
Space-Dependent RG, Anomalous

Dimensions in a Hierarchical Model for 3d

CFT and Connections to the AdS/CFT

Correspondence

Abdelmalek Abdesselam
Mathematics Department, University of Virginia

Joint work with Ajay Chandra (Imperial)
and Gianluca Guadagni (UVa)

Physics and Mathematics of Quantum Field Theory
Banff, July 30, 2018



1 Introduction

2 The hierarchical continuum

3 The rigorous hierarchical space-dependent

renormalization group



In usual rigorous RG, couplings are constant in space∫
{g : φ4 : (x) + µ : φ2 : (x)}ddx

(ACG2013) → inhomogeneous RG for space-dependent
couplings. ∫

{g(x) : φ4 : (x) + µ(x) : φ2 : (x)}ddx

e.g., µ(x) = µ + δµ(x), with δµ(x) a local perturbation such
as test function in source term.
In the nonrigorous physical literature, this is called the local
RG: Drummond-Shore PRD 1979, Jack-Osborn NPB 1990,. . .
Used for generalizations of Zamolodchikov’s c-“Theorem”,
study of scale vs. conformal invariance,. . .
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Possible uses of the SDRG:

• Constructing correlation functions of scaling/continuum
limits (as distributions) and the corresponding probability
measures, while simultaneously performing UV and large
volume limits.
• Constructing composite fields, e.g., the square Φ2 of the
elementary field Φ. Here Φ would be scaling limit of spin field
and Φ2 that of the energy field.
• Showing Osterwalder-Schrader positivity with Fourier
cutoffs, by emptying the interaction in a vanishing corridor
around reflection hyperplane. QFT with defect/domain wall.
• Showing global/Möbius conformal invariance of scaling limit
by controlling space-dependent UV cutoffs.
• Constructing explicit examples of holography or AdS/CFT
correspondence.
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A touristic view of AdS/CFT:

Let R̂d = Rd ∪ {∞} ' Sd . The Möbius group M(Rd) is the

group of bijective transformations of R̂d generated by
isometries, dilations and the unit sphere inversion
J(x) = |x |−2x . This is also the invariance group of the
absolute cross-ratio

CR(x1, x2, x3, x4) =
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

.

Conformal ball model: R̂d ' Sd seen as boundary of Bd+1

with metric ds = 2|dx |
1−|x |2 .

Half-space model: Rd seen as boundary of
Hd+1 = Rd × (0,∞) with metric ds = |dx |

xd+1
.

Bijection: f ∈M(Rd) ↔ hyperbolic isometry of the interior
Bd+1 or Hd+1, the Euclidean AdS space.
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A scalar field O of scaling dimension ∆ in a CFT on Rd has
pointwise correlations which satisfy

〈O(x1) · · · O(xn)〉 =

(
n∏

i=1

|Jf (xi)|
∆
d

)
×〈O(f (x1)) · · · O(f (xn))〉

for all f ∈M(Rd) and all collection of distinct points in
Rd\{f −1(∞)}. Here, Jf (x) denotes the Jacobian of f at x .
The AdS/CFT correspondence, discovered by Maldacena 1997
and made more precise by Gubser, Klebanov, Polyakov and
Witten 1998, postulates a relation of the form:〈

e
∫
Rd j(x)O(x)ddx

〉
CFT

= e−S[φext]

where S [φ] is an action for a field φ(x , xd+1) on AdS space
and φext makes it extremal for a boundary condition
φ(x , xd+1) ∼ (xd+1)d−∆j(x) when xd+1 → 0.
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AdS/CFT or holographic correspondence not yet known
explicitly, i.e., exact S [φ] still mysterious. However, physicists
have been experimenting with toy actions of the form:

∫
Rd×(0,∞)

ddx dxd+1

√
detgµν

{
1

2
gµν∂µφ∂νφ +

1

2
m2φ2 + · · ·

}
where m2 is related to ∆ and is allowed to be (not too)
negative. This gives an expansion for connected CFT
correlations in terms of tree-level Feynman diagrams (Witten
diagrams). The simplest “Mercedes logo” 3-point Witten
diagram reproduces the correct CFT prediction

O(1)

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1

for 〈O1(x1)O2(x2)O3(x3)〉 by a calculation of Freedman,
Mathur, Matusis and Rastelli 1999.
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The good news:

All of the above makes sense for the hierarchical model.

