The infrared problems in QED. Some topics of current research.

Wojciech Dybalski

TU München

Banff, 31.07.2018

(Non-)existence of wave operators

Theorem

Let $H = H_0 + V(x)$, where $H_0 = -\frac{1}{2}\Delta$, $V(x) = \frac{e^{-\mu|x|}}{|x|+1}$, $\mu \ge 0$. Then the wave operator

$$W^{\mathrm{out}} := \lim_{t \to \infty} \mathrm{e}^{\mathrm{i}tH} \mathrm{e}^{-\mathrm{i}tH_0}.$$

- exists for $\mu > 0$. (Short-range potential).
 - ② does not exist for $\mu=$ 0. (Long-range potential).

(Non-)existence of wave operators

Theorem

Let $H = H_0 + V(x)$, where $H_0 = -\frac{1}{2}\Delta$, $V(x) = \frac{e^{-\mu|x|}}{|x|+1}$, $\mu \ge 0$. Then the wave operator

$$W^{\mathrm{out}} := \lim_{t \to \infty} \mathrm{e}^{\mathrm{i}tH} \mathrm{e}^{-\mathrm{i}tH_0}.$$

- exists for $\mu > 0$. (Short-range potential).
- 2 does not exist for $\mu = 0$. (Long-range potential).

(Non-)existence of wave operators

Theorem

Let $H = H_0 + V(x)$, where $H_0 = -\frac{1}{2}\Delta$, $V(x) = \frac{e^{-\mu|x|}}{|x|+1}$, $\mu \ge 0$. Then the wave operator

$$W^{\mathrm{out}} := \lim_{t \to \infty} \mathrm{e}^{\mathrm{i}tH} \mathrm{e}^{-\mathrm{i}tH_0}.$$

- exists for $\mu > 0$. (Short-range potential).
- 2 does not exist for $\mu = 0$. (Long-range potential).

The infrared problem is the breakdown of conventional scattering theory due to slow decay of the interaction potential with distance.

Curing the infrared problem in Quantum Mechanics

Dollard prescription:

•
$$H = H_0 + V(x)$$

• $H_{as}(t) := H_0 + V(-i\nabla_x t)$
• $U_{as}(t) := e^{-i\int_0^t H_{as}(\tau)d\tau}$

Theorem

Let
$$V(x) = \frac{1}{|x|+1}$$
. Then:

•
$$W^{\text{out}} = \lim_{t \to \infty} e^{itH} e^{-itH_0}$$
 does not exist.

Curing the infrared problem in Quantum Mechanics

Dollard prescription:

•
$$H = H_0 + V(x)$$

• $H_{as}(t) := H_0 + V(-i\nabla_x t)$
• $U_{as}(t) := e^{-i\int_0^t H_{as}(\tau)d\tau}$

Theorem

Let
$$V(x) = \frac{1}{|x|+1}$$
. Then:
W^{out} = $\lim_{t\to\infty} e^{itH}e^{-itH_0}$ does not exist.
W^{out} := $\lim_{t\to\infty} e^{itH}e^{-i\int_0^t H_{as}(\tau)d\tau}$ exists.

1 IR problems in non-relativistic QFT

2 IR problems in relativistic QFT

3 IR problems and superselection theory

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space $\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{\mathrm{at/el}}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{\mathrm{ph}}).$ (2) Hamiltonian $H = (H_{\mathrm{at/el}} \otimes 1) + (1 \otimes H_{\mathrm{ph}}) + V$, where (a) $H_{\mathrm{at/el}} = \int dp \frac{p^2}{2} c_p^* c_p,$ (b) $H_{\mathrm{ph}} = \int dk |k| a_k^* a_k,$ (c) $V = g \int dp \, dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p \otimes a_k + c_p^* c_{p+k} \otimes a_k^*).$

Nelson model with many atoms/electrons

Definition

The Nelson model with many atoms/electrons is given by: (1) Hilbert space $\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{at/el}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{ph}).$ (2) Hamiltonian $H = (H_{at/el} \otimes 1) + (1 \otimes H_{ph}) + V$, where (a) $H_{at/el} = \int dp \frac{p^2}{2} c_p^* c_p,$ (b) $H_{ph} = \int dk |k| a_k^* a_k,$ (c) $V = g \int dp \, dk \frac{\tilde{p}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p \otimes a_k + c_p^* c_{p+k} \otimes a_k^*).$

The Nelson model with many atoms/electrons is given by:

- (1) Hilbert space $\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{\mathrm{at/el}}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{\mathrm{ph}}).$
- (2) Hamiltonian $H = (H_{\mathrm{at/el}} \otimes 1) + (1 \otimes H_{\mathrm{ph}}) + V$, where
- (a) $H_{\rm at/el} = \int dp \, \frac{p^2}{2} \, c_p^* c_p$,
- (b) $H_{\rm ph} = \int dk \, |k| a_k^* a_k$,
- (c) $V = g \int dp \, dk \, \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p \otimes a_k + c_p^* c_{p+k} \otimes a_k^*).$

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space $\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{at/el}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{ph}).$ (2) Hamiltonian $H = (H_{at/el} \otimes 1) + (1 \otimes H_{ph}) + V$, where (a) $H_{at/el} = \int dp \frac{p^2}{2} c_p^* c_p,$ (b) $H_{ph} = \int dk |k| a_k^* a_k,$ (c) $V = g \int dp \, dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p \otimes a_k + c_p^* c_{p+k} \otimes a_k^*).$

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space $\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{\mathrm{at/el}}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{\mathrm{ph}}).$ (2) Hamiltonian $H = (H_{\mathrm{at/el}} \otimes 1) + (1 \otimes H_{\mathrm{ph}}) + V$, where (a) $H_{\mathrm{at/el}} = \int dp \, \frac{p^2}{2} \, c_p^* c_p,$ (b) $H_{\mathrm{ph}} = \int dk \, |k| a_k^* a_k,$ (c) $V = g \int dp \, dk \, \frac{\tilde{p}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p \otimes a_k + c_p^* c_{p+k} \otimes a_k^*).$

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space
$$\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{at/el}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{ph}).$$

(2) Hamiltonian $H = (H_{at/el} \otimes 1) + (1 \otimes H_{ph}) + V$, where
(a) $H_{at/el} = \int dp \frac{p^2}{2} c_p^* c_p,$
(b) $H_{ph} = \int dk |k| a_k^* a_k,$
(c) $V = g \int dp \, dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p \otimes a_k + c_p^* c_{p+k} \otimes a_k^*).$

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space
$$\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{at/el}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{ph}).$$

(2) Hamiltonian $H = H_{at/el} + H_{ph} + V$, where
(a) $H_{at/el} = \int dp \frac{p^2}{2} c_p^* c_p,$
(b) $H_{ph} = \int dk |k| a_k^* a_k,$
(c) $V = g \int dp \, dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p a_k + c_p^* c_{p+k} a_k^*).$

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space $\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{\mathrm{at/el}}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{\mathrm{ph}}).$ (2) Hamiltonian $H = H_{\rm at/el} + H_{\rm ph} + V$, where (a) $H_{\rm at/el} = \int dp \, \frac{p^2}{2} \, c_p^* c_p$, (b) $H_{\rm ph} = \int dk \, |k| a_{\nu}^* a_k$, (c) $V = g \int dp \, dk \, \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p a_k + c_p^* c_{p+k} a_k^*).$ • For $\tilde{\rho}(0) = 0$ we call the massive particle an atom. **2** For $\tilde{\rho}(0) \neq 0$ we call the massive particle an electron.

