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(Non-)existence of wave operators

Theorem

Let H = H0 + V (x), where H0 = −1
2∆, V (x) = e−µ|x|

|x |+1 , µ ≥ 0.
Then the wave operator

W out := lim
t→∞

eitHe−itH0 .

1 exists for µ > 0. (Short-range potential).
2 does not exist for µ = 0. (Long-range potential).
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Theorem

Let H = H0 + V (x), where H0 = −1
2∆, V (x) = e−µ|x|

|x |+1 , µ ≥ 0.
Then the wave operator

W out := lim
t→∞

eitHe−itH0 .

1 exists for µ > 0. (Short-range potential).
2 does not exist for µ = 0. (Long-range potential).

The infrared problem is the breakdown of conventional scattering
theory due to slow decay of the interaction potential with distance.
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Curing the infrared problem in Quantum Mechanics

Dollard prescription:
1 H = H0 + V (x)

2 Has(t) := H0 + V (−i∇x t)

3 Uas(t) := e−i
∫ t
0 Has(τ)dτ

Theorem

Let V (x) = 1
|x |+1 . Then:

1 W out = limt→∞ eitHe−itH0 does not exist.

2 W out
D := limt→∞ eitHe−i

∫ t
0 Has(τ)dτ exists.
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Outline

1 IR problems in non-relativistic QFT
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Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = (Hat/el ⊗ 1) + (1⊗ Hph) + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcp ⊗ ak + c∗pcp+k ⊗ a∗k).

W. Dybalski The infrared problems in QED



Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = (Hat/el ⊗ 1) + (1⊗ Hph) + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcp ⊗ ak + c∗pcp+k ⊗ a∗k).

W. Dybalski The infrared problems in QED



Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = (Hat/el ⊗ 1) + (1⊗ Hph) + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcp ⊗ ak + c∗pcp+k ⊗ a∗k).

W. Dybalski The infrared problems in QED



Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = (Hat/el ⊗ 1) + (1⊗ Hph) + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcp ⊗ ak + c∗pcp+k ⊗ a∗k).

W. Dybalski The infrared problems in QED



Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = (Hat/el ⊗ 1) + (1⊗ Hph) + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcp ⊗ ak + c∗pcp+k ⊗ a∗k).

W. Dybalski The infrared problems in QED



Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = (Hat/el ⊗ 1) + (1⊗ Hph) + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcp ⊗ ak + c∗pcp+k ⊗ a∗k).

W. Dybalski The infrared problems in QED



Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = Hat/el + Hph + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcpak + c∗pcp+ka

∗
k).

W. Dybalski The infrared problems in QED



Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = Hat/el + Hph + V , where

(a) Hat/el =
∫
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(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcpak + c∗pcp+ka

∗
k).

1 For ρ̃(0) = 0 we call the massive particle an atom.

2 For ρ̃(0) 6= 0 we call the massive particle an electron.
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Nelson model with many atoms/electrons

Definition
The Nelson model with many atoms/electrons is given by:

(1) Hilbert space H = Γ(L2(R3, dp)at/el)⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H = Hat/el + Hph + V , where

(a) Hat/el =
∫
dp p2

2 c∗pcp,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∫
dp dk ρ̃(k)√

2|k|
(c∗p+kcpak + c∗pcp+ka

∗
k).

(3) Momentum operator: P =
∫
dp p c∗pcp +

∫
dk k a∗kak .
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Nelson model with N atoms/electrons

Definition
The Nelson model with N atoms/electron is given by:

(1) Hilbert space H(N) = L2
s/a(R3N , dx)at/el ⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H(N) = H
(N)
at/el + Hph + V , where

(a) H
(N)
at/el = −1

2
∑N

i=1 ∆xi ,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V = g
∑N

i=1
∫
dk ρ̃(k)√

2|k|
(e−ikxi a∗k + e ikxi ak).

