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Motivation and goals

AQFT is founded on the idea of local observables but little has
been said about how they would actually be measured.

Quantum Measurement Theory (QMT) has a well-developed
operational account of measurement schemes by which observables
can be measured using probe systems. Almost never discussed in a
spacetime context, and still less in curved spacetimes.

Aim: Develop QMT for AQFT, taking measurement theory out of
Hilbert space and putting it back in spacetime, where it belongs.
NB We are not attempting to solve the measurement problem,
but rather to describe a step in the measurement chain.
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Scenario and questions
A QFT (system) is coupled to another QFT (probe) in a compact
spacetime region K . The probe is measured elsewhere.
Example: Unruh-deWitt detector – coupling along/near a
worldline. Usually a QM system is used, but a QFT will do just as
well as a probe, and lives more naturally on spacetime.
An account of traditional UdW is coming soon.
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Scenario and questions
A QFT (system) is coupled to another QFT (probe) in a compact
spacetime region K . The probe is measured elsewhere.

Questions
I How can the probe measurement be described in terms of

local system observables?
I In particular, what can be said about their localisation?

Is it:
I where the probe is measured?
I where the coupling is located?
I a combination of the two?
I something else?

E.g., what is the minimal localisation, as a QFT observable, of
a measurement of a UdW probe?

I How should the state be updated after a
selective/nonselective measurement?

I Should it change across a surface in spacetime?
I If so, what surface?

Backward lightcone of coupling region? Or of probe?
cf Hellwig and Kraus ∼ 1970

I How are multiple measurements handled?
E.g. ambiguity of order if spacelike separated.
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Framework: AQFT in CST
To each glob. hyp. spacetime M, there is a unital ∗-algebra A(M).
Enough to consider some fixed M and its subregions.
To each open causally convex subregion N of M there is a morphism

αM;N : A(N)→ A(M) N = M|N

Write Akin(M; N) = ImαM;N for observables localisable in N.

Isotony αM1;M2 ◦ αM2;M3 = αM1;M3

Timeslice If N contains a Cauchy surface of M then αM;N is an iso.

Einstein If N1 and N2 are causally disjoint,

[Akin(M; N1),Akin(M; N2)] = 0

Haag
⋂

N⊂K⊥

Akin(M; N)c ⊂
⋂

L⊃K
Akin(M; L) (connected L)

NB A given observable may be localisable in many distinct regions.
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Coupled system

Consider two QFTs, A, α (system) and B, β (probe).

Their uncoupled combination is A⊗B, α⊗ β.

A coupling of A and B in K is a theory C, γ
s.t. for each L ⊂ K⊥ there are interwining isomorphisms

χL : A(L)⊗B(L)→ C(L)

A(L′)⊗B(L′) A(L)⊗B(L)

C(L′) C(L)

αL;L′ ⊗ βL;L′

χL′

γL;L′

χL

Diagram commutes for all L′ ⊂ L.
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Advanced/retarded response, scattering

Define natural in/out regions M−/+ = M \ J±(K ),
writing morphisms α± = αM;M± , χ± = χM± etc.

Advanced/retarded response ρ−/+ : A(M)⊗B(M)→ C(M)

ρ± = χ± ◦ (α± ⊗ β±)−1

are isomorphisms providing identifications of the uncoupled and
coupled combinations at early/late times.

Scattering morphism Θ, automorphism of A(M)⊗B(M),

Θ = (ρ−)−1 ◦ ρ+

(cf relative Cauchy evolution etc).
All constructions are geometrically natural.
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Measurement scheme: prepare early, measure late
Describe measurements of C(M) in uncoupled language.
An observable B̃ := ρ+(1⊗ B) tests probe d.o.f. at late times.
Fixing a probe preparation state σ and system state ω, the state

ω˜σ = ((ρ−)−1)∗(ω ⊗ σ)

of C(M) is uncorrelated at early times.

Measurement of B̃ in state ω˜σ gives expectation value

ω˜σ(B̃) = (ω ⊗ σ)(Θ(1⊗ B)) = ω(ησ(Θ(1⊗ B)))

where ησ : A(M)⊗B(M)→ A(M) linearly extends A⊗ B 7→ σ(B)A.

Definition εσ(B) = ησ(Θ(1⊗B)) is the induced system observable
corresponding to probe observable B.
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Induced system observables
By construction, εσ(B) = ησ(Θ(1⊗ B)) obeys

ω(εσ(B)) = ω˜σ(B̃)

for probe observable B.