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space
$$\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{at/el}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{ph}).$$

(2) Hamiltonian $H = H_{at/el} + H_{ph} + V$, where
(a) $H_{at/el} = \int dp \frac{p^2}{2} c_p^* c_p,$
(b) $H_{ph} = \int dk |k| a_k^* a_k,$
(c) $V = g \int dp \, dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p a_k + c_p^* c_{p+k} a_k^*).$

The Nelson model with many atoms/electrons is given by:

(1) Hilbert space
$$\mathcal{H} = \Gamma(L^2(\mathbb{R}^3, dp)_{at/el}) \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{ph}).$$

(2) Hamiltonian $H = H_{at/el} + H_{ph} + V$, where
(a) $H_{at/el} = \int dp \frac{p^2}{2} c_p^* c_p,$
(b) $H_{ph} = \int dk |k| a_k^* a_k,$
(c) $V = g \int dp \, dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (c_{p+k}^* c_p a_k + c_p^* c_{p+k} a_k^*).$
(3) Momentum operator: $P = \int dp \, p \, c_p^* c_p + \int dk \, k \, a_k^* a_k.$

Nelson model with N atoms/electrons

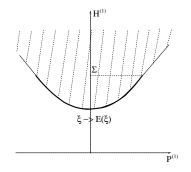
Definition

The Nelson model with N atoms/electron is given by: (1) Hilbert space $\mathcal{H}^{(N)} = L^2_{s/a}(\mathbb{R}^{3N}, dx)_{at/el} \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{ph}).$ (2) Hamiltonian $H^{(N)} = H^{(N)}_{at/el} + H_{ph} + V$, where (a) $H_{at/el}^{(N)} = -\frac{1}{2} \sum_{i=1}^{N} \Delta_{x_i}$ (b) $H_{\rm ph} = \int dk \, |k| a_k^* a_k$ (c) $V = g \sum_{i=1}^{N} \int dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (e^{-ikx_i} a_k^* + e^{ikx_i} a_k).$ (3) Momentum operator: $P^{(N)} = \sum_{i=1}^{N} (-i\nabla_{x_i}) + \int dk \, k \, a_{\nu}^* a_k$.

The Nelson model with one atom/electron is given by:

(1) Hilbert space $\mathcal{H}^{(1)} = L^2(\mathbb{R}^3, dp)_{\mathrm{at/el}} \otimes \Gamma(L^2(\mathbb{R}^3, dk)_{\mathrm{ph}}).$ (2) Hamiltonian $H^{(1)} = H^{(1)}_{at/el} + H_{ph} + V(x)$, where (a) $H_{\rm at/el}^{(1)} = -\frac{1}{2}\Delta_x$, (b) $H_{\rm ph} = \int dk \, |k| a_k^* a_k$ (c) $V(x) = g \int dk \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} (e^{-ikx}a_k^* + e^{ikx}a_k).$ (3) Momentum operator: $P^{(1)} = -i\nabla_x + \int dk \, k \, a_{\nu}^* a_k$.

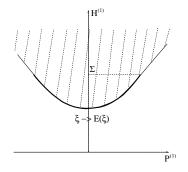
Spectral properties



Theorem (Fröhlich 73... Abdesselam-Hasler 10)

There exist $\Sigma > \inf \sigma(H^{(1)})$ and g > 0 s.t. for $E(\xi) \leq \Sigma$. (a) $|\nabla E(\xi)| < 1$, (b) $\xi \to \nabla E(\xi)$ is invertible.

Neutral particle (atom)



Suppose that $\tilde{\rho}(0) = 0$ i.e. the massive particle is an atom. Then, (generically),

 $\mathcal{H}_{sp} := \{ \text{Spectral subspace of the lower boundary} \} \neq \{ 0 \}$

Asymptotic creation operators of photons

Definition

For $h \in C_0^\infty(\mathbb{R}^3)$ we define

$$a_t^*(h) := \mathrm{e}^{\mathrm{i}Ht} a^*(e^{-\mathrm{i}|k|t}h) \mathrm{e}^{-\mathrm{i}Ht},$$

which is called (the approximating sequence of) the asymptotic creation operator of a photon.

Scattering states of one atom and photons

Theorem (Hoegh-Krohn 69...Griesemer-Zenk 09)

For any $h_i \in C_0^\infty(\mathbb{R}^3)$ and $\Psi \in \mathcal{H}_{\mathrm{sp}}$ there exist scattering states

$$\Psi^{\text{out}} = \lim_{t \to \infty} a_t^*(h_1) \dots a_t^*(h_n) \Psi$$

and span a subspace naturally isomorphic to $\Gamma(L^2(\mathbb{R}^3, dk)_{\rm ph}) \otimes \mathcal{H}_{\rm sp}$.

• Since $H^{(1)}$ commutes with $P^{(1)}$, we can diagonalize:

$$H^{(1)} = \Pi^* \int^{\oplus} d\xi \, H^{(1)}(\xi) \, \Pi, \quad P^{(1)} = \Pi^* \int^{\oplus} d\xi \, \xi \, \Pi,$$

where $H^{(1)}(\xi)$ are operators on $\Gamma(L^2(\mathbb{R}^3, dk))$.

Let $\psi_{\xi} \in \Gamma(L^2(\mathbb{R}^3, dk))$ be ground-states of $H^{(1)}(\xi)$ i.e.
 $H^{(1)}(\xi)\psi_{\xi} = E(\xi)\psi_{\xi}.$

Ict us define the renormalized creation operators of atoms:

$$\hat{c}^{*}(h) := \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} \int d\xi \int_{\mathbb{R}^{3n}} dk \ h(\xi) \psi_{\xi}^{(n)}(k_{1}, \ldots, k_{n}) a_{k_{1}}^{*} \ldots a_{k_{n}}^{*} c_{\xi-\underline{k}}^{*},$$

where $\{\psi_{\xi}^{(n)}\}_{n\geq 0}$ are components of ψ_{ξ} and $h\in C_0^\infty(\mathbb{R}^3).$

• Since $H^{(1)}$ commutes with $P^{(1)}$, we can diagonalize:

$$H^{(1)} = \Pi^* \int^{\oplus} d\xi \ H^{(1)}(\xi) \ \Pi, \quad P^{(1)} = \Pi^* \int^{\oplus} d\xi \ \xi \ \Pi,$$

where $H^{(1)}(\xi)$ are operators on $\Gamma(L^2(\mathbb{R}^3, dk))$.

