+b_{ij}^{lpha}A_{lpha}+c_{ij},$  with  $a_{ij}^{lphaeta},b_{ij}^{lpha},c_{j}\in\mathbb{C}.$ 

Let  $\mathcal{R}$  be the right ideal in  $\mathcal{W}$  that consists of all operators  $\sum_{lpha} B_{lpha} A_{lpha} C_{lpha}$  with  $C_{lpha} \in \mathcal{W}$ . For any  $R \in \mathcal{R}$ , we have  $(Rf)(1, \ldots, 1) = 0$ . Description in terms of functions on  $\mathbb{Z}^k$ Change of notation:  $I_{n_1,...,n_k}=f(n_1,\ldots,n_k)$ Keep the external momenta and parameters fixed, so now [see: R.N. Lee, arXiv:0804.3008] [more: T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, arXiv:1712:09215]

$$f:\mathbb{Z}^k
ightarrow\mathbb{C}.$$

We introduce two types of operators acting on such functions:

$$egin{aligned} &(A_lpha f)(n_1,\ldots,n_k) = n_lpha \,f(n_1,\ldots,n_lpha+1,\ldots,n_k) \ &(B_lpha f)(n_1,\ldots,n_k) = f(n_1,\ldots,n_lpha-1,\ldots,n_k) \end{aligned}$$
 It is straightforward to verify that  $[A_lpha,B_eta] = \delta_{lphaeta}.$ 

Let  $\mathcal{W}$  be the (Weyl) algebra of all possible polynomials in such operators.

Let  $\mathcal{L}$  be the left ideal in  $\mathcal{W}$  generated by  $P_{ij}: P_{ij}f(n_1, \ldots, n_k) = F[D, O_{ij}J_{n_1, \ldots, n_k}].$ It consists of all operators of the form  $\sum_{ij} C_{ij}P_{ij}$  with  $C_{ij} \in \mathcal{W}.$ 

All the  $P_{ij}$  have the form  $a_{ij}^{lphaeta}A_{lpha}B_{eta}+b_{ij}^{lpha}A_{lpha}+c_{ij},$  with  $a_{ij}^{lphaeta},b_{ij}^{lpha},c_{j}\in\mathbb{C}.$ 

Let  $\mathcal{R}$  be the right ideal in  $\mathcal{W}$  that consists of all operators  $\sum_{\alpha} B_{\alpha} A_{\alpha} C_{\alpha}$  with  $C_{\alpha} \in \mathcal{W}$ . For any  $R \in \mathcal{R}$ , we have  $(Rf)(1, \ldots, 1) = 0$ .

Our goal is to find a decomposition w = L + R + r for any  $w \in \mathcal{W}$  such that  $L \in \mathcal{L}$ ,  $R \in \mathcal{R}$ , and r is the simplest possible.

Next, we focus on such w that  $(wf)(1,\ldots,1)=f(n_1,\ldots,n_k)$  for all the indices of interest.

Description in terms of functions on  $\mathbb{Z}^k$ Change of notation:  $I_{n_1,...,n_k}=f(n_1,\ldots,n_k)$ Keep the external momenta and parameters fixed, so now [see: R.N. Lee, arXiv:0804.3008] [more: T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, arXiv:1712:09215]

$$f:\mathbb{Z}^k
ightarrow\mathbb{C}.$$

We introduce two types of operators acting on such functions:

$$egin{aligned} &(A_lpha f)(n_1,\ldots,n_k) = n_lpha \,f(n_1,\ldots,n_lpha+1,\ldots,n_k) \ &(B_lpha f)(n_1,\ldots,n_k) = f(n_1,\ldots,n_lpha-1,\ldots,n_k) \ & ext{It is straightforward to verify that } [A_lpha,B_eta] = \delta_{lphaeta}. \end{aligned}$$

Let  $\mathcal{W}$  be the (Weyl) algebra of all possible polynomials in such operators.

