The strong slope conjecture for twisted generalized Whitehead doubles

Toshie Takata

Kyushu University

joint work with Kenneth L. Baker and Kimihiko Motegi

Modular Forms and Quantum Knot Invariants BIRS 12 March, 2018

1 Introduction

- **2** Colored Jones polynomial of $W^{\tau}_{\omega}(K)$
- 3 Outline of a proof of Main theorem
 - Algorithm

1 Introduction

- **2** Colored Jones polynomial of $W^{\tau}_{\omega}(K)$
- 3 Outline of a proof of Main theorem
- Algorithm

Jones slope

 $J_{K,n}(q)\in \mathbb{Z}[q^{\pm 1}]$: the colored Jones polynomial for a knot K in S^3

[Garoufalidis], [Garoufalidis-Le]

$$\begin{split} &\delta_K(n) \ (\delta^*_K(n)): \text{ the maximum (minimum) degree of } J_{K,n}(q) \\ &\text{For large } n, \\ &\delta_K(n) = a(n)n^2 + b(n)n + c(n) \ (\ a(n), b(n), c(n) \in \mathbb{Q}, \text{ periodic}) \\ &\delta^*_K(n) = a^*(n)n^2 + b^*(n)n + c^*(n) \ (\ a^*(n), b^*(n), c^*(n) \in \mathbb{Q}, \text{ periodic}) \end{split}$$

$$js(K) := \left\{ 4a(n) \mid n \in \mathbb{N} \right\}, \quad js^*(K) := \left\{ 4a^*(n) \mid n \in \mathbb{N} \right\} \quad (\text{Jones slope})$$

$$jx(K) := \left\{ 2b(n) \mid n \in \mathbb{N} \right\}, \quad jx^*(K) := \left\{ 2b^*(n) \mid n \in \mathbb{N} \right\}.$$

Boundary slope

K : a knot in $S^3-E(K)$: the exterior $S^3-{\rm int}N(K)$ (μ,λ) : the preferred meridian-longitude pair of K

Any homotopically nontrivial simple closed curves in $\partial E(K)$ represents $p[\mu] + q[\lambda] \in H_1(\partial E(K))$ for some relatively prime integers p and q.

 $p/q \in \mathbb{Q} \cup \{\infty\}$ is a boundary slope of K $\Leftrightarrow \exists$ an *essential* (i.e. orientable, incompressible and boundary-incompressible) surface F in E(K)s.t. a component of ∂F represents $p[\mu] + q[\lambda] \in H_1(\partial E(K))$.

Ex. A minimal genus Seifert surface F of K is an essential surface and the boundary slope of F is 0.

$$bs(K) := \left\{ r \in \mathbb{Q} \cup \{\infty\} \mid r \text{ is a boundary slope of } K \right\}$$

Remark. $0 \in bs(K)$

Conjecture (Slope conjecture (Garouflidis))

 $js(K) \cup js^*(K) \subset bs(K).$

Conjecture (Strong slope conjecture (Kalfagianni-Tran))

Given $p/q \in js(K)$, with q > 0 and (p,q) = 1, there exists an essential surface $S \subset E(K)$ with $|\partial S|$ boundary components such that each component of ∂S has slope p/q, and

$$\frac{\chi(S)}{\partial S|q} \in jx(K).$$

Similarly, given $p^*/q^* \in js^*(K)$, with $q^* > 0$ and $(p^*, q^*) = 1$, there exists an essential surface $S^* \subset E(K)$ with $|\partial S^*|$ boundary components such that each component of ∂S^* has slope p^*/q^* , and

$$-\frac{\chi(S^*)}{|\partial S^*|q^*} \in jx^*(K).$$

Following Lee and van der Veen, we present a sharpened version that more directly yokes the two conjecture together.

Conjecture

 $\delta_K(n) = a(n)n^2 + b(n)n + c(n)$ for a large n. Then for each n there is an essential surface F_n in the exterior of K such that

- (Slope Conjecture) 4a(n) is the boundary slope of F_n .
- (Strong Slope Conjecture) 4a(n) = p/q for coprime integers p, q with q > 0,

$$2b(n) = \frac{\chi(F_n)}{|\partial F_n|q}$$

A similar statement holds for the minimum degree.