• Let $\psi_{\xi} \in \Gamma(L^2(\mathbb{R}^3, dk))$ be ground-states of $H^{(1)}(\xi)$ i.e. $H^{(1)}(\xi)\psi_{\xi} = E(\xi)\psi_{\xi}.$

3 Let us define the renormalized creation operators of atoms:

$$\hat{c}^{*}(h) := \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} \int d\xi \int_{\mathbb{R}^{3n}} dk \, h(\xi) \psi_{\xi}^{(n)}(k_{1}, \ldots, k_{n}) a_{k_{1}}^{*} \ldots a_{k_{n}}^{*} c_{\xi-\underline{k}}^{*},$$

where $\{\psi^{(n)}_{\xi}\}_{n\geq 0}$ are components of ψ_{ξ} and $h\in C_0^\infty(\mathbb{R}^3).$

• Since $H^{(1)}$ commutes with $P^{(1)}$, we can diagonalize:

$$H^{(1)} = \Pi^* \int^{\oplus} d\xi \, H^{(1)}(\xi) \, \Pi, \quad P^{(1)} = \Pi^* \int^{\oplus} d\xi \, \xi \, \Pi,$$

where $H^{(1)}(\xi)$ are operators on $\Gamma(L^2(\mathbb{R}^3, dk))$.

- Let $\psi_{\xi} \in \Gamma(L^2(\mathbb{R}^3, dk))$ be ground-states of $H^{(1)}(\xi)$ i.e. $H^{(1)}(\xi)\psi_{\xi} = E(\xi)\psi_{\xi}.$
- **③** Let us define the renormalized creation operators of atoms:

$$\hat{c}^*(h) := \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} \int d\xi \int_{\mathbb{R}^{3n}} dk \ h(\xi) \psi_{\xi}^{(n)}(k_1, \dots, k_n) a_{k_1}^* \dots a_{k_n}^* c_{\xi-\underline{k}}^*,$$

where $\{\psi_{\xi}^{(n)}\}_{n\geq 0}$ are components of ψ_{ξ} and $h \in C_0^{\infty}(\mathbb{R}^3).$

• Since $H^{(1)}$ commutes with $P^{(1)}$, we can diagonalize:

$$H^{(1)} = \Pi^* \int^{\oplus} d\xi \, H^{(1)}(\xi) \, \Pi, \quad P^{(1)} = \Pi^* \int^{\oplus} d\xi \, \xi \, \Pi,$$

where $H^{(1)}(\xi)$ are operators on $\Gamma(L^2(\mathbb{R}^3))$.

2 Let $\psi_{\xi} \in \Gamma(L^2(\mathbb{R}^3))$ be ground-states of $H^{(1)}(\xi)$ i.e.

$$H^{(1)}(\xi)\psi_{\xi}=E(\xi)\psi_{\xi}.$$

The renormalized creation operators of atoms satisfy:

$$\hat{c}^*(h)\Omega\in\mathcal{H}_{\mathrm{sp}}$$

Asymptotic creation operators of atoms

Definition

For $h \in C_0^\infty(\mathbb{R}^3)$ we define

$$\hat{c}_t^*(h) := \mathrm{e}^{\mathrm{i}Ht} \hat{c}^*(\mathrm{e}^{-\mathrm{i}Et}h) \mathrm{e}^{-\mathrm{i}Ht},$$

which is called (the approximating sequence of) the asymptotic creation operator of an atom.

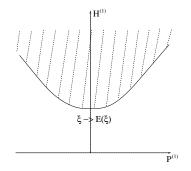
Theorem (Pizzo-W.D.)

For $h_1, h_2 \in C_0^\infty(\mathbb{R}^3)$ with disjoint supports the limits

$$\Psi^{\mathrm{out}} := \lim_{t \to \infty} \hat{c}_t^*(h_1) \hat{c}_t^*(h_2) \Omega$$

exist and span a subspace naturally isomorphic to $\mathcal{H}_{sp} \otimes_{s/a} \mathcal{H}_{sp}$.

Charged particle (electron)



Theorem (Fröhlich 74...Hasler-Herbst 07)

 $\mathcal{H}_{\rm sp} = \{ \text{Spectral subspace of the lower boundary} \} = \{ 0 \}$ for $\tilde{\rho}(0) \neq 0, g \neq 0.$

Remark: Electron is an infraparticle.

$$V = V(x_1, \ldots, x_N)$$

$$V_{\mathrm{as},\underline{v}}(t) := V(v_1 t, \ldots, v_N t)$$

2
$$H_0 := \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{x_i} \right) + \int dk \, |k| a_k^* a_k$$

2
$$\hat{H}_0 := \sum_{i=1}^N E(-i\nabla_{x_i}) + \int dk \, |k| a_k^* a_k$$

•
$$V_{\mathrm{as},\underline{v}}(t) := V(v_1t, \dots, v_Nt)$$

• $\hat{H}_0 := \sum_{i=1}^N E(-\mathrm{i}\nabla_{x_i}) + \int dk \, |k| a_k^* a_k$

Dollard's formalism

Let us construct a scattering state describing *N* electrons with velocities $\underline{v} = (v_1, \dots, v_N)$ following the Dollard's prescription:

Dollard's formalism

Let us construct a scattering state describing *N* electrons with velocities $\underline{v} = (v_1, \dots, v_N)$ following the Dollard's prescription:

Candidate scattering states approximants have the form:

$$\Psi_{(N)}(t) := \sum_{\underline{v}} e^{\mathrm{i}Ht} U_{\mathrm{as},\underline{v}}(t) \prod_{i=1}^{N} c^{*}(h_{v_{i}}) \Omega$$

$$\Psi_{(N)}(t) = \sum_{\underline{v}} \left(\prod_{i=1}^{N} W_t(v_i)\right) \prod_{i=1}^{N} \hat{c}_t^*(h_{v_i}) \Omega$$

$$\Psi_{(N)}(t) = \sum_{\underline{v}} \left(\prod_{i=1}^{N} W_t(v_i)\right) \prod_{i=1}^{N} \hat{c}_t^*(h_{v_i}) \Omega$$
$$W_t(v) := e^{a_t^*(G_v) - a_t(G_v)}$$

$$egin{aligned} \Psi_{(N)}(t) &= \sum_{\underline{v}} \left(\prod_{i=1}^N W_t(v_i)
ight) \prod_{i=1}^N \hat{c}_t^*(h_{v_i}) \Omega \ W_t(v) &:= \mathrm{e}^{a_t^*(G_v) - a_t(G_v)} \ G_v(k) &:= g rac{ ilde{
ho}(k)}{\sqrt{2|k|}} rac{1}{|k| - kv} \end{aligned}$$

After (heuristic) rearrangements [W.D. Nucl. Phys. B, 2017]:

$$\begin{split} \Psi_{(N)}(t) &= \sum_{\underline{v}} \left(\prod_{i=1}^{N} W_t(v_i) \right) \prod_{i=1}^{N} \hat{c}_t^*(h_{v_i}) \Omega \\ W_t(v) &:= \mathrm{e}^{a_t^*(G_v) - a_t(G_v)} \\ G_v(k) &:= g \frac{\tilde{\rho}(k)}{\sqrt{2|k|}} \frac{1}{|k| - kv} \end{split}$$

W_t(v) involves the function G_v which is not square-integrable.
 It requires a regularization.

