New results for the operator product expansion

Markus B. Fröb

Department of Mathematics, University of York, YO10 5DD, Heslington, York, UK

Banff workshop "Physics and Mathematics of Quantum Field Theory", 31. July 2018

Correlation functions and the OPE

A wishlist

Correlation functions and the OPE

• We know the QFT if we know (at least) all matrix elements of all operators and their products $\langle \Psi | \hat{O}_{A_1}(x_1) \cdots \hat{O}_{A_n}(x_n) | \Psi' \rangle$

- We know the QFT if we know (at least) all matrix elements of all operators and their products $\langle \Psi | \hat{O}_{A_1}(x_1) \cdots \hat{O}_{A_n}(x_n) | \Psi' \rangle$
- Operator \hat{O}_A is composite in general and can be ordered by dimension, e.g. ϕ has $[\phi] = 1$, ϕ^4 has $[\phi^4] = 4$ in free theory, $T_{ab} = \partial_a \phi \partial_b \phi + \dots$ has $[T_{ab}] = 4$

- We know the QFT if we know (at least) all matrix elements of all operators and their products $\langle \Psi | \hat{O}_{A_1}(x_1) \cdots \hat{O}_{A_n}(x_n) | \Psi' \rangle$
- Operator \hat{O}_A is composite in general and can be ordered by dimension, e.g. ϕ has $[\phi] = 1$, ϕ^4 has $[\phi^4] = 4$ in free theory, $T_{ab} = \partial_a \phi \partial_b \phi + \dots$ has $[T_{ab}] = 4$
- Conjecture (Wilson): Operator Product Expansion (OPE) $\langle \Psi | \mathcal{O}_{A_1}(x) \cdots \mathcal{O}_{A_n}(x_n) | \Psi' \rangle \sim \sum_B C^B_{A_1 \cdots A_n}(x_1, \dots, x_n) \langle \Psi | \mathcal{O}_B(x_n) | \Psi' \rangle$

- We know the QFT if we know (at least) all matrix elements of all operators and their products $\langle \Psi | \hat{O}_{A_1}(x_1) \cdots \hat{O}_{A_n}(x_n) | \Psi' \rangle$
- Operator \hat{O}_A is composite in general and can be ordered by dimension, e.g. ϕ has $[\phi] = 1$, ϕ^4 has $[\phi^4] = 4$ in free theory, $T_{ab} = \partial_a \phi \partial_b \phi + \dots$ has $[T_{ab}] = 4$
- Conjecture (Wilson): Operator Product Expansion (OPE) $\langle \Psi | \mathcal{O}_{A_1}(x) \cdots \mathcal{O}_{A_n}(x_n) | \Psi' \rangle \sim \sum_B C^B_{A_1 \cdots A_n}(x_1, \dots, x_n) \langle \Psi | \mathcal{O}_B(x_n) | \Psi' \rangle$
- Coefficients $C^B_{A_1 \cdots A_n}$ are distributions, independent of $|\Psi\rangle$ and $|\Psi'\rangle$ ("relation between operators")

- We know the QFT if we know (at least) all matrix elements of all operators and their products $\langle \Psi | \hat{O}_{A_1}(x_1) \cdots \hat{O}_{A_n}(x_n) | \Psi' \rangle$
- Operator \hat{O}_A is composite in general and can be ordered by dimension, e.g. ϕ has $[\phi] = 1$, ϕ^4 has $[\phi^4] = 4$ in free theory, $T_{ab} = \partial_a \phi \partial_b \phi + \dots$ has $[T_{ab}] = 4$
- Conjecture (Wilson): Operator Product Expansion (OPE) $\langle \Psi | \mathcal{O}_{A_1}(x) \cdots \mathcal{O}_{A_n}(x_n) | \Psi' \rangle \sim \sum_B C^B_{A_1 \cdots A_n}(x_1, \dots, x_n) \langle \Psi | \mathcal{O}_B(x_n) | \Psi' \rangle$
- Coefficients $C^B_{A_1 \cdots A_n}$ are distributions, independent of $|\Psi\rangle$ and $|\Psi'\rangle$ ("relation between operators")
- Coefficients have scaling degree ∑_i[A_i] [B] (homogeneous distributions up to logarithmic corrections)

- We know the QFT if we know (at least) all matrix elements of all operators and their products $\langle \Psi | \hat{O}_{A_1}(x_1) \cdots \hat{O}_{A_n}(x_n) | \Psi' \rangle$
- Operator \hat{O}_A is composite in general and can be ordered by dimension, e.g. ϕ has $[\phi] = 1$, ϕ^4 has $[\phi^4] = 4$ in free theory, $T_{ab} = \partial_a \phi \partial_b \phi + \dots$ has $[T_{ab}] = 4$
- Conjecture (Wilson): Operator Product Expansion (OPE) $\langle \Psi | \mathcal{O}_{A_1}(x) \cdots \mathcal{O}_{A_n}(x_n) | \Psi' \rangle \sim \sum_B C^B_{A_1 \cdots A_n}(x_1, \dots, x_n) \langle \Psi | \mathcal{O}_B(x_n) | \Psi' \rangle$
- Coefficients $C^B_{A_1 \cdots A_n}$ are distributions, independent of $|\Psi\rangle$ and $|\Psi'\rangle$ ("relation between operators")
- Coefficients have scaling degree ∑_i[A_i] [B] (homogeneous distributions up to logarithmic corrections)
- Sum is asymptotic: including all operators up to a fixed dimension [B] ≤ D in the sum, the difference between left- and right-hand side vanishes if all x_i scale together