See in particular:
• Gubser et al. “p-Adic AdS/CFT”, CMP 2017.
• Gubser et al. “O(N) and O(N) and O(N)”, JHEP 2017.

The calculations of the last reference for scaling dimensions of
Φ and Φ2, for N = 1 in hierarchical case were made
nonperturbatively rigorous in (ACG2013).
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Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion),. . .

But also Mandelbrot cascades, the branching Brownian motion
used by Bramson and Zeitouni, Walsh-Fourier series in
harmonic analysis, the setup used by Brydges, Evans and
Imbrie which takes advantage of an additive group structure
and Fourier analysis,. . .

The “God given” p-adic setup. . . where “God” is man called
Alexander Ostrowski. Comes with a huge available knowledge
base one can tap into.
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The hierarchical continuum:

Let p be an integer > 1 (in fact a prime number).

Let Lk , k ∈ Z, be the set of cubes
∏d

i=1[aip
k , (ai + 1)pk) with

a1, . . . , ad ∈ N0. The cubes of Lk form a partition of the
octant [0,∞)d .

Hence T = ∪k∈ZLk naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lk :
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Picture for d = 1, p = 2



Forget [0,∞)d and Rd and just keep the tree.
Define the hierarchical continuum Qd

p := leafs at infinity
“L−∞”.

This is where scaling limits of hierarchical models live.
More precisely, these leafs at infinity are the infinite bottom-up
paths in the tree.

A path representing an element x ∈ Qd
p
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A point x ∈ Qd
p is encoded by a sequence (an)n∈Z,

an ∈ {0, 1, . . . , p − 1}d .
Let 0 ∈ Qd

p be the sequence with all digits equal to zero.

Caution! dangerous notation
an represents the local coordinates for a cube of L−n−1 inside
a cube of L−n.
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Moreover, rescaling is defined as follows.
If x = (an)n∈Z then px := (an−1)n∈Z, i.e., upward shift.

Likewise p−1x is downward shift, and so on for the definition
of pkx , k ∈ Z.
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Distance:

If x , y ∈ Qd
p , define their distance as |x − y |p := pk where k is

the depth where the two paths merge.

Also let |x |p := |x − 0|p. Because of the dangerous notation

|px |p = p−1|x |p
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Lebesgue measure:

Metric space Qd
p → Borel σ-algebra → Lebesgue measure ddx

which gives a volume pdk to closed balls of radius pk .

Construction: take product of uniform probability measures on
({0, 1, . . . , p − 1}d)N0 for B(0, 1). Do the same for the other
closed unit balls, and collate.

The hierarchical unit lattice:
Truncate the tree at level zero and take L := L0. Using the
identification of nodes with balls, define the hierarchical
distance as

d(x, y) = inf{|x − y |p | x ∈ x, y ∈ y} .
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The massless Gaussian measure:

To every group of offsprings G of a vertex z ∈ Lk+1 associate
a centered Gaussian random vector (ζx)x∈G with pd × pd

covariance matrix made of 1− p−d ’s on the diagonal and
−p−d ’s everywhere else. We impose that Gaussian vectors
corresponding to different layers or different groups are
independent. We have

∑
x∈G ζx = 0 a.s.
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The ancestor function: for k < k ′, x ∈ Lk , let anck ′(x) denote
the ancestor in Lk ′ .

Ditto for anck ′(x) when x ∈ Qd
p .

The massless Gaussian field φ(x), x ∈ Qd
p of scaling dimention

[φ] is given by

φ(x) =
∑
k∈Z

p−k[φ]ζanck (x)

〈φ(x)φ(y)〉 =
c

|x − y |2[φ]

This is heuristic since φ is not well-defined in a pointwise
manner. We need random Schwartz(-Bruhat) distributions.
I will now drop the p from | · |p.
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Test functions:

f : Qd
p → R is smooth if it is locally constant.

Define S(Qd
p) as the space of compactly supported smooth

functions. Take locally convex topology generated by the set
of all semi-norms on S(Qd

p).

Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).
S(Qd

p) ' ⊕NR .