After (heuristic) rearrangements [W.D. Nucl. Phys. B, 2017]:

$$\begin{split} \Psi_{(N),\sigma}(t) &= \sum_{\underline{v}} \left(\prod_{i=1}^{N} W_{\sigma,t}(v_i) \right) \prod_{i=1}^{N} \hat{c}_t^*(h_{v_i}) \Omega \\ W_{\sigma,t}(v) &:= \mathrm{e}^{a_t^*(G_v^\sigma) - a_t(G_v^\sigma)} \\ G_v^\sigma(k) &:= g \frac{\tilde{\rho}(k) \mathbf{1}_{\{k' \in \mathbb{R}^3 \mid |k'| \ge \sigma\}}(k)}{\sqrt{2|k|}} \frac{1}{|k| - kv} \end{split}$$

• $W_t(v)$ involves the function G_v which is not square-integrable. It requires a regularization.

$$\begin{split} \Psi_{(N),\sigma}(t) &= \sum_{\underline{\nu}} \left(\prod_{i=1}^{N} W_{\sigma,t}(v_i) \right) \prod_{i=1}^{N} \hat{c}_t^*(h_{v_i}) \Omega \\ W_{\sigma,t}(v) &:= \mathrm{e}^{a_t^*(G_v^\sigma) - a_t(G_v^\sigma)} \\ G_v^\sigma(k) &:= g \frac{\tilde{\rho}(k) \mathbf{1}_{\{k' \in \mathbb{R}^3 \mid |k'| \ge \sigma\}}(k)}{\sqrt{2|k|}} \frac{1}{|k| - kv} \end{split}$$

- W_t(v) involves the function G_v which is not square-integrable.
 It requires a regularization.
- c^{*}_t(h_{vi}) involves the non-existing ground state ψ_ξ of H⁽¹⁾(ξ).
 We replace it with the ground state ψ_{σ,ξ} of H⁽¹⁾_σ(ξ).

$$\begin{split} \Psi_{(N),\sigma}(t) &= \sum_{\underline{\nu}} \left(\prod_{i=1}^{N} W_{\sigma,t}(v_i) \right) \prod_{i=1}^{N} \hat{c}_{\sigma,t}^*(h_{v_i}) \Omega \\ W_{\sigma,t}(v) &:= \mathrm{e}^{\mathbf{a}_t^*(G_v^\sigma) - \mathbf{a}_t(G_v^\sigma)} \\ G_v^\sigma(k) &:= g \frac{\tilde{\rho}(k) \mathbf{1}_{\{k' \in \mathbb{R}^3 \mid |k'| \ge \sigma\}}(k)}{\sqrt{2|k|}} \frac{1}{|k| - kv} \end{split}$$

- W_t(v) involves the function G_v which is not square-integrable.
 It requires a regularization.
- c^{*}_t(h_{vi}) involves the non-existing ground state ψ_ξ of H⁽¹⁾(ξ).
 We replace it with the ground state ψ_{σ,ξ} of H⁽¹⁾_σ(ξ).

For $\sigma_t \to 0$ as $t \to \infty$:

Theorem (Pizzo 05)

The following one-electron scattering state exist and are non-zero:

$$\Psi_{(N=1)}^{\mathrm{out}} = \lim_{t \to \infty} \sum_{v} W_{\sigma_t,t}(v) \hat{c}^*_{\sigma_t,t}(h_v) \Omega.$$

Conjecture (Pizzo-W.D.)

The following two-electron scattering states exist and are non-zero:

$$\Psi_{(N=2)}^{\text{out}} = \lim_{t \to \infty} \sum_{v_1, v_2} W_{\sigma_t, t}(v_1) W_{\sigma_t, t}(v_2) \hat{c}^*_{\sigma_t, t}(h_{v_1}) \hat{c}^*_{\sigma_t, t}(h_{v_2}) \Omega.$$

Remark: The electron-atom scattering states are under control.

For $\sigma_t \to 0$ as $t \to \infty$:

Theorem (Pizzo 05)

The following one-electron scattering state exist and are non-zero:

$$\Psi_{(N=1)}^{\mathrm{out}} = \lim_{t \to \infty} \sum_{v} W_{\sigma_t,t}(v) \hat{c}^*_{\sigma_t,t}(h_v) \Omega.$$

Conjecture (Pizzo-W.D.)

The following two-electron scattering states exist and are non-zero:

$$\Psi_{(N=2)}^{\text{out}} = \lim_{t \to \infty} \sum_{v_1, v_2} W_{\sigma_t, t}(v_1) W_{\sigma_t, t}(v_2) \hat{c}^*_{\sigma_t, t}(h_{v_1}) \hat{c}^*_{\sigma_t, t}(h_{v_2}) \Omega.$$

Remark: The electron-atom scattering states are under control.

For $\sigma_t \to 0$ as $t \to \infty$:

Theorem (Pizzo 05)

The following one-electron scattering state exist and are non-zero:

$$\Psi_{(N=1)}^{\mathrm{out}} = \lim_{t \to \infty} \sum_{v} W_{\sigma_t,t}(v) \hat{c}^*_{\sigma_t,t}(h_v) \Omega.$$

Conjecture (Pizzo-W.D.)

The following two-electron scattering states exist and are non-zero:

$$\Psi_{(N=2)}^{\text{out}} = \lim_{t \to \infty} \sum_{v_1, v_2} W_{\sigma_t, t}(v_1) W_{\sigma_t, t}(v_2) \hat{c}^*_{\sigma_t, t}(h_{v_1}) \hat{c}^*_{\sigma_t, t}(h_{v_2}) \Omega.$$

Remark: The electron-atom scattering states are under control.

