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Motivation

Many body theory for Bosons: Bose fields
annihilation and creation operators, complex f ,g ∈ D(Rs),

[a(f ),a∗(g)] = 〈f ,g〉1 , [a(f ),a(g)] = [a∗(f ),a∗(g)] = 0 .

fields (real linear)
φ(f )

.
= a∗(f ) + a(f ) .

Fock space F : generated by fields from vacuum Ω

dynamics: (pair potentials V ∈ C0(Rs))

H =

∫
dx ∂a∗(x)∂a(x) +

∫
dx
∫

dy a∗(x)a∗(y)V (x − y)a(x)a(y)

Standard framework (“bookkeeping”). Other (e.g. thermal) states
require different representations and modified Hamiltonians . . .
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Motivation

Longstanding question:
Does there exist a “kinematical” C*-algebra A, encoding the CCRs,
such that the solutions of the Heisenberg equation lie in A, i.e.

∂t A(t) = i [H,A(t)] , A(0) ∈ Ao implies A(t) ∈ Ao, t ∈ R ?

Consequence: A(t) = α(t)(A), where α(t) are automorphisms of A, t ∈ R.
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∂t A(t) = i [H,A(t)] , A(0) ∈ Ao implies A(t) ∈ Ao, t ∈ R ?

Consequence: A(t) = α(t)(A), where α(t) are automorphisms of A, t ∈ R.

Sceptical views: [Narnhofer, Thirring]

Conclusion: “large field problems” obstruct C*-algebraic approach . . .
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Resolvent algebra

CCRs can be encoded in relations between resolvents of field,

R(λ, f ) = (iλ+ φ(f ))−1 , λ ∈ R\{0} , f ∈ D(Rs)

1 R(λ,0) = (iλ)−1 1

2 R(λ, f )∗ = R(−λ, f )

3 R(λ, f )− R(µ, f ) = i(µ− λ)R(λ, f )R(µ, f )

4
[
R(λ, f ), R(µ,g)

]
= iσ(f ,g) R(λ, f ) R(µ,g)2R(λ, f )

5 ν R(νλ, νf ) = R(λ, f )

6 R(λ, f )R(µ,g)

= R(λ+ µ, f + g)[R(λ, f ) + R(µ,g) + iσ(f ,g)R(λ, f )2R(µ,g)]

Resolvent algebra: abstract C*-algebra R generated by all sums
and products of these symbols. Faithfully represented on F .
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Gauge transformations

On R acts global gauge group Γ ' U(1) given by

γ(u)(R(λ, f ))
.

= R(λ,eiuf )
F
= eiuNR(λ, f )e−iuN , u ∈ [0,2π] ,

N particle number operator.

Action of gauge transformations discontinuous in C*-sense. Nevertheless

Lemma
Let R ∈R. Its Fourier components are elements of R, i.e.

Rm
F
= (1/2π)−1

∫ 2π

0
du eimu γ(u)(R) ∈R , m ∈ Z .

Note: integral is defined only in the strong operator topology on F .

Observable algebra: A = RΓ ⊂R (gauge invariant elements).

6 / 20



Gauge transformations

Outline of proof:
Let f ∈ D(Rs) and put (i) L .

= C f , (ii) F(L) ⊂ F Fock space over L, (iii) R(L) ⊂R.
Consider

u, v 7→ eim(u−v)γ(v)(R(λ, f ))∗ γ(u)(R(λ, f )) = eim(u−v)R(−λ, eiv f ) R(λ, eiu f ) ∈R(L) .

Underlying field operators satisfy

[φ(eiu f ), φ(eiv f )] = (ei(v−u) − e−i(v−u)) 〈f , f 〉 6= 0 if (u − v) 6= πZ .

Operator function has values in ideal C(L) ⊂ R(L) of compact operators on F(L) for
almost all (u, v) ∈ R2 and it is bounded. Hence (s.o. topology)Z 2π

0
dv
Z 2π

0
du eim(u−v)γ(v)(R(λ, f ))∗ γ(u)(R(λ, f )) =

˛̨̨ Z 2π

0
du eimuγ(u)(R(λ, f ))

˛̨̨2
∈ C(L) .

Polar decomposition:
R 2π

0 du eimuγ(u)(R(λ, f )) ∈ C(L) ⊂R.
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Structure of observables

Detailed analysis necessary. Basic facts:
A acts faithfully on Fock space F = ⊕n Fn (since R does)

ρn(A)
.