Thus
S ′(Qd

p) ' RN

with product topology. S ′(Qd
p) is a Polish space.
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The p-adic CFT toy model:

d = 3, [φ] = 3−ε
4

, L = p` zooming-out factor

r ∈ Z UV cut-off, r → −∞

s ∈ Z IR cut-off, s →∞

The regularized Gaussian measure µCr is the law of

φr (x) =
∞∑

k=`r

p−k[φ]ζanck (x)

Sample fields are true fonctions that are locally constant on
scale Lr . These measures are scaled copies of each other.

If the law of φ(·) is µC0 , then that of L−r [φ]φ(Lr ·) is µCr .
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Fix the dimensionless parameters g , µ and let gr = L−(3−4[φ])rg
and µr = L−(3−2[φ])rµ.

Same as strict scaling limit of fixed
critical probability measure on unit lattice. Bare/dimensionful
couplings gr , µr go to ∞.

Let Λs = B(0, Ls), IR (or volume) cut-off.

Let

Vr ,s(φ) =

∫
Λs

{gr : φ4 :r (x) + µr : φ2 :r (x)}d3x

where : φk :r is Wick ordering using dµCr .
Define the probability measure

dνr ,s(φ) =
1

Zr ,s
e−Vr,s(φ)dµCr (φ) .
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and µr = L−(3−2[φ])rµ. Same as strict scaling limit of fixed
critical probability measure on unit lattice. Bare/dimensionful
couplings gr , µr go to ∞.
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Let φr ,s be the random distribution in S ′(Q3
p) sampled

according to νr ,s and define the squared field Nr [φ
2
r ,s ] which is

a deterministic function(al) of φr ,s , with values in S ′(Q3
p),

given by

Nr [φ
2
r ,s ](j) = (Z2)r

∫
Q3

p

{Y2 : φ2
r ,s :r (x)− Y0L

−2r [φ]} j(x) d3x

for suitable parameters Z2, Y0, Y2. We also need a Y1.

Our main result concerns the limit law of the pair
(Y1φr ,s ,Nr [φ

2
r ,s ]) in S ′(Q3

p)× S ′(Q3
p) when r → −∞, s →∞

(in any order).
For the precise statement we need the approximate fixed point
value

ḡ∗ =
pε − 1

36Lε(1− p−3)
.
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Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

∃ρ > 0, ∃L0, ∀L ≥ L0, ∃ε0 > 0, ∀ε ∈ (0, ε0], ∃[φ2]>2[φ],

∃ fonctions µ(g), Y0(g), Y2(g) on (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ) such

that if one lets µ = µ(g), Y0 = Y0(g), Y2 = Y2(g) and
Z2 = L−([φ2]−2[φ]) then the joint law of (Y1φr ,s ,Nr [φ

2
r ,s ]) con-

verge weakly and in the sense of moments to that of a pair
(φ,N[φ2]) such that:

1 ∀k ∈ Z, (L−k[φ]φ(Lk ·), L−k[φ2]N[φ2](Lk ·))
d
= (φ,N[φ2]).

2 〈φ(1Z3
p
), φ(1Z3

p
), φ(1Z3

p
), φ(1Z3

p
)〉T < 0 i.e., φ is

non-Gaussian. Here, 1Z3
p

denotes the indicator function of

B(0, 1).

3 〈N[φ2](1Z3
p
),N[φ2](1Z3

p
)〉T = 1.

4 〈φ(1Z3
p
)2〉 = 1.
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The mixed correlation functions satisfy, in the sense of
distributions,

〈 φ(L−kx1) · · ·φ(L−kxn) N[φ2](L−ky1) · · ·N[φ2](L−kym) 〉

= L−(n[φ]+m[φ2])k 〈 φ(x1) · · ·φ(xn) N[φ2](y1) · · ·N[φ2](ym) 〉

For our hierarchical version of the 3D fractional φ4 model we
also proved [φ2]− 2[φ] = 1

3
ε + o(ε).

This was predicted by Wilson in “Renormalization of a scalar
field theory in strong coupling”, PRD 1972.

This is also what is expected for the Euclidean model on R3.