Let  $\mathcal{L}$  be the left ideal in  $\mathcal{W}$  generated by  $P_{ij}: P_{ij}f(n_1, \ldots, n_k) = F[D, O_{ij}J_{n_1, \ldots, n_k}].$ It consists of all operators of the form  $\sum_{ij} C_{ij}P_{ij}$  with  $C_{ij} \in \mathcal{W}.$ 

All the  $P_{ij}$  have the form  $a_{ij}^{lphaeta}A_{lpha}B_{eta}+b_{ij}^{lpha}A_{lpha}+c_{ij},$  with  $a_{ij}^{lphaeta},b_{ij}^{lpha},c_{j}\in\mathbb{C}.$ 

Let  $\mathcal{R}$  be the right ideal in  $\mathcal{W}$  that consists of all operators  $\sum_{lpha} B_{lpha} A_{lpha} C_{lpha}$  with  $C_{lpha} \in \mathcal{W}$ . For any  $R \in \mathcal{R}$ , we have  $(Rf)(1, \ldots, 1) = 0$ .

Our goal is to find a decomposition w = L + R + r for any  $w \in \mathcal{W}$  such that  $L \in \mathcal{L}$ ,  $R \in \mathcal{R}$ , and r is the simplest possible.

Next, we focus on such w that  $(wf)(1,\ldots,1)=f(n_1,\ldots,n_k)$  for all the indices of interest.

To my knowledge, this problem still awaits a solution for generic  $\,k\in\mathbb{N}\,$  and  $\,a_{ij}^{lphaeta},b_{ij}^lpha,c_j\in\mathbb{C}$ . [9]

Suppose our MIs depend only on two parameters:  $\epsilon = (4 - D)/2$  and a single dimensionless ratio t of two kinematical variables (masses or momentum products).

Suppose our MIs depend only on two parameters:  $\epsilon = (4 - D)/2$  and a single dimensionless ratio t of two kinematical variables (masses or momentum products). Let's write the MIs as N components of a vector  $\psi(t, \epsilon)$ . Then the DEs for them take the form:

 $rac{\partial}{\partial t}\psi(t,\epsilon) \;=\; H(t,\epsilon)\,\psi(t,\epsilon),$ 

where the N imes N matrix H is a rational function of t and  $\epsilon$ .

Suppose our MIs depend only on two parameters:  $\epsilon = (4 - D)/2$  and a single dimensionless ratio t of two kinematical variables (masses or momentum products). Let's write the MIs as N components of a vector  $\psi(t, \epsilon)$ . Then the DEs for them take the form:

$$rac{\partial}{\partial t}\psi(t,\epsilon) \;=\; H(t,\epsilon)\,\psi(t,\epsilon),$$

where the N imes N matrix H is a rational function of t and  $\epsilon$ .

A simplification of the DEs can often be achieved via redefining the MI basis according to  $\psi = X \widetilde{\psi}$ , where  $X(t, \epsilon)$  is an invertible matrix. Then:

 $rac{\partial}{\partial t} \widetilde{\psi}(t,\epsilon) \; = \; \widetilde{H}(t,\epsilon) \, \widetilde{\psi}(t,\epsilon),$ 

with  $\widetilde{H} = X^{-1}HX - X^{-1}\frac{\partial}{\partial t}X.$ 

Suppose our MIs depend only on two parameters:  $\epsilon = (4 - D)/2$  and a single dimensionless ratio t of two kinematical variables (masses or momentum products). Let's write the MIs as N components of a vector  $\psi(t, \epsilon)$ . Then the DEs for them take the form:

$$rac{\partial}{\partial t}\,\psi(t,\epsilon) \;=\; H(t,\epsilon)\,\psi(t,\epsilon),$$

where the N imes N matrix H is a rational function of t and  $\epsilon$ .