= A � Fn disjoint, non-faithful representations of A, n ∈ N0

Strategy of analysis:
clarify structure of each ρn(A)

understand relation between different algebras ρn(A), n ∈ N0

Definition: Cm compact operators on Fm. Natural embedding into Fn

Cm 7→ Cm n
.

= Cm ⊗s 1⊗s · · · ⊗s 1︸ ︷︷ ︸
n−m

, 0 ≤ m ≤ n

Kn
.

= linear span of Cm n, 0 ≤ m ≤ n (AF algebra).

Proposition
Let n ∈ N0, then ρn(A) = Kn.
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Structure of observables

Definition: {Kn, εn}n∈N0 where εn(Kn)
.

= Kn ⊗s 1 ⊂ Kn+1 (directed system)

Relation between Kn = ρn(A), n ∈ N0? Use clustering properties!

Φn(x)
.

= Φ1 ⊗s · · · ⊗s Φn−1︸ ︷︷ ︸
Φn−1

⊗sΦn(x) ∈ Fn , Φ1, . . . ,Φn ∈ F1 , x ∈ Rs .

Proposition
Let n ∈ N, A ∈ A.
(i) limx→∞〈Ψn(x), ρn(A) Φn(x)〉 = n−1〈Ψn−1, ρn−1(A) Φn−1〉〈Ψn,Φn 〉

(ii) ρn(A) =
∑n

m=0 Cm n implies ρn−1(A) =
∑n

m=0
n−m

n Cm n−1

Recall notation: Ck l = Ck ⊗s 1⊗s · · · ⊗s 1| {z }
l−k

∈ Ck l ⊂ Kl .

Definition: {Kn, κn}n∈N0 where κn : Kn → Kn−1 homomorphism given

by κn (
∑n

m=0 Cm n) =
∑n

m=0
n−m

n Cm n−1 (inverse system)
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Structure of observables

Definition: Inverse limit K
.

= {Kn ∈ Kn}n∈N0 consists of all bounded
sequences satisfying the coherence condition κn(Kn) = Kn−1, n ∈ N0.

Remark: C*-algebra, algebraic operations component-wise defined.
Proposition implies A ⊂ K. Extend A in order to obtain equality!

Definition: A is defined as the C*-algebra of all bounded operators A
on F satisfying A � ⊕n

m=0Fm ∈ A � ⊕n
m=0Fm, n ∈ N0.

Remark: A dense in A with regard to the locally convex topology
induced by seminorms ‖ · ‖n, n ∈ N0. Differences between algebras
only visible in states containing an infinity of particles.

Theorem
Map A 7→ {A � Fn ∈ Kn}n∈N0 defines isomorphism between A and K.
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Dynamics of observables and fields

Strategy:
establish stability of Kn under action of dynamics, n ∈ N0
check consistency of dynamics with coherence condition

Analysis:
Consider restrictions H � Fn = Hn, n ∈ N0, where

Hn =
∑

i P 2
i +

∑
j 6=k V (Qj −Qk ) , i , j , k ∈ {1, . . . ,n}.

Define automorphic action of dynamics on B(Fn)

αn(t) .
= Ad e itHn , t ∈ R .

Proposition
Let n ∈ N0, then
(i) αn(t)(Kn) = Kn, t ∈ R,
(ii) t 7→ αn(t) � Kn pointwise continuous with regard to ‖ · ‖n.

Note: Kn has ideals; result not true for simple subalgebras of B(Fn).
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Dynamics of observables and fields

Stability of inverse limit K under action of dynamics: check of
coherence condition. Again: use of clustering properties.

Proposition
κn ◦αn(t) = αn−1(t) ◦κn on Kn, n ∈ N0.

Consequence: {Kn}n∈N0 ∈ K implies {αn(t)(Kn)}n∈N0 ∈ K, t ∈ R.

Theorem
Let α(t), t ∈ R, be the group of automorphisms of B(F) fixed by a
Hamiltonian H with pair potential V ∈ C0(Rs).
(i) α(t)(A) = A, t ∈ R, and t 7→ α(t) pointwise continuous (in l.c.t.)
(ii) There is a dense (in l.c.t.) subalgebra Aα ⊂ A on which action is

pointwise norm continuous, i.e. (Aα,α) is a C*-dynamical system.
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Dynamics of observables and fields

Action of dynamics on non-gauge invariant operators (fields)

Definition: Vf
.