Known results for Slope conjecture

- torus knots, alternating knots, non-alternating knots with up to 9 crossings, (-2, 3, p) pretzel knots (Garoufalidis)
- adequate knots (Futer-Kalfagianni-Purcell)
- 2-parameter family of 2-fusion knots (Garoufalidis-van der Veen)
- iterated cables of adequate knots, cables of 2-fusion knots (Kalfagianni-Tran)
- graph knots (Motegi-T)
- certain families of 3-tangle pretzel knots (C.R.S. Lee-van der Veen)
- certain families of Montesinos knots (Leng-Yang-Liu)

Known results for Strong Slope conjecture

- iterated cables of adequate knots, (-2,3,p) pretzel knots (Kalfagianni-Tran)
- 8, 9-crossing non-alternating knots (Kalfagianni-Tran), $(9_{47}, 9_{48}$ Howie)
- certain families of 3-tangle pretzel knots (Lee-van der Veen)
- certain families of Montesinos knots (Leng-Yang-Liu)

Twisted generalized Whitehead double of a knot

Let V be a standardly embedded solid torus in S^3 with a preferred meridian-longitude (μ_V, λ_V) , and take a pattern (V, k_{ω}^{τ}) where k_{ω}^{τ} is a knot in the interior of V. Given a knot K in S^3 with a preferred meridian-longitude (μ_K, λ_K) , consider an orientation preserving embedding $f: V \to S^3$ which sends the core of V to a knot $K \subset S^3$ and $f(\mu_V) = \mu_K$ and $f(\lambda_V) = \lambda_K$. Then the image $f(k_{\omega}^{\tau})$ is called a τ -twisted, ω -generalized Whitehead double of K, and denoted by $W_{\omega}^{\tau}(K)$. W_1^0 is the (untwisted) negative Whitehead double of K.

Figure : Twisted generalized Whitehead double of K; $f: V \to S^3$ is a faithful embedding and it maps the core of V to K.

Main theorem

Theorem

Let K be a knot such that $d_+[J_{K,n}(q)]$ and $d_-[J_{K,n}(q)]$ are, for all integers $n \ge 0$, quadratic quasi-polynomials $\delta_K(n) = a(n)n^2 + b(n)n + c(n)$ and $\delta_K^*(n) = a^*(n)n^2 + b^*(n)n + c^*(n)$ of period ≤ 2 with $b(1) \le 0$ and $b^*(1) \ge 0$.

- If K satisfies the slope conjecture, then all of its twisted generalized Whitehead doubles also satisfy the slope conjecture.
- If K satisfies the strong slope conjecture, then all of its twisted generalized Whitehead doubles also satisfy the strong slope conjecture.

Examples of knots satisfying the hypotheses

- Torus knots
- Adequate knots
- **③** Non-alternating knots with up to 9 crossings except for 8_{20} , 9_{43} , 9_{44} .

Introduction

- **2** Colored Jones polynomial of $W^{\tau}_{\omega}(K)$
 - **3** Outline of a proof of Main theorem
 - Algorithm

Maximum degree of $J_{W_{\omega}^{\tau}(K),n}(q)$

Proposition (maximum-degree)

Let K be a knot with $\delta_K(n) = a(n)n^2 + b(n)n + c(n)$. We put $a_1 := a(1)$, $b_1 := b(1)$, and $c_1 := c(1)$. We assume that the period of $\delta_K(n)$ is less than or equal to 2 and that $b_1 \leq 0$. Then the maximum degree of the colored Jones polynomial of its twisted generalized Whitehead double $\delta_{W_{\psi}^{(K)}(N)}(n) = a_W(n)n^2 + b_W(n)n + c_W(n)$ is given by

$$\delta_{W_{\omega}^{\tau}(K)}(n) = \begin{cases} (4a_1 - \tau)n^2 + (-4a_1 + 2b_1 + \tau - \frac{1}{2})n + a_1 - b_1 + c_1 + \frac{1}{2} & (a_1 > \frac{\tau}{4}), \\ -\frac{1}{2}n + a_1 + b_1 + c_1 + \frac{1}{2} & (a_1 \le \frac{\tau}{4}). \end{cases}$$