(3) Momentum operator: P(N) =
∑N

i=1(−i∇xi ) +
∫
dk k a∗kak .
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Nelson model with one atom/electron

Definition
The Nelson model with one atom/electron is given by:

(1) Hilbert space H(1) = L2(R3, dp)at/el ⊗ Γ(L2(R3, dk)ph).

(2) Hamiltonian H(1) = H
(1)
at/el + Hph + V (x), where

(a) H
(1)
at/el = −1

2∆x ,

(b) Hph =
∫
dk |k|a∗kak ,

(c) V (x) = g
∫
dk ρ̃(k)√

2|k|
(e−ikxa∗k + e ikxak).

(3) Momentum operator: P(1) = −i∇x +
∫
dk k a∗kak .
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Spectral properties

Σ

P

H

(1)

(1)

ξ −> Ε(ξ)

Theorem (Fröhlich 73... Abdesselam-Hasler 10)

There exist Σ > inf σ(H(1)) and g > 0 s.t. for E (ξ) ≤ Σ.
(a) |∇E (ξ)| < 1,
(b) ξ → ∇E (ξ) is invertible.
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Neutral particle (atom)

Σ

P

H

(1)

(1)

ξ −> Ε(ξ)

Suppose that ρ̃(0) = 0 i.e. the massive particle is an atom.
Then, (generically),

Hsp := {Spectral subspace of the lower boundary} 6= {0}
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Asymptotic creation operators of photons

Definition

For h ∈ C∞0 (R3) we define

a∗t (h) := eiHta∗(e−i|k|th)e−iHt ,

which is called (the approximating sequence of) the asymptotic
creation operator of a photon.
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Scattering states of one atom and photons

Theorem (Hoegh-Krohn 69...Griesemer-Zenk 09)

For any hi ∈ C∞0 (R3) and Ψ ∈ Hsp there exist scattering states

Ψout = lim
t→∞

a∗t (h1) . . . a∗t (hn)Ψ

and span a subspace naturally isomorphic to Γ(L2(R3, dk)ph)⊗Hsp.
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Renormalized creation operators of atoms

1 Since H(1) commutes with P(1), we can diagonalize:

H(1) = Π∗
∫ ⊕

dξ H(1)(ξ) Π, P(1) = Π∗
∫ ⊕

dξ ξΠ,

where H(1)(ξ) are operators on Γ(L2(R3, dk)).

2 Let ψξ ∈ Γ(L2(R3, dk)) be ground-states of H(1)(ξ) i.e.

H(1)(ξ)ψξ = E (ξ)ψξ.

3 Let us define the renormalized creation operators of atoms:

ĉ∗(h) :=
∞∑
n=0

1√
n!

∫
dξ

∫
R3n

dk h(ξ)ψ
(n)
ξ (k1, . . . , kn)a∗k1

. . . a∗knc
∗
ξ−k ,

where {ψ(n)
ξ }n≥0 are components of ψξ and h ∈ C∞0 (R3).
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Renormalized creation operators of atoms

1 Since H(1) commutes with P(1), we can diagonalize:

H(1) = Π∗
∫ ⊕

dξ H(1)(ξ) Π, P(1) = Π∗
∫ ⊕

dξ ξΠ,

where H(1)(ξ) are operators on Γ(L2(R3)).

2 Let ψξ ∈ Γ(L2(R3)) be ground-states of H(1)(ξ) i.e.

H(1)(ξ)ψξ = E (ξ)ψξ.

3 The renormalized creation operators of atoms satisfy:

ĉ∗(h)Ω ∈ Hsp
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Asymptotic creation operators of atoms

Definition

For h ∈ C∞0 (R3) we define

ĉ∗t (h) := eiHt ĉ∗(e−iEth)e−iHt ,

which is called (the approximating sequence of) the asymptotic
creation operator of an atom.
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Scattering states of two atoms

Theorem (Pizzo-W.D.)