- We know the QFT if we know (at least) all matrix elements of all operators and their products $\langle \Psi | \hat{O}_{A_1}(x_1) \cdots \hat{O}_{A_n}(x_n) | \Psi' \rangle$
- Operator \hat{O}_A is composite in general and can be ordered by dimension, e.g. ϕ has $[\phi] = 1$, ϕ^4 has $[\phi^4] = 4$ in free theory, $T_{ab} = \partial_a \phi \partial_b \phi + \dots$ has $[T_{ab}] = 4$
- Conjecture (Wilson): Operator Product Expansion (OPE) $\langle \Psi | \mathcal{O}_{A_1}(x) \cdots \mathcal{O}_{A_n}(x_n) | \Psi' \rangle \sim \sum_B C^B_{A_1 \cdots A_n}(x_1, \dots, x_n) \langle \Psi | \mathcal{O}_B(x_n) | \Psi' \rangle$
- Coefficients $C^B_{A_1 \cdots A_n}$ are distributions, independent of $|\Psi\rangle$ and $|\Psi'\rangle$ ("relation between operators")
- Coefficients have scaling degree ∑_i[A_i] [B] (homogeneous distributions up to logarithmic corrections)
- Sum is asymptotic: including all operators up to a fixed dimension [B] ≤ D in the sum, the difference between left- and right-hand side vanishes if all x_i scale together
- Various early results in perturbation theory (Zimmermann, Lowenstein, Lüscher, Mack)

Correlation functions and the OPE

Instead of viewing the OPE as a property of the theory, take it as fundamental and *define* the theory by the OPE and the one-operator matrix elements (as for CFTs)

- Instead of viewing the OPE as a property of the theory, take it as fundamental and define the theory by the OPE and the one-operator matrix elements (as for CFTs)
- States of finite energy: $|\Psi\rangle = \prod_k \int f_k(x)\hat{\phi}_k(x) d^4x |0\rangle$ and include the $\hat{\phi}_k$ in the OPE \rightarrow need only one-point VEVs ("form factors")

- Instead of viewing the OPE as a property of the theory, take it as fundamental and define the theory by the OPE and the one-operator matrix elements (as for CFTs)
- States of finite energy: $|\Psi\rangle = \prod_k \int f_k(x)\hat{\phi}_k(x) d^4x |0\rangle$ and include the $\hat{\phi}_k$ in the OPE \rightarrow need only one-point VEVs ("form factors")
- But we need more properties for a successful definition!

- Instead of viewing the OPE as a property of the theory, take it as fundamental and define the theory by the OPE and the one-operator matrix elements (as for CFTs)
- States of finite energy: $|\Psi\rangle = \prod_k \int f_k(x)\hat{\phi}_k(x) d^4x |0\rangle$ and include the $\hat{\phi}_k$ in the OPE \rightarrow need only one-point VEVs ("form factors")
- But we need more properties for a successful definition!
- Factorisation/associativity: $\langle \Psi | \mathcal{O}_A(x) \mathcal{O}_B(y) \mathcal{O}_C(z) | \Psi' \rangle$

$$= \sum_{E} C_{ABC}^{E}(x - y, y - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$$

= $\sum_{E} \sum_{D} C_{AB}^{D}(x - y) C_{DC}^{E}(y - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$
= $\sum_{E} \sum_{D} C_{BC}^{D}(y - z) C_{AD}^{E}(x - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$

- Instead of viewing the OPE as a property of the theory, take it as fundamental and *define* the theory by the OPE and the one-operator matrix elements (as for CFTs)
- States of finite energy: $|\Psi\rangle = \prod_k \int f_k(x)\hat{\phi}_k(x) d^4x |0\rangle$ and include the $\hat{\phi}_k$ in the OPE \rightarrow need only one-point VEVs ("form factors")
- But we need more properties for a successful definition!
- Factorisation/associativity: $\langle \Psi | \mathcal{O}_A(x) \mathcal{O}_B(y) \mathcal{O}_C(z) | \Psi' \rangle$
 - $=\sum_{E} C_{ABC}^{E}(x-y,y-z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$
 - $=\sum_{E}\sum_{D}\sum_{D}C_{AB}^{D}(x-y)C_{BC}^{D}(y-z)\langle\Psi|\mathcal{O}_{E}(z)|\Psi'\rangle$
 - $= \sum_{E} \sum_{D} \mathcal{C}_{BC}^{D}(y-z) \mathcal{C}_{AD}^{E}(x-z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$

- Instead of viewing the OPE as a property of the theory, take it as fundamental and define the theory by the OPE and the one-operator matrix elements (as for CFTs)
- States of finite energy: $|\Psi\rangle = \prod_k \int f_k(x)\hat{\phi}_k(x) d^4x |0\rangle$ and include the $\hat{\phi}_k$ in the OPE \rightarrow need only one-point VEVs ("form factors")
- But we need more properties for a successful definition!
- Factorisation/associativity: $\langle \Psi | \mathcal{O}_A(x) \mathcal{O}_B(y) \mathcal{O}_C(z) | \Psi' \rangle$

$$= \sum_{E} C_{ABC}^{E}(x - y, y - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$$