Definition

A relativistic QFT is given by:

- (1) A net of local algebras $\mathbb{R}^4 \supset \mathcal{O} \mapsto \mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ s.t. (a) If $\mathcal{O}_1 \subset \mathcal{O}_2$ then $\mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$. (b) If $\mathcal{O}_1 \times \mathcal{O}_2$ then $[\mathcal{A}(\mathcal{O}_1), \mathcal{A}(\mathcal{O}_2)] = 0$.
- (2) A Hamiltonian H and momentum operators P s.t.
 (a) Joint spectrum of H and P is in the closed future lightcone.
 (b) If A ∈ A(O) then

$$\mathsf{A}(t,x):=e^{\mathrm{i}(Ht-Px)}\mathsf{A}e^{-\mathrm{i}(Ht-Px)}\in\mathcal{A}(\mathcal{O}+(t,x)).$$

Definition (Fredenhagen-Hertel 81, Bostelmann 04)

A quadratic form ϕ is a pointlike field of a relativistic QFT, if there exist:

(a) A_r ∈ A(O_r), where O_r is the ball of radius r centered at zero,
(b) k > 0,
s.t. ||(1 + H)^{-k}(φ − A_r)(1 + H)^{-k}|| → 0.

Definition

• Relativistic QED is a QFT whose pointlike fields include the Faraday tensor F and a conserved current j which satisfy the Maxwell equations: dF = 0, d * F = j.

• The electric charge exists and is given (formally) by $Q = \int dx j^0(x)$.

Definition (Fredenhagen-Hertel 81, Bostelmann 04)

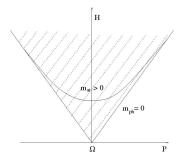
A quadratic form ϕ is a pointlike field of a relativistic QFT, if there exist:

(a) A_r ∈ A(O_r), where O_r is the ball of radius r centered at zero,
(b) k > 0,
s.t. ||(1 + H)^{-k}(φ − A_r)(1 + H)^{-k}|| → 0.

Definition

- Relativistic QED is a QFT whose pointlike fields include the Faraday tensor F and a conserved current j which satisfy the Maxwell equations: dF = 0, d * F = j.
- The electric charge exists and is given (formally) by $Q = \int dx j^0(x)$.

Vacuum representation of QED



We assume:

(a) Existence of the vacuum vector $\Omega.$ (We set $\mathcal{H}_0=\mathbb{C}\Omega).$ (b) Non-triviality of

$$\mathcal{H}_{\mathrm{sp}} = \mathbf{1}_{\{m_{\mathrm{ph}}^2\}}(H^2 - P^2)\mathcal{H}_0^\perp \oplus \mathbf{1}_{\{m_{\mathrm{at}}^2\}}(H^2 - P^2)\mathcal{H}.$$

(c) Hölder cont. of the spectrum of $(H^2 - P^2)$ near $\{m_{\rm ph}^2, m_{\rm at}^2\}$.

Asymptotic creation operators

Definition

(a) Free dynamics:
$$\hat{h}_t(x) := \int \frac{dk}{(2\pi)^3} e^{-i\omega(k)t + ikx} \hat{h}(k)$$
,
 $\omega(k) = \sqrt{k^2 + m^2}$.

(b) Interacting dynymics: $A^*(t, x) = e^{i(Ht-Px)}A^*e^{-i(Ht-Px)}$, $A^* \in \mathcal{A}(\mathcal{O})$.

(c) LSZ creation operator: $A_t^*(\hat{h}) := \int dx \, \hat{h}_t(x) A^*(t,x).$

(d) HR creation operator:
$$A_T^*(\hat{h}) := \frac{1}{\ln |\mathcal{T}|} \int_{\mathcal{T}}^{\mathcal{T}+\ln |\mathcal{T}|} dt A_t^*(\hat{h}).$$

Remark: $h := \lim_{T \to \infty} A^*_T(\hat{h})\Omega$ exists and is a single-particle state.

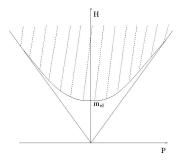
Scattering states of atoms and photons

Theorem (W.D. 05, Herdegen 12, Herdegen-Duch 14, Duell 16)

Suppose the particles $h_i = \lim_{T \to \infty} A^*_{i,T}(\hat{h}_i)\Omega$ have disjoint velocity supports, separated from zero. Then there exist the scattering states

$$\Psi^{\text{out}} = \lim_{T \to \infty} A^*_{1,T}(\hat{h}_1) \dots A^*_{n,T}(\hat{h}_n) \Omega.$$

Such states span a subspace naturally isomorphic to $\Gamma(\mathcal{H}_{sp})$.



Theorem (Buchholz 86)

 $\mathcal{H}_{\rm sp}:=\mathbf{1}_{\{m_{\rm el}^2\}}(H^2-P^2)\mathcal{H}=\{0\}$ in charged representations of QED.

Remark: Electron is an infraparticle.

 $\mathcal{H}_{\mathrm{sp}} := \mathbf{1}_{\{m_{\mathrm{el}}^2\}} (H^2 - P^2) \mathcal{H} = \{0\}$ in charged reps. of QED.

- In non-relativistic QED we could construct scattering states in this situation starting from the Dollard prescription.
- ② In the relativistic setting this strategy does not seem feasible.
- But there is a different strategy [Buchholz-Roberts 13]: Consider representations in which the flux *f* does not exist. 'Infravacuum representations'.
- In such representations one can hope for $\mathcal{H}_{sp} \neq \{0\}$.

 $\mathcal{H}_{\mathrm{sp}} := \mathbf{1}_{\{m_{\mathrm{el}}^2\}} (H^2 - P^2) \mathcal{H} = \{0\}$ in charged reps. of QED.

- In non-relativistic QED we could construct scattering states in this situation starting from the Dollard prescription.
- ② In the relativistic setting this strategy does not seem feasible.
- But there is a different strategy [Buchholz-Roberts 13]: Consider representations in which the flux f does not exist. Infravacuum representations.
- In such representations one can hope for $\mathcal{H}_{sp} \neq \{0\}$.

 $\mathcal{H}_{\mathrm{sp}} := \mathbf{1}_{\{m_{\mathrm{el}}^2\}} (H^2 - P^2) \mathcal{H} = \{0\}$ in charged reps. of QED.

- In non-relativistic QED we could construct scattering states in this situation starting from the Dollard prescription.
- ② In the relativistic setting this strategy does not seem feasible.
- But there is a different strategy [Buchholz-Roberts 13]: Consider representations in which the flux f does not exist. 'Infravacuum representations'.
- In such representations one can hope for $\mathcal{H}_{sp} \neq \{0\}$.