Example
$$K = T_{p,q}$$

 $\delta_K(n) = \frac{pq}{4}n^2 - \frac{pq}{4} - (1 + (-1)^n)\frac{(p-2)(q-2)}{8}$ (Garoufalidis)
 $\delta_{W_{\omega}^{\tau}(K)}(n) = \begin{cases} (pq-\tau)n^2 + (-pq+\tau - \frac{1}{2})n + \frac{1}{2} & (\tau < pq), \\ -\frac{1}{2}n + \frac{1}{2} & (\tau \ge pq). \end{cases}$

Minimum degree of $J_{W_{\omega}^{\tau}(K),n}(q)$

Proposition (minimum-degree)

Let $\delta_K^*(n) = a^*(n)n^2 + b^*(n)n + c^*(n)$. We put $a_1^* := a^*(1)$, $b_1^* := b^*(1)$, and $c_1^* := c^*(1)$. We assume that the period of $\delta_K^*(n)$ is less than or equal to 2, $b_1^* \ge 0$. Then the minimum degree of the colored Jones polynomial of its twisted generalized Whitehead double $\delta_{W_{\omega}^*(K)}^*(n) = a_W^*(n)n^2 + b_W^*(n)n + c_W^*(n)$ is given by

$$\begin{split} \delta^{*}_{W_{\omega}^{\tau}}(n) \\ = \begin{cases} (4a_{1}^{*} - \frac{2\omega - 1}{2} - \tau)n^{2} + (-4a_{1}^{*} + 2b_{1}^{*} + \omega - 1 + \tau)n + a_{1}^{*} - b_{1}^{*} + c_{1}^{*} + \frac{1}{2} \\ (a_{1}^{*} < \frac{\tau}{4} - \frac{1}{8}), \\ -\omega n^{2} + \frac{2\omega - 1}{2}n + a_{1}^{*} + b_{1}^{*} + c_{1}^{*} + \frac{1}{2} \\ (a_{1}^{*} \ge \frac{\tau}{4} - \frac{1}{8}). \end{cases} \end{split}$$

Example
$$K = I_{p,q}$$

 $\delta_K^*(n) = \frac{pq - p - q}{2}n - \frac{pq - p - q}{2}$ (Garoufalidis)
 $\delta_{W_{\omega}^{\tau}}^*(n) = \begin{cases} (-\omega + \frac{1}{2} - \tau)n^2 + (pq - p - q + \omega - 1 + \tau)n - pq + p + q + \frac{1}{2} & (\tau > \frac{1}{2}), \\ -\omega n^2 + (\omega - \frac{1}{2})n + \frac{1}{2} & (\tau \le \frac{1}{2}). \end{cases}$

TZ D

Colored Jones polynomial of $W^{\tau}_{\omega}(K)$

 $J_{W_{\omega}^{\tau}(K),n}(q)$: the colored Jones polynomial of a knot $W_{\omega}^{\tau}(K)$ for $n\in\mathbb{N}$

$$J_{W_{\omega}^{\tau}(K),n}'(q) := \frac{J_{W_{\omega}^{\tau}(K),n+1}(q)}{J_{\bigcirc,n+1}(q)}, J_{\bigcirc,n}(q) = \frac{q^{n/2} - q^{-n/2}}{q^{1/2} - q^{-1/2}}$$

$$< d >= (-1)^{d}[d+1], \quad [d] = \frac{x^{d} - x^{-d}}{x - x^{-1}}$$

$$\begin{split} s,t,u: & \text{non-negative integers} \\ \text{s.t. } s+t+u \equiv 0 \pmod{2}, |s-t| \leq u \leq s+t \text{ (} \textit{admissible } \text{)} \\ \delta(u;s,t) &= (-1)^{\frac{s+t+u}{2}} x^{\frac{1}{4}(u^2-s^2-t^2+2u-2s-2t)} \\ < s,t,u > = (-1)^{\frac{s+t+u}{2}} \frac{[\frac{s+t+u}{2}+1]![\frac{t+u-s}{2}]![\frac{u+s-t}{2}]![\frac{s+t-u}{2}]!}{[s]![t]![u]!} \end{split}$$