= $\sum_{E} \sum_{D} C_{AB}^{D}(x - y) C_{DC}^{E}(y - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$
= $\sum_{E} \sum_{D} C_{BC}^{D}(y - z) C_{AD}^{E}(x - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$ for suitable x,y,z

- Instead of viewing the OPE as a property of the theory, take it as fundamental and define the theory by the OPE and the one-operator matrix elements (as for CFTs)
- States of finite energy: $|\Psi\rangle = \prod_k \int f_k(x)\hat{\phi}_k(x) d^4x |0\rangle$ and include the $\hat{\phi}_k$ in the OPE \rightarrow need only one-point VEVs ("form factors")
- But we need more properties for a successful definition!
- Factorisation/associativity: $\langle \Psi | \mathcal{O}_A(x) \mathcal{O}_B(y) \mathcal{O}_C(z) | \Psi' \rangle$

$$= \sum_{E} C_{ABC}^{E}(x - y, y - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$$

$$=\sum_{E}\sum_{D}\mathcal{C}^{D}_{AB}(x-y)\mathcal{C}^{E}_{DC}(y-z)\langle\Psi|\mathcal{O}_{E}(z)|\Psi'
angle$$

- $= \sum_{E} \sum_{D} C_{BC}^{D}(y-z) C_{AD}^{E}(x-z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle \text{ for suitable } x, y, z$
- Further algebraic relations between coefficients stemming from the underlying theory/perturbation (e.g., interacting field equation)

- Instead of viewing the OPE as a property of the theory, take it as fundamental and define the theory by the OPE and the one-operator matrix elements (as for CFTs)
- States of finite energy: $|\Psi\rangle = \prod_k \int f_k(x)\hat{\phi}_k(x) d^4x |0\rangle$ and include the $\hat{\phi}_k$ in the OPE \rightarrow need only one-point VEVs ("form factors")
- But we need more properties for a successful definition!
- Factorisation/associativity: $\langle \Psi | \mathcal{O}_A(x) \mathcal{O}_B(y) \mathcal{O}_C(z) | \Psi' \rangle$

$$= \sum_{E} C_{ABC}^{E}(x - y, y - z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle$$

$$=\sum_{E}\sum_{D}\mathcal{C}^{D}_{AB}(x-y)\mathcal{C}^{E}_{DC}(y-z)\langle\Psi|\mathcal{O}_{E}(z)|\Psi'
angle$$

- $= \sum_{E} \sum_{D} C_{BC}^{\overline{D}}(y-z) C_{AD}^{\overline{E}}(x-z) \langle \Psi | \mathcal{O}_{E}(z) | \Psi' \rangle \text{ for suitable } x, y, z$
- Further algebraic relations between coefficients stemming from the underlying theory/perturbation (e.g., interacting field equation)
- Convergent instead of asymptotic sum

Results for scalar theories

Work of subsets of {Holland, Hollands, Kopper}

Results for scalar theories

Proofs obtained in flow equation framework

- Proofs obtained in flow equation framework
- Main idea: derive flow equation and boundary conditions for appropriate remainders and show that they vanish as $D \to \infty$ at each fixed perturbation order ℓ

- Proofs obtained in flow equation framework
- Main idea: derive flow equation and boundary conditions for appropriate remainders and show that they vanish as $D \to \infty$ at each fixed perturbation order ℓ
- OPE remainder $\left\| \mathcal{L}^{\Lambda,\Lambda_0,\ell} \left(\mathcal{O}_A(x) \mathcal{O}_B(0); \Phi \right) \sum_{C:[C] \le D} \mathcal{C}^C_{AB}(x) \mathcal{L}^{\Lambda,\Lambda_0,\ell} \left(\mathcal{O}_C(0); \Phi \right) \right\|$ $\leq (D!)^{-\frac{1}{2}} \sup(m,\Lambda)^{n+D} \mathcal{K}^D |x|^{D-[\mathcal{O}_A]-[\mathcal{O}_B]} \|\Phi\|_{(D+2)(\ell+5)/2}$

- Proofs obtained in flow equation framework
- Main idea: derive flow equation and boundary conditions for appropriate remainders and show that they vanish as $D \to \infty$ at each fixed perturbation order ℓ
- OPE remainder $\left\| \mathcal{L}^{\Lambda,\Lambda_0,\ell} \left(\mathcal{O}_A(x) \mathcal{O}_B(0); \Phi \right) \sum_{C:[C] \le D} \mathcal{C}^C_{AB}(x) \mathcal{L}^{\Lambda,\Lambda_0,\ell} \left(\mathcal{O}_C(0); \Phi \right) \right\|$ $\leq (D!)^{-\frac{1}{2}} \sup(m,\Lambda)^{n+D} \mathcal{K}^D |x|^{D-[\mathcal{O}_A]-[\mathcal{O}_B]} \|\Phi\|_{(D+2)(\ell+5)/2}$
- OPE is convergent for arbitrary (spacelike) separations!