 $\begin{aligned} \mathcal{H}_{\rm sp} &:= \mathbf{1}_{\{m_{\rm el}^2\}} (H^2 - P^2) \mathcal{H} = \{0\} \text{ in charged reps. of QED} \\ & \text{in which the flux } f(n) := \lim_{r \to \infty} r^2 n^i F^{0i}(nr) \text{ exists.} \\ & \text{'Infraparticle representations'.} \end{aligned}$

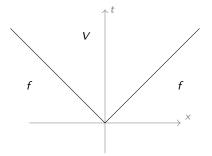
- In non-relativistic QED we could construct scattering states in this situation starting from the Dollard prescription.
- ② In the relativistic setting this strategy does not seem feasible.
- But there is a different strategy [Buchholz-Roberts 13]: Consider representations in which the flux f does not exist. 'Infravacuum representations'.
- In such representations one can hope for $\mathcal{H}_{sp} \neq \{0\}$.

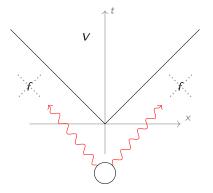
 $\begin{aligned} \mathcal{H}_{\rm sp} &:= \mathbf{1}_{\{m_{\rm el}^2\}} (H^2 - P^2) \mathcal{H} = \{0\} \text{ in charged reps. of QED} \\ & \text{in which the flux } f(n) := \lim_{r \to \infty} r^2 n^i F^{0i}(nr) \text{ exists.} \\ & \text{'Infraparticle representations'.} \end{aligned}$

- In non-relativistic QED we could construct scattering states in this situation starting from the Dollard prescription.
- ② In the relativistic setting this strategy does not seem feasible.
- But there is a different strategy [Buchholz-Roberts 13]: Consider representations in which the flux f does not exist. 'Infravacuum representations'.
- In such representations one can hope for $\mathcal{H}_{sp} \neq \{0\}$.

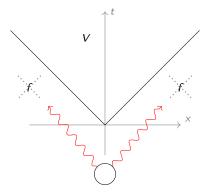
 $\begin{aligned} \mathcal{H}_{\rm sp} &:= \mathbf{1}_{\{m_{\rm el}^2\}} (H^2 - P^2) \mathcal{H} = \{0\} \text{ in charged reps. of QED} \\ & \text{in which the flux } f(n) := \lim_{r \to \infty} r^2 n^i F^{0i}(nr) \text{ exists.} \\ & \text{'Infraparticle representations'.} \end{aligned}$

- In non-relativistic QED we could construct scattering states in this situation starting from the Dollard prescription.
- ② In the relativistic setting this strategy does not seem feasible.
- But there is a different strategy [Buchholz-Roberts 13]: Consider representations in which the flux f does not exist. 'Infravacuum representations'.
- In such representations one can hope for $\mathcal{H}_{\mathrm{sp}} \neq \{0\}$.



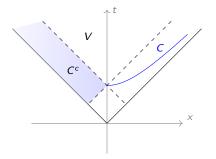


- To prevent the existence of f, it suffices to include strongly fluctuating radiation, emitted in distant past.
- 2 Such radiation does not enter the future lightcone V.



- To prevent the existence of f, it suffices to include strongly fluctuating radiation, emitted in distant past.
- 2 Such radiation does not enter the future lightcone V.

Hyperbolic geometry



- **1** V : future lightcone.
- **2** C : hyperbolic cone in V.
- **3** C^c : causal complement of C in V.
- $C := C^{cc}$: hypercone.
- **③** \mathcal{F} : family of admissible hyperbolic cones.

Definition (Buchholz-Roberts 13)

Let \mathcal{A} be the algebra of observables in the vacuum representation.

We say that a (covariant, positive energy) representation $\pi : A \to B(\mathcal{H}_{\pi})$ is hypercone localized if for any $C \in \mathcal{F}$

 $\pi \upharpoonright \mathcal{A}(\mathsf{C}^c) \simeq \mathrm{id} \upharpoonright \mathcal{A}(\mathsf{C}^c).$

Scattering states of one electron and photons

Let $(\pi(\mathcal{A}), \mathcal{H}_{\pi}, \mathcal{P}_{\pi})$ be a hypercone localized representation π , containing massive particles (electrons). That is

$$\mathcal{H}_{\pi,\mathrm{sp}} := \mathbf{1}_{\{m_{\mathrm{el}}^2\}} (H_\pi^2 - P_\pi^2) \mathcal{H}_\pi \neq 0.$$

Theorem (Alazzawi-W.D. 15)

There exist scattering states of one electron and n-photons:

$$\Psi^{\mathrm{out}} := \lim_{T \to \infty} A^*_{\mathbf{1},T}(\hat{h}_1) \dots A^*_{n,T}(\hat{h}_n) \Psi_{\mathrm{el}}, \quad \Psi_{\mathrm{el}} \in \mathcal{H}_{\pi,\mathrm{sp}}, \quad A_i \in \pi(\mathcal{A}).$$

They span a subspace naturally isomorphic to $\Gamma(\mathcal{H}_{sp}) \otimes \mathcal{H}_{\pi,sp}$.

Scattering states of:	NRQED	RQED
one atom and photons		
many atoms and photons		
one electron and photons		
electron and atom		
many electrons and photons		

- not understood
- partially understood

- $\mathcal{A} C^*$ -algebra.
- **2** $P_{\mathcal{A}}$ pure states.
- $\textcircled{0} \ \operatorname{In} \mathcal{A} \subset \operatorname{Aut} \mathcal{A} \text{ inner automorphisms.}$
- $X := P_A / \ln A$ sectors.

Sectors

- $\mathcal{A} C^*$ -algebra.
- **2** $P_{\mathcal{A}}$ pure states.
- $\textcircled{0} \ \operatorname{In} \mathcal{A} \subset \operatorname{Aut} \mathcal{A} \text{ inner automorphisms.}$
- $X := P_A / \ln A$ sectors.

Sectors

- $\mathcal{A} C^*$ -algebra.
- **2** $P_{\mathcal{A}}$ pure states.
- $\ \ \, \textbf{In}\,\mathcal{A}\subset\operatorname{Aut}\mathcal{A} \text{ inner automorphisms.}$

Sectors

- $\mathcal{A} C^*$ -algebra.
- **2** $P_{\mathcal{A}}$ pure states.
- $\ \ \, \textbf{In}\,\mathcal{A}\subset\operatorname{Aut}\mathcal{A} \text{ inner automorphisms.}$
- $X := P_A / \ln A$ sectors.

Sectors

- $\mathcal{A} C^*$ -algebra.
- **2** $P_{\mathcal{A}}$ pure states.
- $\ \ \, \textbf{In}\,\mathcal{A}\subset\operatorname{Aut}\mathcal{A}\text{ inner automorphisms.}$
- $X := P_A / \ln A$ sectors.

Infrared problem: Uncountable families of physically indistinguishable sectors.

Sectors

- $\mathcal{A} C^*$ -algebra.
- **2** $P_{\mathcal{A}}$ pure states.
- $\ \ \, \textbf{In}\,\mathcal{A}\subset\operatorname{Aut}\mathcal{A}\text{ inner automorphisms.}$
- $X := P_A / \ln A$ sectors.