I In QMT language, (C, γ, σ) is a measurement scheme for the
system observables εσ(B) ∈ A(M) (B ∈ B(M))

I εσ : B(M)→ A(M) is completely positive and linear,
but in general is neither injective nor a homomorphism

I In particular, if B is a projection describing a sharp
measurement then εσ(B) is generally an unsharp observable

εσ(B)2 ≤ εσ(B).

CJ Fewster University of York Measurement schemes for QFT in CST



Localisation
The general QFT assumptions imply

Θ ◦ (αM;L ⊗ βM;L) = αM;L ⊗ βM;L for any L ⊂ K⊥.

Theorem (a) If B ∈ Bkin(M; L) with L ⊂ K⊥ then

εσ(B) = ησ(Θ(1⊗ B)) = ησ(1⊗ B) = σ(B)1.

(b) If A ∈ Akin(M; L) with L ⊂ K⊥ then, for any B,

[εσ(B),A] = [ησ(Θ(1⊗ B)),A] = ησ(Θ[1⊗ B,A⊗ 1]) = 0

Corollary By the Haag property,

εσ(B) ∈ Akin(M; L) for all B ∈ B(M),

where L is any open connected causally convex set containing K .
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Localisation (ctd)

The results so far answer the first two general questions
I Any probe observable B corresponds to a system observable
εσ(B)

I εσ(B) can be localised in any open connected causally convex
region that contains K (and necessarily also contains its
causal hull J+(K ) ∩ J−(K )).

I The location of the probe observation is irrelevant.
Also: probe observables causally separated from K induce trivial
system observables.

Example Measurements of CMB photons correspond to local
observables of the quantised gravitational field at the surface of
last scattering.
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Effect-valued measures
Recall: an effect is an observable s.t. B and 1− B are positive,
i.e., 0 ≤ B ≤ 1. The effect is a measurement with possible values
0 or 1,

σ(B) = Prob(B = 1 | σ) (= Prob(B | σ))

In QMT, observables are effect-valued measures (EVMs)

E : X → Effects(B(M))

for σ-algebra X , with the interpretation

σ(E(X )) = probability a result in range X is observed in state σ

Each such observable of the probe induces an observable εσ ◦ E of
the system (generally unsharp).
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Joint unsharp measurements

In elementary QM one learns that only commuting observables can
be measured simultaneously.

Modern QMT: noncommnuting observables can be measured
jointly, provided one accepts a joint unsharp measurement.

Our measurement schemes provide a nice illustration and natural
construction.
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Joint unsharp measurements (ctd)

Consider probe EVMs Ei with causally disjoint localisation.

[E1(X1),E2(X2)] = 0, ∀ Xi ∈ Xi ,

so (temporarily assuming a C∗-setting) there is a joint EVM

E(X1 × X2) := E1(X1)E2(X2)

whose marginals are the Ei

E(X1 × Ω2) = E1(X1), E(Ω1 × X2) = E2(X2)

and which is sharp if the Ei are.

Then εσ ◦ E is a joint observable for the εσ ◦ Ei , and must be a
joint unsharp measurement if the εσ ◦ Ei are incompatible.
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Joint unsharp measurements (ctd)

Significance: resolves the tension between
I the freedom of observers at spacelike separation to make

sharp measurements
I the impossibility of jointly and sharply measuring incompatible

system observables.
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Post-selection and pre-instruments
Suppose a probe-effect B is tested when the system state is ω.
We can derive an expression for the post-selected system state,
conditioned on the effect being observed.
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Post-selection and pre-instruments
Consider a system EVM E : X → Effects(A(M))

Probability of a joint successful measurement of E(X ) and B is

Prob(E(X )&B) = ω(ησ(Θ(E(X )⊗ B)))

so Prob(E(X )|B) = Prob(E(X )&B)
Prob(B) = (Iσ(B)(ω))(E(X ))

(Iσ(B)(ω))(1) ,

where (Iσ(B)(ω))(A) := (ω ⊗ σ)(Θ(A⊗ B)).

Call Iσ(B) : A(M)∗+ → A(M)∗+ a pre-instrument.

If defined, the normalized post-selected state, conditioned on B, is

ω′ = Iσ(B)(ω)
(Iσ(B)(ω))(1) .
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Instruments and non-selective measurement
If E is a probe EVM then

X 7→ Iσ(E(X ))

is an instrument in the sense of Davies and Lewis,
i.e., a measure valued in CP maps on A(M)∗.