= a∗(f )(1 + a∗(f )a(f ))−1/2, f ∈ D(Rs) normalized

Facts:
V ∗f Vf = 1, Vf V ∗f = Ef (projection onto ker a(f )⊥)
σf ( · ) .

= Vf · V ∗f defines morphism of A (non-unital)
VgV ∗f , Vf V ∗g ∈ A (transportability of morphisms, ρf 7→ ρg).

Action of dynamics (defined on F):
α(t)(Vf ) =

(
α(t)(Vf )V ∗f

)
Vf , α(t)(V ∗f ) = V ∗f

(
Vf α(t)(V ∗f )

)
,

Proposition
Let α(t), t ∈ R, be defined as above and pick normalized f ∈ D(Rs).
(i) α(t)(Vf )V ∗f , Vf α(t)(V ∗f ) ∈ A, t ∈ R.
(ii) C*-algebra R generated by A and Vf , V ∗f is stable under the

automorphic action of α(t), t ∈ R.
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Applications

1 Quasi local structure of observables
2 (Approximate) ground states and condensates
3 Particle properties and collision theory
4 Equilibrium states
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Applications

(1) Quasi local structure of observables

Consider spatial translations, fixed by αx (R(λ, f )) = R(λ, fx ), and put
α(t , x)

.
= α(t) ◦α(x) = α(x) ◦α(t) for (t ,x) ∈ R× Rs

Corollary

Let A,B ∈ A and t ∈ R. Then

lim
x→∞

‖[α(t ,x)(A),B]‖n = 0 , n ∈ N0 .

Question: Do there hold more specific bounds for given potential V?
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Applications

(2) (Approximate) ground states and condensates

(a) Ground state: Ω for (renormalized) Hamiltonian H r = H + E(N).
(b) Approximate (non-Fock) ground states and condensates:

ΨL,n = (n!)−1/2 ΦL ⊗s · · · ⊗s ΦL ∈ Fn , n ∈ N

where x 7→ ΦL(x)
.

= L−s/2 Φ(x/L) ∈ F1 is normalized.

Let V ≥ 0, Ω̂n outgoing Møller operator, Ψ̂L,n
.

= Ω̂nΨL,n, then

0 ≤ 〈Ψ̂L,n,HnΨ̂L,n〉 = 〈ΨL,n,H0,nΨL,n〉 = nL−2 ∫ dx |∂Φ(x)|2

Consider states ωn,L( · ) .
= 〈Ψ̂L,n, · Ψ̂L,n〉 for n→∞ , nL−2 = c.

Proposition

All limit points lead to positive energy representations of (Aα,α).
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Applications

(3) Particle properties and collision theory

“Particle observables” are uncovered at asymptotic times.

Lemma
Let V ≥ 0 be short ranged, and let A ∈ A be localized. Then (weakly)

limt→∞ α(t)(A) = 〈Ω,AΩ〉1

limt→∞
∫

dx h(x/t)α(t ,x)(A0) = cs
∫

dp h(2p)〈p,A0 p〉 â∗(p)â(p).

Here A0
.

= (A− 〈Ω,AΩ〉1) and ̂ indicates ”outgoing” operators.
Similarly for “incoming”, collision cross sections etc

Collision theory for observables works [Araki, Haag]
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Applications

(4) Equilibrium states
Theory defined on Rs (no boxes). Introduce trapping forces, L > 0,

HL
.

= H +

∫
dx (x2/L4) a∗(x)a(x) .

Automorphic action αL(t) .
= Ad e itHL on B(F), t ∈ R.

Lemma
A stable under action of αL(t), and one has pointwise (in l.c.t.)

limL→∞αL(t) = α(t) , t ∈ R.

V of positive type: TrF e−β(HL−µN) <∞ for β > 0, µ ≤ −V (0).

ωβ,µ,L( · ) = Tr (e−β(HL−µN) · )/Tr e−β(HL−µN)

KMS-state with regard to αL(t), t ∈ R. Limit states exist (Alaoglu).
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Summary

Results:
resolvent algebra R cures “large field problems”
observable algebra A composed of AF algebras
automorphic action of dynamics established for A and R

dense C*-dynamical systems exist
quasi local structure of A stable under time evolution
formalism useful for analysis of finite and infinite bosonic systems
similar results hold for fermionic systems [Bratteli]

Challenges: treatment of

non-relativistic dynamics changing particle number

relativistic (canonical) theories in d = 2
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