Not too far, if one boldly extrapolates to ε = 1, from the most
precise available estimates concerning the short range 3D Ising
model: [φ2]− 2[φ] = 0.376327 . . . (JHEP 2016 by Kos,
Poland, Simmons-Duffin and Vichi, using conformal
bootstrap).
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We also proved the law νφ×φ2 of (φ,N[φ2]), is independent of

g in the interval (ḡ∗− ρε
3
2 , ḡ∗+ ρε

3
2 ).

This also holds if one also
adds φ6, φ8,. . . terms in the potential, with small couplings.

We proved weak/local universality for a non-Gaussian scaling
limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under the action of
the scaling group pZ instead of the subgroup LZ. Moreover,
µ(g) and [φ2] are independent of the arbitrary factor L.

The two-point correlations are given in the sense of
distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |2[φ2]
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Note that 2[φ2] = 3− 1
3
ε + o(ε) → still L1,loc !

Theorem 3: A.A., May 2015

Use ψi to denote the scaling limits φ or N[φ2]. Then, for all
mixed correlation ∃ a smooth (i.e., locally constant) fonction
〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is locally integrable
(on the big diagonal Diag) and such that

E ψ1(f1) · · ·ψn(fn) =∫
(Q3

p)n\Diag

〈ψ1(z1) · · ·ψn(zn)〉 f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p).
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This hinges on showing the BNNFB (basic nearest neighbor
factorized bound) of A.A., “A second-quantized
Kolmogorov-Chentsov theorem”, arXiv 2016.

The BNNFB is

| 〈ψ1(z1) · · ·ψn(zn)〉 | ≤ O(1)×
n∏

i=1

1

|zi − n.n.|[ψi ]

when z1, . . . , zn are confined to a compact set.

This follows from the use of the SDRG to derive an explicit
representation of pointwise correlations in terms of very close
analogues of tree Witten diagrams. Hence, the emergent
connection to the AdS/CFT correspondence.
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The renormalization group idea in a nutshell:

Want to study feature Z( ~V ) of some object ~V ∈ E but too
hard!

Find “simplifying” transformation RG : E → E , such that
Z(RG ( ~V )) = Z( ~V ), and limn→∞ RG n( ~V ) = ~V∗ with Z( ~V∗)
easy.

Example: ~V = (a, b) ∈ E = (0,∞)2

Z( ~V ) =

∫ π
2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

Take RG (a, b) =
(

a+b
2
,
√
ab
)

.

(Landen-Gauss)
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1st step: rescale to unit lattice/cut-off

ST
r ,s(f ) := logEνr,seφ(f ) = log∫

dµCr (φ) exp
(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx +

∫
φ(x)f (x)dx

)
∫
dµCr (φ) exp

(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx

)

= log

∫
dµC0(φ) I(r ,r)[f ](φ)∫
dµC0(φ) I(r ,r)[0](φ)

=: log
Z( ~V (r ,r)[f ])

Z( ~V (r ,r)[0])

with

I(r ,r)[f ](φ) = exp

(
−
∫

Λs−r

{g : φ4 :0 (x) + µ : φ2 :0}d3x

+L(3−[φ])r

∫
φ(x)f (L−rx)d3x

)
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2nd step: define inhomogeneous RG
Fluctuation covariance Γ := C0 − C1.
Associated Gaussian measure is the law of the fluctuation field

ζ(x) =
∑

0≤k<`

p−k[φ]ζanck (x)

L-blocks (closed balls of radius L) are independent. Hence

∫
I(r ,r)[f ](φ) dµC0(φ) =

∫ ∫
I(r ,r)[f ](ζ +ψ) dµΓ(ζ)dµC1(ψ)

=

∫
I(r ,r+1)[f ](φ) dµC0(φ)

with new integrand

I(r ,r+1)[f ](φ) :=

∫
I(r ,r)[f ](ζ + L−[φ]φ(L·)) dµΓ(ζ)
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Need to extract vacuum renormalization → better definition is

I(r ,r+1)[f ](φ) = e−δb(I(r,r)[f ])

∫
I(r ,r)[f ](ζ + L−[φ]φ(L·)) dµΓ(ζ)

so that we have the fundamental identity∫
I(r ,r)[f ](φ) dµC0(φ) = eδb(I(r,r)[f ])

∫
I(r ,r+1)[f ](φ) dµC0(φ)