A non-selective measurement of the EVM is a post-selection on
E(Ω) = 1. The corresponding updated state

ω′ns(A) = Iσ(1)(ω)(A) = (ω ⊗ σ)(Θ(A⊗ 1))

is simply the partial trace of Θ∗(ω ⊗ σ)
I independent of the specific probe EVM
I depends only on the coupling
I if A is localisable in K⊥ then ω′ns(A) = ω(A).
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Locality and post-selection
The pre-instrument may be rewritten

Iσ(B)(ω)(A) = ω(ησ(Θ(A⊗ B))) = ω(Aεσ(B))

so also ω′(A) = ω(Aεσ(B))
ω(εσ(B)) .

Theorem ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.
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Locality and post-selection
The pre-instrument may be rewritten

Iσ(B)(ω)(A) = ω(ησ(Θ(A⊗ B))) = ω(Aεσ(B))

so also ω′(A) = ω(Aεσ(B))
ω(εσ(B)) .

Theorem ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.

Equality or otherwise of expectation values is not determined by
the localisation region of A. E.g., if ω has a Reeh–Schlieder
property, and A can be localised in K⊥ then

ω′(A) = ω(A) =⇒ εσ(B) = ω(εσ(B))1

Post-selection on any nontrivial measurement alters expectation
values in K⊥ [and the rest of M]
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Locality and post-selection
The pre-instrument may be rewritten

Iσ(B)(ω)(A) = ω(ησ(Θ(A⊗ B))) = ω(Aεσ(B))

so also ω′(A) = ω(Aεσ(B))
ω(εσ(B)) .

Theorem ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.

Equality or otherwise of expectation values is not determined by
the localisation region of A. E.g., if ω has a Reeh–Schlieder
property, and A can be localised in K⊥ then

ω′(A) = ω(A) =⇒ εσ(B) = ω(εσ(B))1

There seems no good reason to declare that ω changes to ω′
across a surface in M.

CJ Fewster University of York Measurement schemes for QFT in CST



Successive measurement of two probes
For i = 1, 2 consider Bi with coupling regions Ki and scattering
morphisms Θi .

Also consider B1 ⊗B2 as a combined probe with coupling region
K1 ∪ K2 and morphism Θ̂.

Suppose K2 ∩ J−(K1) = ∅, so K2 is later than K1 according to
some observers and assume Bogoliubov’s formula

Θ̂ = Θ̂1 ◦ Θ̂2, where Θ̂1 = Θ1 ⊗3 id and Θ̂2 = Θ2 ⊗2 id

Theorem Coherence of successive measurement

Iσ2(B2) ◦ Iσ1(B1) = Iσ1⊗σ2(B1 ⊗ B2)

Post-selection on B1 and then B2 agrees with post-selection on B1 ⊗B2.
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Summary so far

General questions have been answered:

I induced local observables localised near coupling region
I derivation of post-selected states
I no need to posit state change across surfaces
I successive measurements are coherent even when order is

ambiguous

Now turn to a specific model in which induced observables can be
computed.
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Probe model

Two free scalar fields: Φ (system) and Ψ (probe) coupled via an
interaction term

Lint = −ρΦΨ, ρ ∈ C∞0 (M), K = supp ρ.

Uncoupled and coupled field equations:

T0Ξ =
(

P 0
0 Q

)(
Φ
Ψ

)
= 0, T Ξ =

(
P R
R Q

)(
Φ
Ψ

)
= 0

where P = �+ m2
Φ, Q = �+ m2

Ψ, RΦ = ρΦ.

At least for sufficiently weak coupling, T and T0 are
Green-hyperbolic with Green operators E±T0

, E±T .
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Probe model: quantization

Use T0 and T and Green operators to quantize as usual
I algebras C0(M) and C(M)

generators Ξ0(F ), Ξ(F ), F ∈ C∞0 (M;C2)
I C0(M) = A(M)⊗B(M)

where A and B are the KG theories for Φ and Ψ

Ξ0(f ⊕ h) = Φ(f )⊗ 1 + 1⊗Ψ(h)

Scattering morphism (= relative Cauchy evolution) is determined by

Θ(Ξ0(F )) = Ξ0(F − (T − T0)E−T F )

for all F ∈ C∞0 (M+;C2). Recall: ‘out’ region is M+ = M \ J−(K ).
Bogoliubov formula holds for composite probes.
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Induced system observables εσ(B) = ησ(Θ(1⊗ B))

Start with probe observable Ψ(h), with h ∈ C∞0 (M+). Then

Θ(1⊗Ψ(h)) = Φ(f −)⊗ 1 + 1⊗Ψ(h−),(
f −
h−

)
=
(

0
h

)
−
(

0 R
R 0

)
E−T

(
0
h

)

Θ is a homomorphism, so we obtain formal power series identities

Θ(1⊗ eiΨ(h)) = eiΦ(f −) ⊗ eiΨ(h−)

εσ(eiΨ(h)) = σ
(
eiΨ(h−)

)
eiΦ(f −) = e−S(h−,h−)/2eiΦ(f −)

if σ is quasifree with two-point function S.

