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The two-dimensional de Sitter space

De Sitter space

dS
.
=
�
x 2 R1+2 | x · x = x20 � x21 � x22 = �1

 
.

Wedges: let W1
.
=
�
x 2 dS | x2 > |x0|

 
,

W = ⇤W1 ⇢ dS, ⇤ 2 SO0(1, 2).

The set of all wedges is denoted by W.

Lorentz Boosts (hyperbolic subgroups)

⇤W (t) = ⇤⇤1(t)⇤
�1, ⇤1(t)

.
=

0

@
cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

1

A .
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Wedge

Figure: Wedge
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⇤W (t)W = W , t 2 R, and, for all t 2 R,

⇤⇤0W (t) =

(
⇤
0
⇤W (t)⇤0�1

se ⇤
0 2 SO0(1, 2) ,

⇤
0
⇤W (�t)⇤0�1

se ⇤
0 2 O#

+(1, 2) .

Rotations (elliptic subgroups)

↵ 7! R0(↵)
.
=

0

@
1 0 0

0 cos↵ � sin↵
0 sin↵ cos↵

1

A , ↵ 2 [0, 2⇡) .

Horospheric Translations (parabolic subgroups)

q 7! D(q)
.
=

0

B@
1 +

q2

2 q q2

2
q 1 q

� q2

2 �q 1� q2

2

1

CA , q 2 R .
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Rotations and Horospheric Translations

Cauchy surfaces Horospheres

Figure: dS
.
=
�
x 2 R1+2 | x2

0 � x2
1 � x2

2 = �1
 
.
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Space-time reflections

T
.
=

0

@
�1 0 0

0 1 0

0 0 1

1

A , P1
.
=

0

@
1 0 0

0 1 0

0 0 �1

1

A 2 O(1, 2).

The reflection at the edge of the wedge

⇥⇤W1 = ⇤(P1T )⇤
�1, ⇤ 2 SO0(1, 2).

We have

⇥WW = W 0, ⇥WW = W.
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Introduction Free Massive & Massless Bosons Interacting Models

Free Massive & Massless Bosons
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Bargmann’s classification of the UIRs of SO0(1, 2)

For m2 > 0, the bosonic one-particle Hilbert space H is the

completion of the linear span of the eigenfunctions of the

angular momentum operator,

hk( )
.
=

eik p
r ⇡

, k 2 Z ,  2 [0, 2⇡) ,

with respect to the scalar product

hh, h0iH =
⌦
h,

1

2!
h0
↵
L2(S1,rd )

.

Christian Jäkel 8/29
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The Fourier coe�cients of the strictly positive self-adjoint

operator ! are expressed in terms of � functions:

e!(k) = k + s+

r

�

⇣
k+s+

2

⌘

�

⇣
k�s+

2

⌘
�

⇣
k+1�s+

2

⌘

�

⇣
k+1+s+

2

⌘ .

Note that e!(k) ⇠
q

k2

r2 +m2 for k large, and that the constant

m2 > 0 enters through the parameter

s± = �1

2
⌥ i⌫ , ⌫ =

8
<

:
i
q

1
4 �m2r2 , 0 < m2 < 1

4r2 ,q
m2r2 � 1

4 , m2 � 1
4r2 .
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In the limit m2 ! 0, the Fourier coe�cients e!(k) become

e!(k) = |k|
r 8k 6= 0 .

In fact, one is confronted with two one-particle spaces H±
,

which are given by the completion of the linear span of the

eigenfunctions

�
hk | k 2 N

 
and

�
hk | �k 2 N

 
,

respectively. The zero mode (the constant function on the

geodesic Cauchy surface corresponding to k = 0) no longer

appears in the massless case.
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The one-particle space H carries a UIR of SO0(1, 2) for m2 > 0

and spin zero, generated by the rotations and boosts,

�
u(R0(↵))h

�
( ) = h( � ↵) , ↵ 2 [0, 2⇡) ,

and

u(⇤1(t)) = eit! rcos, t 2 R .

These representations extend to (anti-) unitary representations

of O(1, 2). To be able to implement the reflections for m2
= 0,

we will use the direct sum H+ �H�
in the massless case.

Christian Jäkel 11/29
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Localized Cauchy data

We may assume that the Cauchy data have their support

contained in a connected open interval I ⇢ S1
. This leads us to

consider an R-linear subspace

H(OI)
.
=
�
h 2 H | supp<h ⇢ I, supp!�1=h ⇢ I

 
.

Modular localisation

Let `W be the self-adjoint generator of the one-parameter

subgroup t 7! u
�
⇤W (t)

�
, and let

�W
.
= e�2⇡`W , jW

.
= u(⇥W ).