$$\left\langle \begin{array}{cc} A & B & E \\ D & C & F \end{array} \right\rangle = \frac{\prod_{i=1}^{3} \prod_{j=1}^{4} [b_i - a_j]|}{[A]![B]![C]![D]![E]![F]!} \sum_{\max\{a_j\} \le s \le \min\{b_i\}} \frac{(-1)^s [s+1]!}{\prod_{i=1}^{3} [b_i - s]|\prod_{j=1}^{4} [s-a_j]}$$

$$\begin{array}{l} a_1 = \frac{A+B+E}{2}, \ a_2 = \frac{B+D+F}{2}, \ a_3 = \frac{C+D+E}{2}, \ a_4 = \frac{A+C+F}{2}, \\ b_1 = \frac{\Sigma-A-D}{2}, \ b_2 = \frac{\Sigma-E-F}{2}, \ b_3 = \frac{\Sigma-B-C}{2} \end{array}$$

Colored Jones polynomial of $W^{\tau}_{\omega}(K)$

Proposition $J'_{W^{\tau}(K),n}(q)$ $=\frac{1}{\langle n \rangle} \sum_{j=1,\dots,n}^{n} \frac{\langle 2k \rangle}{\langle n,n,2k \rangle} \frac{\langle 2j \rangle}{\langle n,n,2j \rangle} \left\langle \begin{array}{ccc} n & n & 2j \\ n & n & 2k \end{array} \right\rangle q^{-\omega j(j+1)-\tau k(k+1)} J'_{K,2k}(q)$

Figure : A diagram of $W^{\tau}_{\omega}(K)$ with trivial writhe

Colored Jones polynomial $W^{\tau}_{\omega}(K)$

$$\frac{s}{t} = \sum_{u} \frac{\langle u \rangle}{\langle s, t, u \rangle} \frac{s}{s} \frac{u}{t}$$

$$\frac{s}{t} = \delta(u; s, t) \frac{s}{t}$$

$$\langle n \rangle J'_{W^{\tau}_{\omega}(K), n}(q) = 0$$

$$\frac{n}{D(K)} \frac{w}{\psi} = q^{-\frac{1}{2}\omega n(n+2)}$$

$$\frac{n}{\tau} \frac{v}{\tau}$$

$$= q^{-\frac{1}{2}\omega n(n+2)}$$

$$\frac{n}{D(K)} \frac{w}{\psi} = q^{-\frac{1}{2}\omega n(n+2)} \sum_{k=0}^{n} \frac{\langle 2k \rangle}{\langle n, n, 2k \rangle}$$

$$K$$

$$\frac{w}{\tau}$$

$$\underbrace{ \begin{matrix} A \\ B \\ \hline E \\ F & D & C \end{matrix}}_{F & D & C \end{matrix} = \underbrace{ \left(\begin{array}{c} A & B & E \\ D & C & F \end{array} \right)}_{} \\ \underbrace{ \begin{vmatrix} A \\ F & C \end{matrix}}_{F & C \end{matrix} }$$

Lemma

Lemma

Proposition (Garoufalidis's convention)

Let $\delta'_K(n) = \alpha(n)n^2 + \beta(n)n + \gamma(n)$. We put $\alpha_0 := \alpha(0)$, $\beta_0 := \beta(0)$, and $\gamma_0 := \gamma(0)$. We assume that the period of $\delta'_K(n)$ is less than or equal to 2 and that $-2\alpha_0 + \beta_0 + \frac{1}{2} \leq 0$. Then, for suitably large n, the maximum degree of the colored Jones polynomial of its twisted generalized Whitehead double is given by

$$\delta'_{W_{\omega}^{\tau}(K)}(n) = \begin{cases} (4\alpha_0 - \tau)n^2 + (2\beta_0 - \tau)n + \gamma_0 & (\alpha_0 > \frac{\tau}{4}), \\ -n + \gamma_0 & (\alpha_0 \le \frac{\tau}{4}). \end{cases}$$