Repeat: I(r ,r) → I(r ,r+1) → I(r ,r+2) → · · · → I(r ,s)

One must control

ST(f ) = lim
r→−∞
s→∞

∑
r≤q<s

(
δb(I(r ,q)[f ])− δb(I(r ,q)[0])

)
limit of logarithms of characteristic functions.
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Use a Brydges-Yau lift

RGinhom

~V (r ,q) −→ ~V (r ,q+1)

↓ ↓
I(r ,q) −→ I(r ,q+1)

I(r ,q)(φ) =
∏
∆∈L0

∆⊂Λs−q

[
e f∆φ∆×

{
exp
(
−β4,∆ : φ4

∆ :C0 −β3,∆ : φ3
∆ :C0 −β2,∆ : φ2

∆ :C0 −β1,∆ : φ1
∆ :C0

)
×
(
1 + W5,∆ : φ5

∆ :C0 +W6,∆ : φ6
∆ :C0

)
+R∆(φ∆)}]

Dynamical variable is ~V = (V∆)∆∈L0 with

V∆ = (β4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆,R∆)
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RGinhom acts on Einhom, essentially,∏
∆∈L0

{
C7 × C 9(R,C)

}

Stable subspaces

Ehom ⊂ Einhom: spatially constant data.
E ⊂ Ehom: even potential, i.e., g , µ’s only and R even
function.
Let RG be induced action of RGinhom on E .
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3rd step: stabilize bulk (homogeneous) evolution

Show that ∀q ∈ Z, limr→−∞ ~V (r ,q)[0]
exists, i.e.,

lim
r→−∞

RG q−r
(
~V (r ,r)[0]

)
exists.

RG


g ′ = Lεg − A1g

2 + · · ·
µ′ = L

3+ε
2 µ − A2g

2 − A3gµ + · · ·
R ′ = L(g ,µ)(R) + · · ·

Tadpole graph with mass insertion

A3 = 12L3−2[φ]

∫
Q3

p

Γ(0, x)2 d3x

is main culprit for anomalous scaling [φ2]− 2[φ] > 0.
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Irwin’s proof → stable manifold W s

Restriction to W s → contraction → IR fixed point v∗.

Construct unstable manifold W u, intersect with W s,
transverse at v∗.

Here, ~V (r ,r)[0] is independent of r : strict scaling limit of fixed
model on unit lattice. (We can also do the Gaussian to
non-Gaussian crossover continuum limit).
~V (r ,r)[0] must be chosen in W s → µ(g) critical mass.

Thus
∀q ∈ Z, lim

r→−∞
~V (r ,q)[0] = v∗

Tangent spaces at fixed point: E s and E u.
E u = Ceu, with eu eigenvector of Dv∗RG for eigenvalue
αu = L3−2[φ] × Z2 =: L3−[φ2].
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4th step: control deviation from homogeneous evolution
~V (r ,q)[f ]− ~V (r ,q)[0], for all effective scale q, uniformly in r .

1)
∑

x∈G ζx = 0 a.s. → deviation is 0 for q <local constancy
scale of test function f .
2) Deviation resides in closed unit ball containing origin for
q > radius of support of f → exponential decay for large q.
For source term with φ2 add

Y2Z
r
2

∫
: φ2 :Cr (x)j(x)d3x

to potential. ST
r ,s(f , j) now involves two test functions. After

rescaling to unit lattice/cut-off

Y2α
r
u

∫
: φ2 :C0 (x)j(L−rx)d3x

to be combined with µ into (β2,∆)∆∈L0 space-dependent mass.
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5th step: partial linearization

In order to replay same sequence of moves with j present,
construct

Ψ(v ,w) = lim
n→∞

RG n(v + α−nu w)

for v ∈ W s and all direction w (especially
∫

: φ2 :).

For v fixed, Ψ(v , ·) is parametrization of W u satisfying
Ψ(v , αuw) = RG (Ψ(v ,w)).

If there were no W s directions (1D dynamics) then Ψ would
be conjugation → Poincaré-Kœnigs Theorem.

Ψ(v ,w) is holomorphic in v and w .

This is essential for probabilistic interpretation of (φ,N[φ2]) as
pair of random variables in S ′(Q3

p).

Thank you for your attention.
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