Example εσ(Ψ(h)2) = Φ(f −)2 + S(h−, h−)1

CJ Fewster University of York Measurement schemes for QFT in CST



Induced system observables εσ(B) = ησ(Θ(1⊗ B))

Start with probe observable Ψ(h), with h ∈ C∞0 (M+). Then

Θ(1⊗Ψ(h)) = Φ(f −)⊗ 1 + 1⊗Ψ(h−),(
f −
h−

)
=
(

0
h

)
−
(

0 R
R 0

)
E−T

(
0
h

)
Θ is a homomorphism, so we obtain formal power series identities

Θ(1⊗ eiΨ(h)) = eiΦ(f −) ⊗ eiΨ(h−)

εσ(eiΨ(h)) = σ
(
eiΨ(h−)

)
eiΦ(f −) = e−S(h−,h−)/2eiΦ(f −)

if σ is quasifree with two-point function S.

Example εσ(Ψ(h)2) = Φ(f −)2 + S(h−, h−)1

CJ Fewster University of York Measurement schemes for QFT in CST



Localisation of induced observables

εσ(eiΨ(h)) = σ
(
eiΨ(h−)

)
eiΦ(f −) = e−S(h−,h−)/2eiΦ(f −)

Localisation of εσ(Ψ(h)n) can be expressed in terms of f −,

f − = −(E−T (0⊕ h))2ρ

So the induced observables in this case may be localised in any
open causally convex neighbourhood of

S = supp ρ ∩ J−(supp h)

Q. Can we do better than this? Localisation in S?
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Ans: Not in any useful way. E.g., may calculate

[εσ(Ψ(h)), εσ(Ψ(h′))] = [Φ(f −),Φ(f ′−)] = iEP
(
f −, f ′−

)
1

The RHS senses the geometry everywhere in the causal hull of
U = supp f − ∪ supp f ′−, where

CausalHull(U) = J+(U) ∩ J−(U)

can be as large as CausalHull(supp ρ), for suitable h and h′.

The compatibility of the induced observables cannot be decided in
terms of the geometry of (subsets of) supp ρ alone.

Induced observables have properties that are not local to supp ρ.

Minimal localisation for eternal UdW probe is the full right wedge
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Deformed product on the probe system

The map εσ is not a homomorphism.
However, we can define a deformed product

eiΨ(h) ? eiΨ(h′) = eSsym(h−,h′−)−iEP (f −,f ′−)/2eiΨ(h+h′)

in which εσ is a homomorphism (though not injective).

This allows the partial representation of the system in the probe
algebra.
E.g., Ψ(h)’s do not necessarily ?-commute at spacelike separation,

[Ψ(h),Ψ(h′)]? = iEP(f −, f ′−),

showing how long-range correlations can be created.
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Weak coupling

If σ has vanishing-one-point function,

εσ(Ψ(h)∗Ψ(h)) = Φ(f −)∗Φ(f −) + σ(Ψ(h−)∗Ψ(h−))1

Replacing ρ by λρ and using a Born expansion,

ω(εσ(Ψ(h)∗Ψ(h))) = S(h, h)+λ2
(
W (h1, h1) + 2Re S(h, h2)

)
+O(λ4)

where S and W are the two-point functions of σ and ω, and

h1 = ρE−Q h, h2 = ρE−P ρE−Q h

Lowest order term: noise from spontaneous excitation of the probe.
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Weak coupling ctd

If σ is a Fock state and Ψ(h) is (approx.) an annihilation operator,
I Ψ(h)∗Ψ(h) is a number operator, up to normalisation, and
I the terms in S (approx.) vanish.

ω(εσ(Nh)) = λ2W (h1, h1) + O(λ4)

In a limit where ρ is concentrated on timelike curve γ, so that
ρ(F ) = (γ∗F )(ρ̃) for some smooth compactly supported ρ̃,

ω(εσ(Nh)) = λ2((γ × γ)∗W )(ρ̃γ∗h1, ρ̃γ
∗h1) + O(λ4)

for ρ(F ) = (γ∗F )(ρ̃), replicating the first order perturbation result.
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Summary

I Operational framework of QMT adapted to AQFT
I Probe observables induce local system observables
I Localisation in the causal hull of coupling region
I Post-selected states, coherence under successive

measurements
I No need to invoke state change across a surface
I Computation of induced observables for specific model
I Agreement with first order perturbation theory at weak

coupling
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