Infrared problem: Uncountable families of physically indistinguishable sectors.

Strategy: Form equivalence classes of sectors ('charge classes') [Buchholz 82, Buchholz-Roberts 14] by comparing them on V.

Sectors

- $\mathcal{A} C^*$ -algebra.
- **2** $P_{\mathcal{A}}$ pure states.
- $\ \ \, \textbf{In}\,\mathcal{A}\subset\operatorname{Aut}\mathcal{A}\text{ inner automorphisms.}$
- $X := P_A / \ln A$ sectors.

Infrared problem: Uncountable families of physically indistinguishable sectors.

Strategy: Form equivalence classes of sectors ('charge classes') [Buchholz 82, Buchholz-Roberts 14] by comparing them on V. Question: Can this be done without locality?

2 $X \times G \ni (x,g) \mapsto x \cdot g \in X$ - group action on X.

$$G \subset \operatorname{Aut} \mathcal{A}.$$

$$2 X \times G \ni (x,g) \mapsto x \cdot g \in X \text{ - group action on } X.$$

(Second) conjugate classes

$$G \subset \operatorname{Aut} \mathcal{A}.$$

Definition

• Fix a 'vacuum' $x_0 \in X$ and 'background' $a \in G$.

2 For
$$x \in X$$
 set $G_{x,x_0}^a := \{ g \in G | x = x_0 \cdot a \cdot g \}.$

 $\ \, {\overline{[x]}}^a := \{ \, x_0 \cdot a \cdot g^{-1} \, | \, g \in G^a_{x,x_0} \, \} \text{ is called the conjugate class.}$

$$\quad \overline{\overline{[x]}}^a := \{ x_0 \cdot a \cdot (g')^{-1} \, | \, g' \in G^a_{y,x_0}, \, y \in \overline{[x]}^a \}$$
 is called the second conjugate class.

(Second) conjugate classes

$$G \subset \operatorname{Aut} \mathcal{A}.$$

Definition

• Fix a 'vacuum' $x_0 \in X$ and 'background' $a \in G$.

2 For
$$x \in X$$
 set $G^a_{x,x_0} := \{ g \in G \mid x = x_0 \cdot a \cdot g \}.$

(Second) conjugate classes

$$G \subset \operatorname{Aut} \mathcal{A}.$$

Definition

• Fix a 'vacuum' $x_0 \in X$ and 'background' $a \in G$.

2 For
$$x \in X$$
 set $G_{x,x_0}^a := \{ g \in G \mid x = x_0 \cdot a \cdot g \}.$

 $\begin{tabular}{l} \hline \hline [x]^a := \{ x_0 \cdot a \cdot g^{-1} \, | \, g \in G^a_{x,x_0} \, \} \end{tabular} \end{tabular}$

$$G \subset \operatorname{Aut} \mathcal{A}.$$

Definition

• Fix a 'vacuum' $x_0 \in X$ and 'background' $a \in G$.

$$e For x \in X \text{ set } G^a_{x,x_0} := \{ g \in G \mid x = x_0 \cdot a \cdot g \}.$$

$$\ \ \, \overline{[x]}^a := \{ \, x_0 \cdot a \cdot g^{-1} \, | \, g \in G^a_{x,x_0} \, \} \text{ is called the conjugate class.}$$

$$G \subset \operatorname{Aut} \mathcal{A}.$$

$$\ \ \, \textbf{\textit{2}} \ \ \, \textbf{\textit{X}}\times \textbf{\textit{G}} \ni (\textbf{\textit{x}},\textbf{\textit{g}}) \mapsto \textbf{\textit{x}}\cdot \textbf{\textit{g}} \in \textbf{\textit{X}} \text{ - group action on } \textbf{\textit{X}}.$$

Definition

• Fix a 'vacuum'
$$x_0 \in X$$
 and 'background' $a \in G$.

2 For
$$x \in X$$
 set $G_{x,x_0}^a := \{ g \in G \mid x = x_0 \cdot a \cdot g \}.$

$$\ \ \, \overline{[x]}^a := \{ \, x_0 \cdot a \cdot g^{-1} \, | \, g \in G^a_{x,x_0} \, \} \text{ is called the conjugate class.}$$

Claim: second conjugate classes are meaningful candidates for 'charge classes' in the absence of locality.

Main general result

Theorem (Cadamuro-W.D. 18)

Let $R \subset S \subset G$ be subgroups. Suppose that

$$2 x_0 \cdot s \neq x_0 may hold for some s \in S.$$

3
$$a \cdot S \cdot a^{-1} \subset R$$
.
Then, $\overline{[x_0 \cdot s]}^a = \overline{[x_0]}^a$ and $\overline{\overline{[x_0 \cdot s]}}^a = \overline{\overline{[x_0]}}^a$ for all $s \in S$.

Main general result

Theorem (Cadamuro-W.D. 18)

Let $R \subset S \subset G$ be subgroups. Suppose that

$$2 x_0 \cdot s \neq x_0 may hold for some s \in S.$$

$$\ \, \mathbf{a} \cdot S \cdot \mathbf{a}^{-1} \subset R.$$

Then,
$$\overline{[x_0 \cdot s]}^a = \overline{[x_0]}^a$$
 and $\overline{\overline{[x_0 \cdot s]}}^a = \overline{\overline{[x_0]}}^a$ for all $s \in S$.

Definition

The relative normalizer of $R \subset S \subset G$ is defined as

$$N_G(R,S) := \{ g \in G \mid g \cdot S \cdot g^{-1} \subset R \}.$$

- 'Tension': $R \subsetneq S$ vs $N_G(R, S) := \{ g \in G \mid g \cdot S \cdot g^{-1} \subset R \}.$
- e Hence relative normalizers are empty for
 - abelian groups,
 - finite groups,
 - finite-dimensional Lie groups (under some assumptions).
- (a) However, we could show that $ISp(\mathcal{L})$ over an infinite dim. space $\mathcal{L} \subset L^2(\mathbb{R}^3)$ admits non-empty relative normalizers.
- Intermediate and the symplectic maps $\hat{T} : \mathcal{L} \to \mathcal{L}$, known as Kraus-Polley-Reents (KPR) infravacua.
- Observation Also the resulting Bogolubov transformations a_Î : L → L are elements of relative normalizers in Aut(A), where A = CCR(L).