For h1, h2 ∈ C∞0 (R3) with disjoint supports the limits

Ψout := lim
t→∞

ĉ∗t (h1)ĉ∗t (h2)Ω

exist and span a subspace naturally isomorphic to Hsp ⊗s/a Hsp.
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Charged particle (electron)

ξ −> Ε(ξ)

P

H

(1)

(1)

Theorem (Fröhlich 74...Hasler-Herbst 07)

Hsp = {Spectral subspace of the lower boundary} = {0} for
ρ̃(0) 6= 0, g 6= 0.

Remark: Electron is an infraparticle.
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Dollard’s formalism

Let us construct a scattering state describing N electrons with
velocities v = (v1, . . . , vN) following the Dollard’s prescription:

1

2

3 Has,v (t) := Ĥ0 + Vas,v (t)

4 Uas,v (t) = e−iĤ0tT e−i
∫ t
0 eiĤ0τVas,v (τ)e−iĤ0τdτ

Candidate scattering states approximants have the form:

Ψ(N)(t) :=
∑
v

e iHtUas,v (t)
N∏
i=1

c∗(hvi )Ω
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0 eiĤ0τVas,v (τ)e−iĤ0τdτ
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0 eiĤ0τVas,v (τ)e−iĤ0τdτ
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Electron scattering states

After (heuristic) rearrangements [W.D. Nucl.Phys.B, 2017]:

Ψ(N)(t) =
∑
v

( N∏
i=1

Wt(vi )

) N∏
i=1

ĉ∗t (hvi )Ω

Wt(v) := ea
∗
t (Gv )−at(Gv )

Gv (k) := g
ρ̃(k)√
2|k |

1
|k| − kv

1 Wt(v) involves the function Gv which is not square-integrable.
It requires a regularization.

2 ĉ∗t (hvi ) involves the non-existing ground state ψξ of H(1)(ξ).
We replace it with the ground state ψσ,ξ of H

(1)
σ (ξ).
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We replace it with the ground state ψσ,ξ of H

(1)
σ (ξ).
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Electron scattering states

After (heuristic) rearrangements [W.D. Nucl.Phys.B, 2017]:
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i=1

Wσ,t(vi )

) N∏
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Electron scattering states

For σt → 0 as t →∞:

Theorem (Pizzo 05)

The following one-electron scattering state exist and are non-zero:

Ψout
(N=1) = lim

t→∞

∑
v

Wσt ,t(v)ĉ∗σt ,t(hv )Ω.

Conjecture (Pizzo-W.D.)

The following two-electron scattering states exist and are non-zero:

Ψout
(N=2) = lim

t→∞

∑
v1,v2

Wσt ,t(v1)Wσt ,t(v2)ĉ∗σt ,t(hv1)ĉ∗σt ,t(hv2)Ω.

Remark: The electron-atom scattering states are under control.

W. Dybalski The infrared problems in QED



Electron scattering states

For σt → 0 as t →∞:

Theorem (Pizzo 05)

The following one-electron scattering state exist and are non-zero:

Ψout
(N=1) = lim

t→∞

∑
v
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Remark: The electron-atom scattering states are under control.
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Relativistic QFT

Definition
A relativistic QFT is given by:

(1) A net of local algebras R4 ⊃ O 7→ A(O) ⊂ B(H) s.t.
(a) If O1 ⊂ O2 then A(O1) ⊂ A(O2).
(b) If O1 ×O2 then [A(O1),A(O2)] = 0.

(2) A Hamiltonian H and momentum operators P s.t.
(a) Joint spectrum of H and P is in the closed future lightcone.
(b) If A ∈ A(O) then

A(t, x) := e i(Ht−Px)Ae−i(Ht−Px) ∈ A(O + (t, x)).
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Relativistic QED

Definition (Fredenhagen-Hertel 81, Bostelmann 04)

A quadratic form φ is a pointlike field of a relativistic QFT, if there
exist:
(a) Ar ∈ A(Or ), where Or is the ball of radius r centered at zero,
(b) k > 0,
s.t. ‖(1 + H)−k(φ− Ar )(1 + H)−k‖ →

r→0
0.