A simplification of the DEs can often be achieved via redefining the MI basis according to  $\psi = X \widetilde{\psi}$ , where  $X(t, \epsilon)$  is an invertible matrix. Then:

 $rac{\partial}{\partial t} \widetilde{\psi}(t,\epsilon) \;=\; \widetilde{H}(t,\epsilon) \, \widetilde{\psi}(t,\epsilon),$ 

with  $\widetilde{H} = X^{-1}HX - X^{-1}\frac{\partial}{\partial t}X.$ 

Dedicated codes (see, e.g., arXiv:1705.06252) search (often successfully) for such matrices old X that

$$\widetilde{H}(t,\epsilon) = \epsilon \, rac{d}{dt} \, \sum_j K_j \, \ln h_k(t),$$

where  $K_j$  are constant matrices, while the scalar functions  $h_k(t)$  are called "letters".

Suppose our MIs depend only on two parameters:  $\epsilon = (4 - D)/2$  and a single dimensionless ratio t of two kinematical variables (masses or momentum products). Let's write the MIs as N components of a vector  $\psi(t, \epsilon)$ . Then the DEs for them take the form:

$$rac{\partial}{\partial t} \, \psi(t,\epsilon) \; = \; H(t,\epsilon) \, \psi(t,\epsilon) \, ,$$

where the N imes N matrix H is a rational function of t and  $\epsilon$ .

A simplification of the DEs can often be achieved via redefining the MI basis according to  $\psi = X \widetilde{\psi}$ , where  $X(t, \epsilon)$  is an invertible matrix. Then:

$$rac{\partial}{\partial t} \, \widetilde{\psi}(t,\epsilon) \; = \; \widetilde{H}(t,\epsilon) \, \widetilde{\psi}(t,\epsilon),$$

with  $\widetilde{H} = X^{-1}HX - X^{-1}\frac{\partial}{\partial t}X.$ 

Dedicated codes (see, e.g., arXiv:1705.06252) search (often successfully) for such matrices old X that

$$\widetilde{H}(t,\epsilon) = \epsilon \, rac{d}{dt} \, \sum_j K_j \, \ln h_k(t),$$

where  $K_j$  are constant matrices, while the scalar functions  $h_k(t)$  are called "letters". This is advantageous because in practice we are interested in Laurent expansions

$$\widetilde{\psi}(t,\epsilon) = \sum_{n=n_{ ext{min}}}^{\infty} \epsilon^n \; \widetilde{\psi}_n(t).$$

Next: Getting  $\widetilde{\psi}_n(t)$  via iterative integration. Harmonic Polylogarithms (HPLs).

• One of the most powerful methods for computing dimensionally regularized Feynman integrals relies on expressing them in terms of MIs, with the help of IBP relations.

- One of the most powerful methods for computing dimensionally regularized Feynman integrals relies on expressing them in terms of MIs, with the help of IBP relations.
- Thanks to the IBP reduction, we are able to derive DEs for the MIs that can be solved either analytically or numerically, with initial conditions in "easy" regions.

- One of the most powerful methods for computing dimensionally regularized Feynman integrals relies on expressing them in terms of MIs, with the help of IBP relations.
- Thanks to the IBP reduction, we are able to derive DEs for the MIs that can be solved either analytically or numerically, with initial conditions in "easy" regions.
- Unfortunately, the IBP reduction is often computationally heavy, mainly due to simplification of huge numbers of rational functions. Further progress in understanding the algebraic structure of the IBP relations is necessary.

- One of the most powerful methods for computing dimensionally regularized Feynman integrals relies on expressing them in terms of MIs, with the help of IBP relations.
- Thanks to the IBP reduction, we are able to derive DEs for the MIs that can be solved either analytically or numerically, with initial conditions in "easy" regions.
- Unfortunately, the IBP reduction is often computationally heavy, mainly due to simplification of huge numbers of rational functions. Further progress in understanding the algebraic structure of the IBP relations is necessary.
- The DEs can often be brought to a "canonical" form with the help of "gauge-like" transformations. In such cases, analytical solutions can be found via iterative integration.