- Proofs obtained in flow equation framework
- Main idea: derive flow equation and boundary conditions for appropriate remainders and show that they vanish as $D \to \infty$ at each fixed perturbation order ℓ
- OPE remainder $\left\| \mathcal{L}^{\Lambda,\Lambda_0,\ell}\left(\mathcal{O}_A(x)\mathcal{O}_B(0);\Phi\right) \sum_{C:[C] \leq D} \mathcal{C}^C_{AB}(x)\mathcal{L}^{\Lambda,\Lambda_0,\ell}\left(\mathcal{O}_C(0);\Phi\right) \right\|$ $\leq (D!)^{-\frac{1}{2}} \sup(m,\Lambda)^{n+D} K^D |x|^{D-[\mathcal{O}_A]-[\mathcal{O}_B]} \|\Phi\|_{(D+2)(\ell+5)/2}$
- OPE is convergent for arbitrary (spacelike) separations!
- Similar formulas for OPE coefficients with more insertions

- Proofs obtained in flow equation framework
- Main idea: derive flow equation and boundary conditions for appropriate remainders and show that they vanish as $D \to \infty$ at each fixed perturbation order ℓ
- OPE remainder $\left\| \mathcal{L}^{\Lambda,\Lambda_0,\ell}\left(\mathcal{O}_A(x)\mathcal{O}_B(0);\Phi\right) \sum_{C:[C] \leq D} \mathcal{C}^C_{AB}(x)\mathcal{L}^{\Lambda,\Lambda_0,\ell}\left(\mathcal{O}_C(0);\Phi\right) \right\|$ $\leq (D!)^{-\frac{1}{2}} \sup(m,\Lambda)^{n+D} \mathcal{K}^D|x|^{D-[\mathcal{O}_A]-[\mathcal{O}_B]} \left\|\Phi\right\|_{(D+2)(\ell+5)/2}$
- OPE is convergent for arbitrary (spacelike) separations!
- Similar formulas for OPE coefficients with more insertions
- Factorisation: $C_{A_1 \dots A_s}^{C}(x_1, \dots, x_s) = \sum_B C_{A_1 \dots A_k}^{B}(x_1, \dots, x_k) C_{BA_{k+1} \dots A_s}^{C}(x_k, \dots, x_s)$ holds for all $\max_{1 \le i \le k} |x_i x_k| < \min_{k < j \le s} |x_i x_k|$

Additional properties of the OPE

• Coupling constant derivative (for $g\phi^4$ interaction): $\partial_g C^B_{A_1\cdots A_s}(\mathbf{x}) = \int \left[-C^B_{\phi^4 A_1\cdots A_s}(y, \mathbf{x}) + \sum_{C: [\mathcal{O}_C] < [\mathcal{O}_B]} C^C_{A_1\cdots A_s}(\mathbf{x}) C^B_{\phi^4 C}(y, x_s) + \sum_{k=1}^{s} \sum_{C: [\mathcal{O}_C] \le [\mathcal{O}_{A_k}]} C^C_{\phi^4 A_k}(y, x_k) C^B_{A_1\cdots A_{k-1}CA_{k+1}\cdots A_s}(\mathbf{x}) \right] d^4y$

Additional properties of the OPE

- Coupling constant derivative (for $g\phi^4$ interaction): $\partial_g C^B_{A_1 \cdots A_s}(\mathbf{x}) = \int \left[-C^B_{\phi^4 A_1 \cdots A_s}(y, \mathbf{x}) + \sum_{C : [\mathcal{O}_C] < [\mathcal{O}_B]} C^C_{A_1 \cdots A_s}(\mathbf{x}) C^B_{\phi^4 C}(y, x_s) + \sum_{k=1}^{s} \sum_{C : [\mathcal{O}_C] \le [\mathcal{O}_{A_k}]} C^C_{\phi^4 A_k}(y, x_k) C^B_{A_1 \cdots A_{k-1} C A_{k+1} \cdots A_s}(\mathbf{x}) \right] d^4y$
- UV- and IR-finite integral (subtraction of problematic terms due to factorisation condition), BPHZ-like renormalisation conditions

Additional properties of the OPE

- Coupling constant derivative (for $g\phi^4$ interaction): $\partial_g C^B_{A_1 \cdots A_s}(\mathbf{x}) = \int \left[-C^B_{\phi^4 A_1 \cdots A_s}(y, \mathbf{x}) + \sum_{C : [\mathcal{O}_C] < [\mathcal{O}_B]} C^C_{A_1 \cdots A_s}(\mathbf{x}) C^B_{\phi^4 C}(y, x_s) + \sum_{k=1}^{s} \sum_{C : [\mathcal{O}_C] \le [\mathcal{O}_{A_k}]} C^C_{\phi^4 A_k}(y, x_k) C^B_{A_1 \cdots A_{k-1} C A_{k+1} \cdots A_s}(\mathbf{x}) \right] d^4 y$
- UV- and IR-finite integral (subtraction of problematic terms due to factorisation condition), BPHZ-like renormalisation conditions
- Permits the construction of OPE coefficients order by order in perturbation theory in g, starting from the (known) free-theory coefficients

Additional properties of the OPE

- Coupling constant derivative (for $g\phi^4$ interaction): $\partial_g C^B_{A_1 \cdots A_s}(\mathbf{x}) = \int \left[-C^B_{\phi^4 A_1 \cdots A_s}(y, \mathbf{x}) + \sum_{C: [\mathcal{O}_C] < [\mathcal{O}_B]} C^C_{A_1 \cdots A_s}(\mathbf{x}) C^B_{\phi^4 C}(y, x_s) + \sum_{k=1}^{s} \sum_{C: [\mathcal{O}_C] \le [\mathcal{O}_{A_k}]} C^C_{\phi^4 A_k}(y, x_k) C^B_{A_1 \cdots A_{k-1} C A_{k+1} \cdots A_s}(\mathbf{x}) \right] d^4y$
- UV- and IR-finite integral (subtraction of problematic terms due to factorisation condition), BPHZ-like renormalisation conditions
- Permits the construction of OPE coefficients order by order in perturbation theory in g, starting from the (known) free-theory coefficients
- After suitable operator redefinitions, formulas stay valid in the massless case, but integral has IR/volume cutoff L (renormalisation scale)