�W is a densely defined, closed, positive non-singular linear

operator on H; jW is an anti-unitary operator on H.
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These properties allow one to introduce the operator

sW
.
= jW �

1/2
W ,

sW is a densely defined, antilinear, closed operator on H with

R(sW ) = D(sW ) and s2W ⇢ 1. Moreover,

u(⇤)sWu(⇤)�1
= s⇤W , ⇤ 2 SO0(1, 2).

i.) For the wedge W1, we set

H(W1)
.
=
�
h 2 D

�
sW1

�
| sW1

h = h
 
.

ii.) For an arbitrary wedge W = ⇤W1, ⇤ 2 SO0(1, 2), we set

H(W )
.
= u(⇤)H(W1) .

iii.) For a causally complete, open and bounded region O, we

set

H(O)
.
=

\

O⇢W

H(W ) .
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Localization of Cauchy data = Modular localization

For I a bounded open interval of length |I|  ⇡ r in S1
there

holds

H(OI) =
\

OI⇢W

H(W ) ,

where OI = I 00 denotes the causal completion of the interval I
in dS. This follows from the fact that �(W 0

) \ S1
is in the

interior Ic
.
= S1 \ I of the complement of I within S1

.

Remark: in the massless case m = 0, modular localization and

the localization of Cauchy data still coincide, there exist

perfectly well-behaved Haag-Kastler nets, but no point-like

fields!
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Fock Space

Fock space �(H)
.
= �1

n=0H⌦n
s ,

Coherent vectors

�(h) = �1
n=0

1p
n!

h⌦s · · ·⌦s h| {z }
n�vezes

Second quantisation of operators (‘exponentiation’): let A
be a closed linear operator, densely defined on H. Then,

�(A) : �(H) ! �(H)

is the closure of the linear operator acting on the linear

combinations of coherent vectors with exponent in D(A)

such that:

�(A)�(h) = �(Ah).

‘Exponentiation’ preserves self-adjointness, positivity and

unitarity.
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The Weyl Algebra

For h, g 2 H, the relations

V (h)V (g) = e�i=hh,giV (h+ g),

V (h)⌦� = e�
1
2 ||h||

2
�(ih), ⌦�

.
= �(0),

define unitary operators, called the Weyl operators .

They satisfy V ⇤
(h) = V (�h) and V (0) = 1. The group

⇤ 7! u(⇤) induces a group of automorphisms

↵�
⇤(V (h))

.
= V

�
u(⇤)h

�
, h 2 H, ⇤ 2 SO0(1, 2),

representing the free dynamics.
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Definition (A Net of Local Algebras)

We associate v. Neumann algebras to space-time regions in dS:

i.) for the wedge W1,

A�(W1)
.
= {V (h) | h 2 H(W1)}00;

ii.) for an arbitrary wedge W , set

A�(W )
.
= ↵�

⇤

�
A�

�
W1

��
, W = ⇤W1;

iii.) for an arbitrary bounded, causally complete, convex region

O ⇢ dS, set

A�(O) =

\

O⇢W

A�
�
W
�
.
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Theorem

i.) The map O 7! A�(O) preserves inclusions and

respects the causal structure.

ii.) The algebras A�(O) are hyperfinite type III1.

iii.) The automorphisms act covariantely, i.e.,

↵�
⇤ (A�(O)) = A�(⇤O).

iv.) JW = �(jW ) is a modular conjugation for (A�(W ),⌦�).

v.) �W = �(�W ) is the modular operator for (A�(W ),⌦�).
The unitary groups t 7! �

it
W implement the Lorentz boosts.

The free Fock vacuum vector ⌦� = �(0).
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Remark

We have constructed the net of von Neumann algebras from the

representation theory of SO0(1, 2) using modular theory.

For the massive case, we could have arrived at exactly the same

algebraic structure by quantizing the Klein-Gordon equation

�
⇤dS +m2

�
�(x) = 0 ,

smearing the field operator with test-functions that arise by

restricting the Fourier-Helgason transformation to the mass

shell. The von Neumann algebras than arise by going over to

bounded functions of the unbounded field operators.
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Interacting Models
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A new proposal (Mund & J., 2015)

We can exploit modular theory for the construction of group

representations !

Theorem (Tomita-Takesaki)

Given a cyclic and separating vector ⌦ (such vectors are dense

in H) for A�(W1), the polar decomposition of the map

A⌦ 7! A⇤
⌦ , A 2 A�(W1) ,

gives rise to a one-parameter group

t 7! �
it
W1

, t 2 R ,

which leaves A�(W1) and ⌦ invariant. Moreover,

⌦ 2 P]
�
A�(W (↵)

),⌦�
�
implies J

W (↵) = J�
W (↵).
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) candidate for a new Lorentz boost. To ensure that we get a

new representation of SO0(1, 2), we require that

— ⌦ is cyclic for A�(W1).