Outline of proof the case $\tau = 0$, $\omega = 1$ (the negative Whitehead double of K)

$$< n > J'_{W^{ au}_{\omega}(K),n}(q) = \sum_{j,k=0}^{n} f(j,k;q).$$

We prove that in each case of $\alpha_0 > 0$ and $\alpha_0 \le 0$, there exists a unique pair (j_0, k_0) such that

$$\max_{0 \le j,k \le n} d_+[f(j,k;q)] = d_+[f(j_0,k_0;q)]$$

Case $j+k \leq n$

$$d_{+}[f(j,k;q)] = -j^{2} + 4\alpha_{0}k^{2} + (2\beta_{0} + 1)k - \frac{n}{2} + \gamma_{0}$$

$$\Rightarrow \max_{0 \le j \le n-k} d_{+}[f(j,k;q)] = d_{+}[f(0,k;q)] = 4\alpha_{0}k^{2} + (2\beta_{0} + 1)k - \frac{n}{2} + \gamma_{0}.$$

$$d_{+}[f(0,k;q)] = 4\alpha_{0} \left(k + \frac{2\beta_{0} + 1}{8\alpha_{0}}\right)^{2} - \frac{(2\beta_{0} + 1)^{2}}{16\alpha_{0}} - \frac{n}{2} + \gamma_{0}. \quad (\alpha_{0} \ne 0)$$

If $\alpha_0 > 0$, since $-\frac{2\beta_0+1}{8\alpha_0} < \frac{n}{2}$ for sufficiently large n, then this is maximized at k = n,

$$\max_{0 \le k \le n} d_+[f(0,k;q)] = d_+[f(0,n;q)] = 4\alpha_0 n^2 + (2\beta_0 + \frac{1}{2})n + \gamma_0.$$

If $\alpha_0 \leq 0$, since $-2\alpha_0 + \beta_0 + \frac{1}{2} \leq 0$ by the assumption, then we have $\beta_0 + \frac{1}{2} \leq 0$. Therefore, if $\alpha_0 < 0$, then $\frac{2\beta_0 + 1}{8\alpha_0} \geq 0$, and so, this is maximized at k = 0.

$$\max_{0 \le k \le n} d_+[f(0,k;q)] = d_+[f(0,0;q)] = -\frac{n}{2} + \gamma_0.$$

If $\alpha_0 = 0$, $\max_{0 \le j \le n-k} d_+[f(j,k;q)] = d_+[f(0,k;q)] = -\frac{n}{2} + \gamma_0.$

1

Introduction

- 2 Colored Jones polynomial of $W^{\tau}_{\omega}(K)$
- 3 Outline of a proof of Main theorem
 - 4) Algorithm

Exteriors of twisted, generalized Whitehead doubles and those of two-bridge links

Figure : $k_1 \cup k_2$ is a two bridge link $[2, 2\omega, -2] = \mathcal{L}_{\frac{4\omega-1}{8\omega}}$.

The exterior of $W^{\tau}_{\omega}(K)$ is the union of the exterior E(K) and $V - \operatorname{int} N(k_2)$; the latter is the exterior of the two-bridge link $k_1 \cup k_2$, which is expressed as $[2, 2\omega, -2]$. [2, 2, -2] is the Whitehead double.

(Hatcher-Thurston) correspondence between a certain collection of "minimal edge paths" in the Farey diagram from 1/0 to p/q and the properly embedded incompressible and ∂ -incompressible surfaces with boundary in the exterior of the two bridge knot $\mathcal{L}_{p/q}$

(Floyd-Hatcher) extension of [H-T] to two-bridge links of two components (Hoste-Shanahan) boundary slopes of such surfaces in [F-H]

₩

list of all the properly embedded essential surfaces in the exterior of $\mathcal{L}_{(4\omega-1)/8\omega}$, their Euler characteristics, their boundary slopes, and number of boundary components

Data for essential surfaces in the exterior of the whitehead link $\mathcal{L}_{3/8}$