My work together with Holland and Hollands

Gauge theories and Ward identities

• Strategy: first obtain suitable bounds in flow equation framework for general massless theories, then specialise to gauge theories, restore BRST invariance and obtain proper Ward identities in the physical limit $\Lambda \rightarrow 0$, $\Lambda_0 \rightarrow \infty$

- Strategy: first obtain suitable bounds in flow equation framework for general massless theories, then specialise to gauge theories, restore BRST invariance and obtain proper Ward identities in the physical limit $\Lambda \rightarrow 0$, $\Lambda_0 \rightarrow \infty$
- OPE coefficients must be defined at non-exceptional momenta or fixed IR cutoff (difference amounts to finite redefinition of composite operators)

- Strategy: first obtain suitable bounds in flow equation framework for general massless theories, then specialise to gauge theories, restore BRST invariance and obtain proper Ward identities in the physical limit $\Lambda \rightarrow 0$, $\Lambda_0 \rightarrow \infty$
- OPE coefficients must be defined at non-exceptional momenta or fixed IR cutoff (difference amounts to finite redefinition of composite operators)
- No external antifields in physical theory (A[‡]_{aµ}, B[‡]_a, c[‡]_a, c[‡]_a) can keep them, but formulas become more complicated

- Strategy: first obtain suitable bounds in flow equation framework for general massless theories, then specialise to gauge theories, restore BRST invariance and obtain proper Ward identities in the physical limit $\Lambda \rightarrow 0$, $\Lambda_0 \rightarrow \infty$
- OPE coefficients must be defined at non-exceptional momenta or fixed IR cutoff (difference amounts to finite redefinition of composite operators)
- No external antifields in physical theory (A[‡]_{aµ}, B[‡]_a, c[‡]_a, c[‡]_a) can keep them, but formulas become more complicated
- Ward identity: $\sum_{k=1}^{s} \langle 0 | \mathcal{O}_{A_1}(x_1) \cdots (\hat{q} \mathcal{O}_{A_k}) (x_k) \cdots \mathcal{O}_{A_s}(x_s) | 0 \rangle_{c,a} = 0$ with nilpotent quantum BRST differential $\hat{q} = \hat{s} + \mathcal{O}(\hbar)$

- Strategy: first obtain suitable bounds in flow equation framework for general massless theories, then specialise to gauge theories, restore BRST invariance and obtain proper Ward identities in the physical limit $\Lambda \rightarrow 0$, $\Lambda_0 \rightarrow \infty$
- OPE coefficients must be defined at non-exceptional momenta or fixed IR cutoff (difference amounts to finite redefinition of composite operators)
- No external antifields in physical theory (A[‡]_{aµ}, B[‡]_a, c[‡]_a, c[‡]_a) can keep them, but formulas become more complicated
- Ward identity: $\sum_{k=1}^{s} \langle 0 | \mathcal{O}_{A_1}(x_1) \cdots (\hat{q} \mathcal{O}_{A_k}) (x_k) \cdots \mathcal{O}_{A_s}(x_s) | 0 \rangle_{c,a} = 0$ with nilpotent quantum BRST differential $\hat{q} = \hat{s} + \mathcal{O}(\hbar)$
- Correlation functions are well-defined on cohomology classes: if all operators are invariant $\hat{q}\mathcal{O}_{A_k} = 0$, then for arbitrary \mathcal{O}_B it follows that $\langle 0|\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_s}(x_s)|0\rangle_{c,a} = \langle 0|\mathcal{O}_{A_1}(x_1)\cdots(\mathcal{O}_{A_k}+\hat{q}\mathcal{O}_B)(x_k)\cdots\mathcal{O}_{A_s}(x_s)|0\rangle_{c,a}$

Ward identities for OPE coefficients

• Expansion of quantum BRST differential: $\hat{q}\mathcal{O}_A = \sum_{B: [\mathcal{O}_A]+1} \mathcal{Q}_A{}^B\mathcal{O}_B$

- Expansion of quantum BRST differential: $\hat{q}\mathcal{O}_A = \sum_{B: [\mathcal{O}_A]+1} \mathcal{Q}_A{}^B\mathcal{O}_B$
- Ward identity for OPE coefficients: $\sum_{k=1}^{s} \sum_{C: [\mathcal{O}_C] \leq [\mathcal{O}_{A_k}]+1} \mathcal{Q}_{A_k}{}^C \mathcal{C}^B_{A_1 \cdots A_{k-1} C A_{k+1} \cdots A_s}(\mathbf{x}) = \sum_{C} \mathcal{Q}_C {}^B \mathcal{C}^C_{A_1 \cdots A_s}(\mathbf{x})$