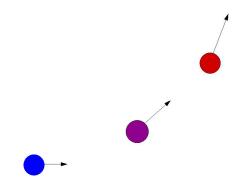
- 'Tension': $R \subsetneq S$ vs $N_G(R, S) := \{ g \in G \mid g \cdot S \cdot g^{-1} \subset R \}.$
- e Hence relative normalizers are empty for
 - abelian groups,
 - finite groups,
 - finite-dimensional Lie groups (under some assumptions).
- Observe that ISp(L) over an infinite dim. space $\mathcal{L} \subset L^2(\mathbb{R}^3)$ admits non-empty relative normalizers.
- Intermediate of the symplectic maps $\hat{T} : \mathcal{L} \to \mathcal{L}$, known as Kraus-Polley-Reents (KPR) infravacua.
- Observation Also the resulting Bogolubov transformations a_{T̂} : L → L are elements of relative normalizers in Aut(A), where A = CCR(L).

- 'Tension': $R \subsetneq S$ vs $N_G(R, S) := \{ g \in G \mid g \cdot S \cdot g^{-1} \subset R \}.$
- e Hence relative normalizers are empty for
 - abelian groups,
 - finite groups,
 - finite-dimensional Lie groups (under some assumptions).
- However, we could show that $ISp(\mathcal{L})$ over an infinite dim. space $\mathcal{L} \subset L^2(\mathbb{R}^3)$ admits non-empty relative normalizers.
- Intermediate of the symplectic maps $\hat{T} : \mathcal{L} \to \mathcal{L}$, known as Kraus-Polley-Reents (KPR) infravacua.
- Observation Also the resulting Bogolubov transformations a_{T̂} : L → L are elements of relative normalizers in Aut(A), where A = CCR(L).

- 'Tension': $R \subsetneq S$ vs $N_G(R, S) := \{ g \in G \mid g \cdot S \cdot g^{-1} \subset R \}.$
- e Hence relative normalizers are empty for
 - abelian groups,
 - finite groups,
 - finite-dimensional Lie groups (under some assumptions).
- However, we could show that $ISp(\mathcal{L})$ over an infinite dim. space $\mathcal{L} \subset L^2(\mathbb{R}^3)$ admits non-empty relative normalizers.
- Their elements are symplectic maps $\hat{T} : \mathcal{L} \to \mathcal{L}$, known as Kraus-Polley-Reents (KPR) infravacua.
- Observation Also the resulting Bogolubov transformations a_Î : L → L are elements of relative normalizers in Aut(A), where A = CCR(L).

- 'Tension': $R \subsetneq S$ vs $N_G(R, S) := \{ g \in G \mid g \cdot S \cdot g^{-1} \subset R \}.$
- e Hence relative normalizers are empty for
 - abelian groups,
 - finite groups,
 - finite-dimensional Lie groups (under some assumptions).
- However, we could show that $ISp(\mathcal{L})$ over an infinite dim. space $\mathcal{L} \subset L^2(\mathbb{R}^3)$ admits non-empty relative normalizers.
- Their elements are symplectic maps $\hat{T} : \mathcal{L} \to \mathcal{L}$, known as Kraus-Polley-Reents (KPR) infravacua.
- Also the resulting Bogolubov transformations a_↑: L → L are elements of relative normalizers in Aut(A), where A = CCR(L).

Problem of velocity superselection



Thm (Fröhlich 74, Chen-Fröhlich-Pizzo 09, Könenberg-Matte 14)

For any $\xi \in \mathcal{S}$ the following limits exist and define states on \mathcal{A}

$$\omega_{\xi}(\mathsf{A}) := \lim_{\sigma \to 0} \langle \psi_{\xi,\sigma}, \pi_0(\mathsf{A}) \psi_{\xi,\sigma} \rangle, \qquad \mathsf{A} \in \mathcal{A}.$$

The corresponding sectors are mutually disjoint i.e.

$$[\omega_{\xi_1}]_{\mathrm{In}\mathcal{A}} \neq [\omega_{\xi_2}]_{\mathrm{In}\mathcal{A}} \quad \text{for} \quad \xi_1 \neq \xi_2.$$

Thm (Fröhlich 74, Chen-Fröhlich-Pizzo 09, Könenberg-Matte 14)

For any $\xi \in \mathcal{S}$ the following limits exist and define states on \mathcal{A}

$$\omega_{\xi}(A) := \lim_{\sigma \to 0} \langle \psi_{\xi,\sigma}, \pi_0(A) \psi_{\xi,\sigma} \rangle, \qquad A \in \mathcal{A}.$$

The corresponding sectors are mutually disjoint i.e.

$$[\omega_{\xi_1}]_{\mathrm{In}\mathcal{A}} \neq [\omega_{\xi_2}]_{\mathrm{In}\mathcal{A}} \quad \text{for} \quad \xi_1 \neq \xi_2.$$

Theorem (Cadamuro-W.D. 18)

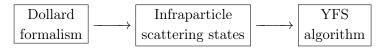
Let \hat{T} be the KPR infravacuum. Then, for all $\xi_1, \xi_2 \in S$

$$\overline{[[\omega_{\xi_1}]_{\mathrm{In}\mathcal{A}}]}^{\alpha_{\hat{\tau}}} = \overline{[[\omega_{\xi_2}]_{\mathrm{In}\mathcal{A}}]}^{\alpha_{\hat{\tau}}}, \quad \mathrm{and} \quad \overline{\overline{[[\omega_{\xi_1}]_{\mathrm{In}\mathcal{A}}]}}^{\alpha_{\hat{\tau}}} = \overline{\overline{[[\omega_{\xi_2}]_{\mathrm{In}\mathcal{A}}]}}^{\alpha_{\hat{\tau}}}$$

What does it mean to solve the infrared problem?

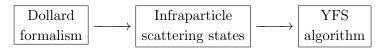
What does it mean to solve the infrared problem?

Infraparticle approach:

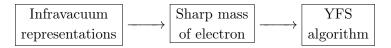


What does it mean to solve the infrared problem?

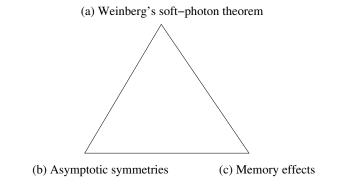
Infraparticle approach:



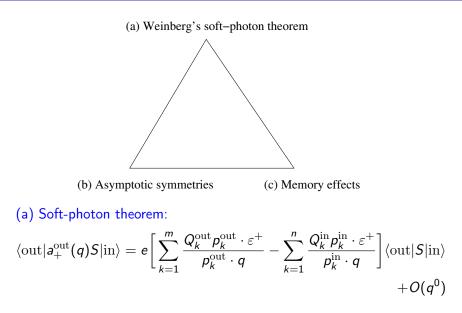
Infravacuum approach:



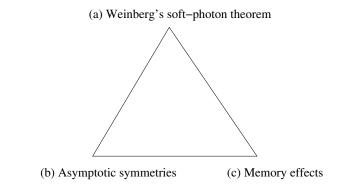
Strominger's infrared triangle



Strominger's infrared triangle



Strominger's infrared triangle



(b) Asymptotic symmetries:

$$f(n) := \lim_{r \to \infty} r^2 n^i F^{0i}(nr).$$