HS path	branch pattern	χ	boundary slopes $\beta > 0$	number of boundary components $\beta > 0$
γ_1	ADAADA	$-\alpha - \beta$	$(2\frac{\beta}{\alpha}, 2\frac{\alpha}{\beta})$	$(\gcd(2\beta, \alpha), \gcd(2\alpha, \beta))$
γ_2	ADAADA	$-\alpha - \beta$	(0, 0)	(lpha,eta)
γ_3	ADAADA	$-\alpha - \beta$	(0, 0)	(lpha,eta)
γ_5	ADCDA	$-\alpha$	$\left(-2\frac{\beta}{\alpha}, -2\frac{\alpha}{\beta}-2\right)$	$(\gcd(2\beta, \alpha), \gcd(2\alpha, \beta))$
γ_6	ABBCBBA	$-\alpha$	(-4, -2)	(lpha,eta)
γ_5'	ACA	$-\alpha$	$\left(-4 + \frac{X}{\beta}, -2 - \frac{X}{\beta}\right)$	$(\gcd(X, \alpha), \gcd(X, \beta))$

Theorem (slope conjecture)

Let K be a knot such that $\delta_K(n) = a(n)n^2 + b(n)n + d(n)$ and $\delta_K^*(n) = a^*(n)n^2 + b^*(n)n + d^*(n)$ are quadratic quasi-polynomial of period ≤ 2 with $b(1) \leq 0$ and $b^*(1) \geq 0$. If K satisfies the slope conjecture, then its twisted generalized Whitehead double also satisfies the slope conjecture.

Outline of proof

Let us find essential surfaces in $E(W_1^0(K))$ whose boundary slopes are these Jones slopes!

Realization of the Jones slopes arising from the maximum degree

Case $a_1 > 0$. Since K satisfies the slope conjecture, the Jones slope $4a_1$ is realized by a boundary slope of an essential surface $S_K \subset E(K)$.

Claim

 $\exists \text{ an essential orientable surface } F_{\gamma_1} \text{ in } V - \operatorname{int} N(k_2) \\ \text{s.t. each component of } F_{\gamma_1} \cap \partial V \text{ has slope } 4a_1, \\ \text{ each component of } F_{\gamma_1} \cap \partial N(k_2) \text{ has } 16a_1 \\ \end{cases}$

Proof Let us take an essential surface F_{γ_1} in $S^3 - \operatorname{int} N(k_1 \cup k_2) = V - \operatorname{int} N(k_2)$. Then it has a pair of boundary slopes $(2\frac{\beta}{\alpha}, 2\frac{\alpha}{\beta})$ on k_1, k_2 . Then F_{γ_1} has boundary slopes $\frac{2\beta}{\alpha}$ on $\partial N(k_1)$ and $\frac{2\alpha}{\beta}$ on $\partial N(k_2)$. Using the preferred meridian-longitude (μ_V, λ_V) instead of (μ_1, λ_1) , $F_{\gamma_1} \cap \partial V$ has slope $\frac{\alpha}{2\beta}$. Choose α, β so that $\frac{\alpha}{2\beta} = 4a_1 > 0$, i.e. $\frac{\alpha}{\beta} = 8a_1 > 0$. Then $F_{\gamma_1} \subset V - \operatorname{int} N(k_2)$ has boundary slope $16a_1$ on $\partial N(k_2)$ and $4a_1$ on ∂V .

Realization of the Jones slopes arising from the maximum degree

Proof of Theorem for the case $a_1 > 0$

 \exists an essential surface S in $E(W_1^0(K))$ whose boundary slope is $16a_1$.

Let us take the image $f(F_{\gamma_1})$ in $X = f(V - \operatorname{int} N(k_2))$, and denote it by S_1^0 . Write $T_K = \partial E(K) = f(\partial V)$ and $T_W = \partial N(W_1^0(K)) = f(\partial N(k_2))$. By construction S_1^0 is essential in $f(V - \operatorname{int} N(k_2))$ and each component of $S_1^0 \cap T_K$ has slope $4a_1$ and each component of $S_1^0 \cap T_W$ has slope $16a_1$.

To build a required essential surface $S \subset E(W_1^0(K))$ we take m parallel copies mS_1^0 of the essential surface S_1^0 and n parallel copies nS_K of the essential surface S_K , and then glue them along their boundaries to obtain a connected surface $S = mS_1^0 \cup nS_K$ in $E(W_1^0(K))$.