- Expansion of quantum BRST differential: $\hat{q}\mathcal{O}_A = \sum_{B: [\mathcal{O}_A]+1} \mathcal{Q}_A{}^B\mathcal{O}_B$
- Ward identity for OPE coefficients: $\sum_{k=1}^{s} \sum_{C: [\mathcal{O}_C] \leq [\mathcal{O}_{A_k}]+1} \mathcal{Q}_{A_k}{}^C \mathcal{C}^B_{A_1 \cdots A_{k-1} C A_{k+1} \cdots A_s}(\mathbf{x}) = \sum_{C} \mathcal{Q}_C {}^B \mathcal{C}^C_{A_1 \cdots A_s}(\mathbf{x})$
- Example: free electromagnetism $\hat{s}_0 A_\mu = \partial_\mu c$, $\hat{s}_0 c = 0$ and all operators invariant $\hat{s}_0 \mathcal{O}_{A_k} = 0$ such that $\mathcal{Q}_{A_k}{}^C = 0$ (e.g. $\mathcal{O} = F_{\mu\nu} = \partial_\mu A_\nu \partial_\nu A_\mu$, $\mathcal{O} = F_{\mu\nu} F^{\nu\rho}$, ...)

- Expansion of quantum BRST differential: $\hat{q}\mathcal{O}_A = \sum_{B: [\mathcal{O}_A]+1} \mathcal{Q}_A{}^B\mathcal{O}_B$
- Ward identity for OPE coefficients: $\sum_{k=1}^{s} \sum_{C: [\mathcal{O}_{C}] < [\mathcal{O}_{A_{1}}]+1} \mathcal{Q}_{A_{k}} {}^{C} \mathcal{C}_{A_{1} \cdots A_{k-1} C A_{k+1} \cdots A_{s}}^{B}(\mathbf{x}) = \sum_{C} \mathcal{Q}_{C} {}^{B} \mathcal{C}_{A_{1} \cdots A_{s}}^{C}(\mathbf{x})$
- Example: free electromagnetism $\hat{s}_0 A_\mu = \partial_\mu c$, $\hat{s}_0 c = 0$ and all operators invariant $\hat{s}_0 \mathcal{O}_{A_k} = 0$ such that $\mathcal{Q}_{A_k}{}^C = 0$ (e.g. $\mathcal{O} = F_{\mu\nu} = \partial_\mu A_\nu \partial_\nu A_\mu$, $\mathcal{O} = F_{\mu\nu} F^{\nu\rho}$, ...)
- Take $\mathcal{O}_B = \partial_\mu \partial_\nu c$ and find all operators \mathcal{O}_C on right-hand side involving \mathcal{O}_B in their BRST transformation: $\mathcal{O}_{C,1} = \partial_\mu A_\nu$ and $\mathcal{O}_{C,2} = \partial_\nu A_\mu \Rightarrow \mathcal{Q}_{C,1}{}^B = \mathcal{Q}_{C,2}{}^B = 1$

- Expansion of quantum BRST differential: $\hat{q}\mathcal{O}_A = \sum_{B: [\mathcal{O}_A]+1} \mathcal{Q}_A{}^B\mathcal{O}_B$
- Ward identity for OPE coefficients:
 - $\sum_{k=1}^{s} \sum_{C: [\mathcal{O}_C] \leq [\mathcal{O}_{A_k}]+1} \mathcal{Q}_{A_k}{}^{C} \mathcal{C}^{B}_{A_1 \cdots A_{k-1} C A_{k+1} \cdots A_s}(\mathbf{x}) = \sum_{C} \mathcal{Q}_{C}{}^{B} \mathcal{C}^{C}_{A_1 \cdots A_s}(\mathbf{x})$
- Example: free electromagnetism $\hat{s}_0 A_\mu = \partial_\mu c$, $\hat{s}_0 c = 0$ and all operators invariant $\hat{s}_0 \mathcal{O}_{A_k} = 0$ such that $\mathcal{Q}_{A_k}{}^C = 0$ (e.g. $\mathcal{O} = F_{\mu\nu} = \partial_\mu A_\nu \partial_\nu A_\mu$, $\mathcal{O} = F_{\mu\nu} F^{\nu\rho}$, ...)
- Take $\mathcal{O}_B = \partial_\mu \partial_\nu c$ and find all operators \mathcal{O}_C on right-hand side involving \mathcal{O}_B in their BRST transformation: $\mathcal{O}_{C,1} = \partial_\mu A_\nu$ and $\mathcal{O}_{C,2} = \partial_\nu A_\mu \Rightarrow \mathcal{Q}_{C,1}{}^B = \mathcal{Q}_{C,2}{}^B = 1$
- Ward identity $C_{A_1\cdots A_s}^{\partial_\mu A_\nu}(x_1, \dots, x_s) + C_{A_1\cdots A_s}^{\partial_\nu A_\mu}(x_1, \dots, x_s) = 0$ and OPE $\langle \mathcal{O}_{A_1}(x_1)\cdots \mathcal{O}_{A_s}(x_s) \rangle \sim \cdots + C_{A_1\cdots A_s}^{\partial_\mu A_\nu}(x_1, \dots, x_s) \langle F_{\mu\nu}(x_s) \rangle + \cdots$