Definition
Relativistic QED is a QFT whose pointlike fields include the
Faraday tensor F and a conserved current j which satisfy the
Maxwell equations: dF = 0, d ∗ F = j .
The electric charge exists and is given (formally) by
Q =

∫
dx j0(x).
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Vacuum representation of QED

We assume:
(a) Existence of the vacuum vector Ω. (We set H0 = CΩ).
(b) Non-triviality of

Hsp = 1{m2
ph}

(H2 − P2)H⊥0 ⊕ 1{m2
at}(H

2 − P2)H.

(c) Hölder cont. of the spectrum of (H2 − P2) near {m2
ph,m

2
at}.

W. Dybalski The infrared problems in QED



Asymptotic creation operators

Definition

(a) Free dynamics: ĥt(x) :=
∫

dk
(2π)3 e−iω(k)t+ikx ĥ(k),

ω(k) =
√
k2 + m2.

(b) Interacting dynymics: A∗(t, x) = ei(Ht−Px)A∗e−i(Ht−Px),
A∗ ∈ A(O).

(c) LSZ creation operator: A∗t (ĥ) :=
∫
dx ĥt(x)A∗(t, x).

(d) HR creation operator: A∗T (ĥ) := 1
ln |T |

∫ T+ln |T |
T dt A∗t (ĥ).

Remark: h := limT→∞ A∗T (ĥ)Ω exists and is a single-particle state.
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Scattering states of atoms and photons

Theorem (W.D. 05, Herdegen 12, Herdegen-Duch 14, Duell 16)

Suppose the particles hi = limT→∞ A∗i ,T (ĥi )Ω have disjoint velocity
supports, separated from zero. Then there exist the scattering
states

Ψout = lim
T→∞

A∗1,T (ĥ1) . . .A∗n,T (ĥn)Ω.

Such states span a subspace naturally isomorphic to Γ(Hsp).
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Charged representations

Theorem (Buchholz 86)

Hsp := 1{m2
el}

(H2 − P2)H = {0} in charged representations of
QED.

Remark: Electron is an infraparticle.

W. Dybalski The infrared problems in QED



Charged representations

Theorem (Buchholz 86)

Hsp := 1{m2
el}

(H2 − P2)H = {0} in charged reps. of QED.

1 In non-relativistic QED we could construct scattering states in
this situation starting from the Dollard prescription.

2 In the relativistic setting this strategy does not seem feasible.

3 But there is a different strategy [Buchholz-Roberts 13]:
Consider representations in which the flux f does not exist.
‘Infravacuum representations’.

4 In such representations one can hope for Hsp 6= {0}.
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Charged representations

f f

x

t

V
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Charged representations

f f

x

t

V

1 To prevent the existence of f , it suffices to include strongly
fluctuating radiation, emitted in distant past.

2 Such radiation does not enter the future lightcone V .
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Charged representations

f f

x

t

V

1 To prevent the existence of f , it suffices to include strongly
fluctuating radiation, emitted in distant past.

2 Such radiation does not enter the future lightcone V .
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Hyperbolic geometry

x

t

V

C c

C

1 V : future lightcone.
2 C : hyperbolic cone in V .
3 Cc : causal complement of C in V .
4 C := Ccc : hypercone.
5 F : family of admissible hyperbolic cones.
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Hypercone localized representations

Definition (Buchholz-Roberts 13)

Let A be the algebra of observables in the vacuum representation.

We say that a (covariant, positive energy) representation
π : A → B(Hπ) is hypercone localized if for any C ∈ F

π � A(Cc) ' id � A(Cc).
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Scattering states of one electron and photons

Let (π(A),Hπ,Pπ) be a hypercone localized representation π,
containing massive particles (electrons). That is

Hπ,sp := 1{m2
el}

(H2
π − P2

π)Hπ 6= 0.