Theorem (strong slope conjecture)

Let K be a knot such that $\delta_K(n) = a(n)n^2 + b(n)n + d(n)$ and $\delta_K^*(n) = a^*(n)n^2 + b^*(n)n + d^*(n)$ are quadratic quasi-polynomial of period ≤ 2 with $b(1) \leq 0$ and $b^*(1) \geq 0$. Suppose that K satisfies the strong slope conjecture. Then its twisted generalized Whitehead double of K also satisfies the strong slope conjecture.

Outline of proof

Write $\delta_{W^{\tau}_{\omega}(K)}(n) = a_W(n)n^2 + b_W(n)n + c_W(n)$ and $\delta^*_{W^{\tau}_{\omega}(K)}(n) = a^*_W(n)n^2 + b^*_W(n)n + c^*_W(n)$. It follows from Propositions that coefficients of $\delta_{W^{\tau}_{\omega}(K)}(n)$ and $\delta^*_{W^{\tau}_{\omega}(K)}(n)$ are constants and so we may write $a_W(n) = a_W, b_W(n) = b_W, c_W(n) = c_W, a^*_W(n) = a^*_W, b^*_W(n) = b^*_W, c^*_W(n) = c^*_W.$ Then we show that essential surfaces S (and S^*) in $E(W^{\tau}_{\omega}(K))$ given in the proof of Theorem(slope conjecture) satisfy the condition of the strong slope conjecture:

$$S$$
 has boundary slope $p/q = 4a_W$, $\frac{\chi(S)}{|\partial S|q} = 2b_W$
 S^* has boundary slope $p^*/q^* = 4a_W^*$, $-\frac{\chi(S)}{|\partial S|q^*} = 2b_W^*$

Jones surfaces arising from the maximum degree.

Case $a_1 > 0$ Write $a_1 = r/s$ where r and s are coprime integers and s > 0. Then, as a ratio of coprime integers, the denominator of $4a_1$ is s/gcd(4, s). Since K satisfies the Strong Slope Conjecture, there is a properly embedded essential surface S_K in the exterior of K whose boundary slope is $4a_1$ and

$$\frac{\chi(S_K)}{|\partial S_K| \cdot \frac{s}{\gcd(4,s)}} = 2b_1.$$

When addressing the Slope Conjecture for $W_1^0(K)$ in this case, we constructed a properly embedded essential surface $S = mS_K \cup nS_1^0$ in the exterior of $W_1^0(K)$ by joining mcopies of S_K in E(K) to n copies of the surface S_1^0 in $V - \operatorname{int} N(k_2)$. This requires that

$$m|\partial S_K| = n|\partial S_1^0 \cap T_K|.$$

The surface S_1^0 is identified with a surface of type F_{γ_1} in the exterior of the [2, 2, -2] two-bridge link where $\frac{\alpha}{\beta} = 8a_1 = \frac{8r}{s} > 0$ so that S_1^0 has boundary slope $4a_1$ on ∂V . We choose $\beta = 2s$, $\alpha = 16r$ so that F_{γ_1} is orientable. we calculate the following:

•
$$\chi(S_1^0) = -\alpha - \beta = -2(8r+s)$$
,

• slope of
$$\partial S_1^0$$
 on T_W is $2\frac{\alpha}{\beta} = 2(\frac{8r}{s}) = \frac{16r}{s}$,

- $|\partial S_1^0 \cap T_K| = \gcd(2\beta, \alpha) = \gcd(4s, 16r) = 4 \gcd(4, s),$
- $|\partial S_1^0 \cap T_W| = \gcd(2\alpha, \beta) = \gcd(32r, 2s) = 2\gcd(16, s).$

Jones surfaces arising from the maximum degree.