- Expansion of quantum BRST differential: $\hat{q}\mathcal{O}_A = \sum_{B: [\mathcal{O}_A]+1} \mathcal{Q}_A{}^B\mathcal{O}_B$
- Ward identity for OPE coefficients:
 - $\sum_{k=1}^{s} \sum_{C: [\mathcal{O}_C] \leq [\mathcal{O}_{A_k}]+1} \mathcal{Q}_{A_k}{}^{C} \mathcal{C}^{B}_{A_1 \cdots A_{k-1} C A_{k+1} \cdots A_s}(\mathbf{x}) = \sum_{C} \mathcal{Q}_{C}{}^{B} \mathcal{C}^{C}_{A_1 \cdots A_s}(\mathbf{x})$
- Example: free electromagnetism $\hat{s}_0 A_\mu = \partial_\mu c$, $\hat{s}_0 c = 0$ and all operators invariant $\hat{s}_0 \mathcal{O}_{A_k} = 0$ such that $\mathcal{Q}_{A_k}{}^C = 0$ (e.g. $\mathcal{O} = F_{\mu\nu} = \partial_\mu A_\nu \partial_\nu A_\mu$, $\mathcal{O} = F_{\mu\nu} F^{\nu\rho}$, ...)
- Take $\mathcal{O}_B = \partial_\mu \partial_\nu c$ and find all operators \mathcal{O}_C on right-hand side involving \mathcal{O}_B in their BRST transformation: $\mathcal{O}_{C,1} = \partial_\mu A_\nu$ and $\mathcal{O}_{C,2} = \partial_\nu A_\mu \Rightarrow \mathcal{Q}_{C,1}{}^B = \mathcal{Q}_{C,2}{}^B = 1$
- Ward identity $C_{A_1\cdots A_s}^{\partial_\mu A_\nu}(x_1, \dots, x_s) + C_{A_1\cdots A_s}^{\partial_\nu A_\mu}(x_1, \dots, x_s) = 0$ and OPE $\langle \mathcal{O}_{A_1}(x_1)\cdots \mathcal{O}_{A_s}(x_s) \rangle \sim \cdots + C_{A_1\cdots A_s}^{\partial_\mu A_\nu}(x_1, \dots, x_s) \langle F_{\mu\nu}(x_s) \rangle + \cdots$
- In the OPE of *q*-invariant operators only *q*-invariant operators appear on the right-hand side (would follow automatically for convergent expansion)

• OPE is (at least) asymptotic:
$$\lim_{\tau \to 0} \tau^{[\mathcal{O}_{\mathbf{A}}] - D + \delta} \left[\langle \Psi | \mathcal{O}_{A_1}(\tau x_1) \cdots \mathcal{O}_{A_s}(\tau x_s) | \Psi \rangle - \sum_{B : [\mathcal{O}_B] < D} \mathcal{C}^B_{A_1 \cdots A_s}(\tau \mathbf{x}) \langle \Psi | \mathcal{O}_B(\tau x_s) | \Psi \rangle \right] = 0 \text{ for all } \delta > 0$$

- OPE is (at least) asymptotic: $\lim_{\tau \to 0} \tau^{[\mathcal{O}_{\mathbf{A}}] D + \delta} \left[\langle \Psi | \mathcal{O}_{A_{1}}(\tau x_{1}) \cdots \mathcal{O}_{A_{s}}(\tau x_{s}) | \Psi \rangle \sum_{B: \ [\mathcal{O}_{B}] < D} \mathcal{C}^{B}_{A_{1} \cdots A_{s}}(\tau \mathbf{x}) \langle \Psi | \mathcal{O}_{B}(\tau x_{s}) | \Psi \rangle \right] = 0 \text{ for all } \delta > 0$
- For all states |Ψ⟩ = Π_k ∫ f_k(p)φ(p)|0⟩ as long as f_k does not contain exceptional momenta (in Minkowski: states of finite energy/in the vacuum sector)

- OPE is (at least) asymptotic: $\lim_{\tau \to 0} \tau^{[\mathcal{O}_{\mathbf{A}}] D + \delta} \left[\langle \Psi | \mathcal{O}_{A_1}(\tau x_1) \cdots \mathcal{O}_{A_s}(\tau x_s) | \Psi \rangle \sum_{B: [\mathcal{O}_B] < D} \mathcal{C}^B_{A_1 \cdots A_s}(\tau \mathbf{x}) \langle \Psi | \mathcal{O}_B(\tau x_s) | \Psi \rangle \right] = 0$ for all $\delta > 0$
- For all states $|\Psi\rangle = \prod_k \int f_k(p)\phi(p)|0\rangle$ as long as f_k does not contain exceptional momenta (in Minkowski: states of finite energy/in the vacuum sector)
- Convergence of the OPE for arbitrary separations could in principle be shown in the same way as for massless \u03c6⁴, but technically very complicated

- OPE is (at least) asymptotic: $\lim_{\tau \to 0} \tau^{[\mathcal{O}_{\mathbf{A}}] D + \delta} \Big[\langle \Psi | \mathcal{O}_{A_1}(\tau x_1) \cdots \mathcal{O}_{A_s}(\tau x_s) | \Psi \rangle \sum_{B : [\mathcal{O}_B] < D} \mathcal{C}^B_{A_1 \cdots A_s}(\tau \mathbf{x}) \langle \Psi | \mathcal{O}_B(\tau x_s) | \Psi \rangle \Big] = 0$ for all $\delta > 0$
- For all states $|\Psi\rangle = \prod_k \int f_k(p)\phi(p)|0\rangle$ as long as f_k does not contain exceptional momenta (in Minkowski: states of finite energy/in the vacuum sector)
- Convergence of the OPE for arbitrary separations could in principle be shown in the same way as for massless ϕ^4 , but technically very complicated
- Factorisation: $C_{A_1 \cdots A_n}^C(x_1, \dots, x_n) = \sum_B C_{A_1 \cdots A_k}^B(x_1, \dots, x_k) C_{BA_{k+1} \cdots A_n}^C(x_k, \dots, x_n)$ holds for all $\max_{1 \le i \le k} |x_i x_k| < \min_{k < j \le n} |x_i x_k|$