Theorem (Alazzawi-W.D. 15)

There exist scattering states of one electron and n-photons:

Ψout := lim
T→∞

A∗1,T (ĥ1) . . .A∗n,T (ĥn)Ψel, Ψel ∈ Hπ,sp, Ai ∈ π(A).

They span a subspace naturally isomorphic to Γ(Hsp)⊗Hπ,sp.
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Summary of scattering theory

Scattering states of: NRQED RQED
one atom and photons

many atoms and photons

one electron and photons

electron and atom

many electrons and photons

- not understood

- partially understood
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Sectors

1 A - C ∗-algebra.

2 PA - pure states.

3 InA ⊂ AutA - inner automorphisms.

4 X := PA/InA - sectors.
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Sectors

1 A - C ∗-algebra.

2 PA - pure states.

3 InA ⊂ AutA - inner automorphisms.

4 X := PA/InA - sectors.

Infrared problem: Uncountable families of physically
indistinguishable sectors.

W. Dybalski The infrared problems in QED



Sectors

1 A - C ∗-algebra.

2 PA - pure states.

3 InA ⊂ AutA - inner automorphisms.

4 X := PA/InA - sectors.

Infrared problem: Uncountable families of physically
indistinguishable sectors.

Strategy: Form equivalence classes of sectors (‘charge classes’)
[Buchholz 82, Buchholz-Roberts 14] by comparing them on V .
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Sectors

1 A - C ∗-algebra.

2 PA - pure states.

3 InA ⊂ AutA - inner automorphisms.

4 X := PA/InA - sectors.

Infrared problem: Uncountable families of physically
indistinguishable sectors.

Strategy: Form equivalence classes of sectors (‘charge classes’)
[Buchholz 82, Buchholz-Roberts 14] by comparing them on V .

Question: Can this be done without locality?
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(Second) conjugate classes

1 G ⊂ AutA.

2 X × G 3 (x , g) 7→ x · g ∈ X - group action on X .
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(Second) conjugate classes

1 G ⊂ AutA.

2 X × G 3 (x , g) 7→ x · g ∈ X - group action on X .

Definition
1 Fix a ‘vacuum’ x0 ∈ X and ‘background’ a ∈ G .

2 For x ∈ X set G a
x ,x0 := { g ∈ G | x = x0 · a · g }.

3 [x ]
a

:= { x0 · a · g−1 | g ∈ G a
x ,x0 } is called the conjugate class.

4 [x ]
a

:= { x0 · a · (g ′)−1 | g ′ ∈ G a
y ,x0 , y ∈ [x ]

a }
is called the second conjugate class.
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(Second) conjugate classes

1 G ⊂ AutA.

2 X × G 3 (x , g) 7→ x · g ∈ X - group action on X .

Definition
1 Fix a ‘vacuum’ x0 ∈ X and ‘background’ a ∈ G .

2 For x ∈ X set G a
x ,x0 := { g ∈ G | x = x0 · a · g }.

3 [x ]
a

:= { x0 · a · g−1 | g ∈ G a
x ,x0 } is called the conjugate class.

4 [x ]
a

:= { x0 · a · (g ′)−1 | g ′ ∈ G a
y ,x0 , y ∈ [x ]

a }
is called the second conjugate class.

Claim: second conjugate classes are meaningful candidates for
‘charge classes’ in the absence of locality.
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Main general result

Theorem (Cadamuro-W.D. 18)

Let R ⊂ S ⊂ G be subgroups. Suppose that
1 x0 · r = x0 for all r ∈ R .

2 x0 · s 6= x0 may hold for some s ∈ S .

3 a · S · a−1 ⊂ R .