•
$$\chi(S_1^0) = -\alpha - \beta = -2(8r+s)$$
,

• slope of ∂S_1^0 on T_W is $2\frac{\alpha}{\beta} = 2(\frac{8r}{s}) = \frac{16r}{s}$,

•
$$|\partial S_1^0 \cap T_K| = \gcd(2\beta, \alpha) = \gcd(4s, 16r) = 4 \gcd(4, s),$$

•
$$|\partial S_1^0 \cap T_W| = \gcd(2\alpha, \beta) = \gcd(32r, 2s) = 2\gcd(16, s).$$

The boundary of S consists of n copies of the boundary of S_1^0 on T_W , so we have

•
$$|\partial S| = n |\partial S_1^0 \cap T_W| = 2n \operatorname{gcd}(16, s).$$

Moreover, the boundary slope of S is the slope of ∂S_1^0 on T_W , and so this has denominator $\frac{s}{\gcd(16r,s)} = \frac{s}{\gcd(16,s)}$.

$$\frac{\chi(S)}{|\partial S| \cdot \frac{s}{\gcd(16,s)}} = \frac{m\chi(S_K) + n\chi(S_1^0)}{2n \gcd(16,s) \cdot \frac{s}{\gcd(16,s)}}$$
$$= \frac{2b_1 m |\partial S_K| \cdot \frac{s}{\gcd(4,s)} - 2n(8r+s)}{2ns}$$
$$= \frac{8b_1 n \gcd(4,s) \cdot \frac{s}{\gcd(4,s)} - 2n(8r+s)}{2ns}$$
$$= \frac{8b_1 ns - 2n(8r+s)}{2ns}$$
$$= 4b_1 - 8r/s - 1 = 2(-4a_1 + 2b_1 - \frac{1}{2}) = 2b_W$$

Introduction

- 2 Colored Jones polynomial of $W^{\tau}_{\omega}(K)$
- **3** Outline of a proof of Main theorem
- Algorithm

Algorithm

The diagram D_1 is the common Farey diagram. The diagram D_0 is obtained by switching the diagonal in each of the quadrilaterals. The diagram D_t is obtained by replacing these diagonals with inscribed quadrilaterals.

Floyd-Hatcher

For a two bridge link $\mathcal{L}_{p/q}$ (where q is even), a properly embedded essential surface in the exterior of the link is carried by one of finitely many branched surfaces associated to "minimal edge paths" in D_t from 1/0 to p/q.

A *minimal edge path* in D_t is a consecutive sequence of edges of D_t such that the boundary of any face of D_t contains at most one edge of the path.

Toshie Takata

Example the Whitehead link $\mathcal{L}_{3/8}$

The four basic weighted branched surfaces

Data for essential surfaces in the exterior of $\mathcal{L}_{p/q}$

- the number of saddles gives the Euler characteristic χ .
- non-negative integral weights α and β indicate the algebraic (and geometric) intersection numbers of the surface with the meridians of the two components of $\mathcal{L}_{p/q}$. \Rightarrow boundary slopes (Hoste-Shanahan)
- by a calculation in the homology of a torus, the gcd of the algebraic intersection numbers of the boundary of a surface with the meridian and longitudinal framing of a component of L_{p/q} produces the number of boundary components of the surface meeting that component of L_{p/q}.

HS path	branch pattern	χ	boundary slopes $\beta > 0$	number of boundary components $\beta > 0$
γ_1	ADAADA	$-\alpha - \beta$	$\left(2\frac{\beta}{\alpha}, 2\frac{\alpha}{\beta}\right)$	$(\gcd(2\beta,\alpha),\gcd(2\alpha,\beta))$
γ_2	ADAADA	$-\alpha - \beta$	(0,0)	(lpha,eta)
γ_3	ADAADA	$-\alpha - \beta$	(0, 0)	(lpha,eta)
γ_5	ADCDA	$-\alpha$	$\left(-2\frac{\beta}{\alpha}, -2\frac{\alpha}{\beta}-2\right)$	$(\gcd(2\beta, \alpha), \gcd(2\alpha, \beta))$
γ_6	ABBCBBA	$-\alpha$	(-4, -2)	(lpha,eta)
γ_5'	ACA	$-\alpha$	$\left(-4 + \frac{X}{\beta}, -2 - \frac{X}{\beta}\right)$	$(\gcd(X, \alpha), \gcd(X, \beta))$

Data for essential surfaces in the exterior of the whitehead link $\mathcal{L}_{3/8}$