Recursive constructions

• Coupling constant derivative: $\partial_g C^B_{A_1 \cdots A_s}(\mathbf{x}) =$ $\int \sum_{E: \ 1 \le [\mathcal{O}_E] \le 4} \mathcal{I}^E \left[-C^B_{EA_1 \cdots A_s}(y, \mathbf{x}) + \sum_{C: \ [\mathcal{O}_C] < [\mathcal{O}_B]} C^C_{A_1 \cdots A_s}(\mathbf{x}) C^B_{EC}(y, x_s) + \sum_{k=1}^{s} \sum_{C: \ [\mathcal{O}_C] \le [\mathcal{O}_{A_k}]} C^C_{EA_k}(y, x_k) C^B_{A_1 \cdots A_{k-1}CA_{k+1} \cdots A_s}(\mathbf{x}) \right] d^4y$

Recursive constructions

• Coupling constant derivative: $\partial_g C^B_{A_1 \cdots A_s}(\mathbf{x}) =$ $\int \sum_{E: \ 1 \le [\mathcal{O}_E] \le 4} \mathcal{I}^E \left[-C^B_{EA_1 \cdots A_s}(y, \mathbf{x}) + \sum_{C: \ [\mathcal{O}_C] < [\mathcal{O}_B]} C^C_{A_1 \cdots A_s}(\mathbf{x}) C^B_{EC}(y, x_s) + \sum_{k=1}^{s} \sum_{C: \ [\mathcal{O}_C] \le [\mathcal{O}_{A_k}]} C^C_{EA_k}(y, x_k) C^B_{A_1 \cdots A_{k-1}CA_{k+1} \cdots A_s}(\mathbf{x}) \right] d^4y$

■ Quantum BRST differential: $\partial_{g} Q_{A}{}^{B} = \int \sum_{E: 1 \leq [\mathcal{O}_{E}] \leq 4} \mathcal{I}^{E} \left[\sum_{C: [\mathcal{O}_{C}] \leq [\mathcal{O}_{A}]} \mathcal{C}^{C}_{EA}(y, 0) Q_{C}{}^{B} - \sum_{C: [\mathcal{O}_{B}] \leq [\mathcal{O}_{C}] \leq [\mathcal{O}_{A}] + 1} \mathcal{Q}_{A}{}^{C} \mathcal{C}^{B}_{EC}(y, 0) \right] d^{4}y$

Recursive constructions

• Coupling constant derivative: $\partial_g C^B_{A_1 \cdots A_s}(\mathbf{x}) = \int \sum_{E: \ 1 \le [\mathcal{O}_E] \le 4} \mathcal{I}^E \left[-C^B_{EA_1 \cdots A_s}(y, \mathbf{x}) + \sum_{C: \ [\mathcal{O}_C] < [\mathcal{O}_B]} C^C_{A_1 \cdots A_s}(\mathbf{x}) C^B_{EC}(y, x_s) + \sum_{k=1}^{s} \sum_{C: \ [\mathcal{O}_C] \le [\mathcal{O}_{A_k}]} C^C_{EA_k}(y, x_k) C^B_{A_1 \cdots A_{k-1}CA_{k+1} \cdots A_s}(\mathbf{x}) \right] d^4y$

■ Quantum BRST differential: $\partial_{g} Q_{A}{}^{B} = \int \sum_{E: 1 \le [\mathcal{O}_{E}] \le 4} \mathcal{I}^{E} \left[\sum_{C: [\mathcal{O}_{C}] \le [\mathcal{O}_{A}]} \mathcal{C}^{C}_{EA}(y, 0) Q_{C}{}^{B} - \sum_{C: [\mathcal{O}_{B}] \le [\mathcal{O}_{C}] \le [\mathcal{O}_{A}] + 1} \mathcal{Q}_{A}{}^{C} \mathcal{C}^{B}_{EC}(y, 0) \right] d^{4}y$

Interaction operator $\mathcal{O}_{\mathcal{I}} = \sum_{E: 1 \leq [\mathcal{O}_E] \leq 4} \mathcal{I}^E \mathcal{O}_E$ with $\mathcal{O}_{\mathcal{I}} = \partial_g L|_{g=0} + \mathcal{O}(g) + \mathcal{O}(\hbar)$ and $\hat{q}\mathcal{O}_{\mathcal{I}} = d\mathcal{O}'$ for some \mathcal{O}'

Thank you for your attention

Questions?

Funded by the European Union: ERC starting grant QC&C 259562 and Marie Skłodowska-Curie fellowship QLO–QG 702750.

References: arXiv:0906.5313, arXiv:1105.3375, arXiv:1205.4904, arXiv:1401.3144, arXiv:1411.1785, arXiv:1507.07730, arXiv:1511.09425, arXiv:1603.08012