Then, [x0 · s]
a

= [x0]
a
and [x0 · s]

a
= [x0]

a
for all s ∈ S .
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Main general result

Theorem (Cadamuro-W.D. 18)

Let R ⊂ S ⊂ G be subgroups. Suppose that
1 x0 · r = x0 for all r ∈ R .

2 x0 · s 6= x0 may hold for some s ∈ S .

3 a · S · a−1 ⊂ R .

Then, [x0 · s]
a

= [x0]
a
and [x0 · s]

a
= [x0]

a
for all s ∈ S .

Definition
The relative normalizer of R ⊂ S ⊂ G is defined as

NG (R, S) := { g ∈ G | g · S · g−1 ⊂ R }.
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Existence of relative normalizers for R  S

1 ‘Tension’: R S vs NG (R, S) := { g ∈ G | g · S · g−1⊂R }.

2 Hence relative normalizers are empty for
abelian groups,
finite groups,
finite-dimensional Lie groups (under some assumptions).

3 However, we could show that ISp(L) over an infinite dim.
space L ⊂ L2(R3) admits non-empty relative normalizers.

4 Their elements are symplectic maps T̂ : L → L, known as
Kraus-Polley-Reents (KPR) infravacua.

5 Also the resulting Bogolubov transformations αT̂ : L → L are
elements of relative normalizers in Aut(A), where
A = CCR(L).
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Problem of velocity superselection
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Problem of velocity superselection

Thm (Fröhlich 74, Chen-Fröhlich-Pizzo 09, Könenberg-Matte 14)

For any ξ ∈ S the following limits exist and define states on A

ωξ(A) := lim
σ→0
〈ψξ,σ, π0(A)ψξ,σ〉, A ∈ A.

The corresponding sectors are mutually disjoint i.e.

[ωξ1 ]InA 6= [ωξ2 ]InA for ξ1 6= ξ2.
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Problem of velocity superselection

Thm (Fröhlich 74, Chen-Fröhlich-Pizzo 09, Könenberg-Matte 14)

For any ξ ∈ S the following limits exist and define states on A

ωξ(A) := lim
σ→0
〈ψξ,σ, π0(A)ψξ,σ〉, A ∈ A.

The corresponding sectors are mutually disjoint i.e.

[ωξ1 ]InA 6= [ωξ2 ]InA for ξ1 6= ξ2.

Theorem (Cadamuro-W.D. 18)

Let T̂ be the KPR infravacuum. Then, for all ξ1, ξ2 ∈ S

[[ωξ1 ]InA]
αT̂ = [[ωξ2 ]InA]

αT̂ , and [[ωξ1 ]InA]
αT̂

= [[ωξ2 ]InA]
αT̂
.

W. Dybalski The infrared problems in QED



Outlook

What does it mean to solve the infrared problem?
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Infraparticle approach:

Dollard
formalism

−−−−→ Infraparticle
scattering states

−−−−→ YFS
algorithm
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What does it mean to solve the infrared problem?

Infraparticle approach:

Dollard
formalism

−−−−→ Infraparticle
scattering states

−−−−→ YFS
algorithm

Infravacuum approach:

Infravacuum
representations

−−−−→ Sharp mass
of electron

−−−−→ YFS
algorithm
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Strominger’s infrared triangle

(a) Weinberg’s soft−photon theorem

(b) Asymptotic symmetries (c) Memory effects
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(a) Weinberg’s soft−photon theorem

(b) Asymptotic symmetries (c) Memory effects

(a) Soft-photon theorem:

〈out|aout
+ (q)S |in〉 = e

[ m∑
k=1

Qout
k pout

k · ε+

pout
k · q

−
n∑

k=1

Q in
k pin

k · ε+

pin
k · q

]
〈out|S |in〉

+O(q0)
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(a) Weinberg’s soft−photon theorem

(b) Asymptotic symmetries (c) Memory effects

(b) Asymptotic symmetries:

f (n) := lim
r→∞

r2niF 0i (nr).
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