— ⌦ is invariant under the rotations U�(R0(↵)), ↵ 2 [0, 2⇡),
which leave the Cauchy surface S1

invariant.

— ⌦ lies in the positive cone {AJ�
W1

A⌦� | A 2 A�(W1)}; this
ensures that JW1

= J�
W1

.

— some rather technical properties (which are satisfied in

models, but should be eliminated from this list).

Theorem (Mund & J (2015 & work in progress))

The boost t 7! �
it
W1

and the (free) rotations U�(R0(↵)),
↵ 2 [0, 2⇡), generate a representation U(⇤) of SO0(1, 2).

Proof. Extend ⌦ to a rotation invariant state on the Euclidean

sphere and then analytically continue the virtual representation

of SO(3) to SO0(1, 2).Christian Jäkel 22/29
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Example: The vacuum vector for the P('( ))2 model

The interacting de Sitter vacuum state for the P('( ))2 model

is induced by a vector in Fock space:

⌦ =
e�⇡H⌦�

||e�⇡H⌦�||
,

where

H := L� +

Z ⇡/2

�⇡/2
r2 cos d :P('( )): .

Here L� = d�(`1). Note that ⌦ induces a geodesic KMS state.
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Finite speed of light

The representation U(⇤) of SO0(1, 2) is said to satisfy finite

speed of light, if for any wedge W ,

A (W ) ⇢ A�
�
(�(W ) \ S1

)
00� .

If finite speed of light holds, the local algebras associated to an

interval I ⇢ S1
on the Cauchy surface coincide with those of the

free theory, i.e.,

A (OI) = A�(OI) , I ⇢ S1 .

Conjecture: the technical assumptions on ⌦ are not needed.
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Definition (A new net of local algebras)

We proceed just as for the free theory: we associate v. Neumann

algebras to space-time regions in dS:

i.) for the wedge W1, set A (W1)
.
= A�(W1);

ii.) for an arbitrary wedge W = ⇤W1, ⇤ 2 SO0(1, 2),
set

A (W )
.
= U(⇤)A�(W1)U

�1
(⇤) ;

iii.) for an arbitrary bounded, causally complete, convex region

O ⇢ dS, set with O00
bounded by

A (O) =

\

O⇢W

A
�
W
�
.

The map O 7! A (O) specifies a new quantum theory.
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Theorem (Verification of the Haag-Kastler Axioms)

The representation ↵ : ⇤ 7! ↵⇤ of the Lorentz group SO0(1, 2)
is covariant:

↵⇤
�
A (O)

�
= A (⇤O) , ⇤ 2 SO0(1, 2) .

The local algebras satisfy micro-causality, i.e.,

A (O1) ⇢ A (O2)
0

se O1 ⇢ O0
2 .

Here O0
denotes the space-like complement of O in dS and

A (O)
0
is the commutante of A (O) in B(�(H)).
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(Additivity).For X a double cone or a wedge, there holds

A (X) =

_

O⇢X

A (O) . (1)

The right hand side denotes the von Neumann algebra

generated by the local algebras associated to double cones O
contained in X.

(Weak additivity). For each double cone O ⇢ dS there holds

_

⇤2SO0(1,2)

A (⇤O) = A (dS)
�
= B(�(H))

�
.

The time-slice axiom holds as well.
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Theorem (continuation; Mund & J. (2017))

⌦ 2 H is the unique (up to a phase factor) vector which

- is invariant under the action of U(SO0(1, 2));

- for every wedge W , the map

t 7! h⌦, A��itB⌦i , A,B 2 A (W ) ,

allows an analytic continuation to {t 2 C | 0 < =t < 1/2}.
Moreover, the boundary values satisfies the KMS condition

(describing thermalisation due to the curvature of dS).

Remark: In the limit of curvature to zero, these analyticity

properties imply that the limiting state is a Poincaré invariant

positive energy state in Minkwoski space, i.e., a vacuum state.
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Connes’ cocycle and non-commutative L
p
spaces

The relative modular operator �⌦,⌦� = S⇤
⌦,⌦�

S⌦,⌦� arises from

the polar decomposition of the anti-linear map

S⌦,⌦�M⌦� = M⇤
⌦ , M 2 A�(W1) .

Given ⌦ and ⌦�, the Radon-Nikodym derivative exists as a

strongly continuous one-parameter family of unitaries

ut = [D⌦ : D⌦�]t = �
it
⌦,⌦��

�it
� 2 A�(W1) , t 2 R ,

which intertwines the modular groups for ⌦ and ⌦�, i.e.,

�t(M) = ut �
�
t (M)u⇤t 8M 2 A�(W1), ��t = ad��it

�
,

and satisfies Connes’ cocycle relation ut+s = ut ��t (us), t, s 2 R.
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