1 Introduction

The goal of this talk is

- Large N duality (Conifold transition): the relation between quantum knot invariants and enumerative invariants. One way to understand modularity
- Refinement of LMOV and Positivity Conjecture of refined Chern-Simons invariants

1.1 Notation

- $\mathbb{K}_{0}=\mathbb{C}\left[q^{ \pm \frac{1}{2}}, t^{ \pm \frac{1}{2}}\right]$ denotes the ring of Laurent polynomials
- $\mathbb{K}=\mathbb{C}\left(q^{\frac{1}{2}}, t^{\frac{1}{2}}\right)$ denotes the field of rational functions
- $\mathbb{K}\left[X_{1}, \ldots, X_{N}\right]^{S_{n}}$ denotes the ring of symmetric functions
- For $f \in \mathbb{K}_{0}\left[Y_{1}, \ldots, Y_{N}\right]^{\text {sym }}$, we define a Macdonald polynomial $P_{\lambda}(X)$ of GL_{N}-type with a dominant weight $\lambda \in P_{+}$by

$$
p(f) \cdot P_{\lambda}(X)=f\left(\mathfrak{t}^{\rho} \mathfrak{q}^{\lambda}\right) P_{\lambda}(X), \quad P_{\lambda}(X)=m_{\lambda}+\sum_{\mu<\lambda} c_{\lambda, \mu} m_{\mu}
$$

where m_{ν} is the sum of the elements in S_{N} orbit of X^{ν} and $<$ is the dominance partial order on the partitions.

- We denote the unreduced invariants by $\overline{\mathrm{rCS}}_{\lambda}\left(T_{m, n} ; a, q, t\right)$ and the reduced invariants by $\mathrm{rCS}_{\lambda}\left(T_{m, n} ; a, q, t\right)$ where they are related by

$$
\overline{\operatorname{rCS}}_{\lambda}\left(T_{m, n} ; a, q, t\right)=\overline{\mathrm{rCS}}_{\lambda}(\bigcirc ; a, q, t) \mathrm{rCS}_{\lambda}\left(T_{m, n} ; a, q, t\right) .
$$

- Assigning the Young diagram with h boxes of one row to the trivial representation $|0\rangle$, the irreducible representations $\wedge^{d} V$ of \mathfrak{S}_{h} are called hook representations since their Young tableau are of the form with $(h-d)$-boxes in the first row

2 Refined CS invariants

We follow the definition in [Che13].

2.1 Double affine Hecke algebra of $G L_{N}$

Topological interpretation. Let E be a 2-torus. Consider the N-fold product E^{N}, and let $\left(E^{N}\right)^{\mathrm{reg}}:=\left\{\left(x_{1}, \ldots, x_{N}\right) \in E^{N}: x_{i} \neq x_{j} \quad\right.$ if $\left.\quad i \neq j\right\}, C:=\left(E^{N}\right)^{\mathrm{reg}} / S_{N}$. The fundamental group $\pi_{1}(C)$ is known as the elliptic braid group or double affine braid group.

Lemma 2.1 We have $\pi_{1}(C)=\left\langle T_{1}^{ \pm}, \ldots, T_{N-1}^{ \pm}, X_{1}^{ \pm}, \ldots, X_{N}^{ \pm}, Y_{1}^{ \pm}, \ldots, Y_{N}^{ \pm}\right\rangle$with relations

$$
\begin{gathered}
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad T_{i} X_{i} T_{i}=X_{i+1}, \quad T_{i}{ }^{-1} Y_{i} T_{i}^{-1}=Y_{i+1} \\
{\left[T_{i}, T_{k}\right]=0, \quad\left[T_{i}, X_{k}\right]=0, \quad\left[T_{i}, Y_{k}\right]=0, \quad \text { for }|i-k|>1} \\
{\left[X_{j}, X_{k}\right]=0, \quad\left[Y_{j}, Y_{k}\right]=0,} \\
Y_{j} X_{1} \ldots X_{N}=X_{1} \ldots X_{N} Y_{j}, \quad X_{1}^{-1} Y_{2}=Y_{2} X_{1}{ }^{-1} T_{1}{ }^{-2}
\end{gathered}
$$

The generator X_{i} corresponds to the i-th point going around a loop in the horizontal direction on $E ; Y_{i}$ corresponds to the i-th point going around in the vertical direction on E; while T_{i} corresponds to the transposition of the i-th and $(i+1)$-th points.

One can form a twisted group algebra, which is a deformation of the group algebra $\pi_{1}(C)$

$$
Y_{j} X_{1} \ldots X_{N}=q^{\frac{1}{2}} X_{1} \ldots X_{N} Y_{j}
$$

arising from a central extension of $\pi_{1}(C)$ (so that the central element z becomes q in the twisted group algebra). The double affine Hecke algebra (=DAHA) of $G L_{n}$ is obtained by

$$
\ddot{\boldsymbol{H}}_{N}:=\mathbb{K}^{\mathrm{tw}} \pi_{c}(C) /\left(\left(T_{i}+t^{-\frac{1}{2}}\right)\left(T_{i}-t^{\frac{1}{2}}\right)\right)_{i=1, \ldots, N-1} .
$$

In fact, it contains two copies of the affine Hecke algebras generated by $\left(T_{i}, X_{j}\right)$ and $\left(T_{i}, Y_{j}\right)$.

2.1.1 Modular transformation

There is an action of $\operatorname{PSL}(2, \mathbb{Z})=\left\langle\tau_{ \pm}: \tau_{+} \tau_{-}^{-1} \tau_{+}=\tau_{-}^{-1} \tau_{+} \tau_{-}^{-1}\right\rangle$ generated by

$$
\tau_{+}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \tau_{-}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

on $\ddot{\boldsymbol{H}}_{N}$, which can be explicitly written as

$$
\tau_{-}:\left\{\begin{array}{l}
X_{i} \mapsto X_{i} Y_{i}\left(T_{i-1} \cdots T_{i}\right)\left(T_{i} \cdots T_{i-1}\right) \\
T_{i} \mapsto T_{i} \\
Y_{i} \mapsto Y_{i}
\end{array} \quad \tau_{+}:\left\{\begin{array}{l}
X_{i} \mapsto X_{i} \\
T_{i} \mapsto T_{i} \\
Y_{i} \mapsto Y_{i} X_{i}\left(T_{i-1}^{-1} \cdots T_{i}^{-1}\right)\left(T_{i}^{-1} \cdots T_{i-1}^{-1}\right)
\end{array}\right.\right.
$$

2.1.2 PBW theorem and evaluation coinvaraint

For an element $w \in W=S_{N}$ of the Weyl group and its representation $w=s_{i_{1}} \cdots s_{i_{j}}$ by transpositions $\left(s_{i}=(i, i+1)\right)$, we define $T_{w}:=T_{i_{1}} \cdots T_{i_{j}}$. From the definition of $\ddot{\boldsymbol{H}}_{N}$, this is independent of a representation w. In addition, for a set of non-negative integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, we define $X_{\lambda}:=\prod_{i=1}^{N} X_{i}^{\lambda_{i}}$ and $Y_{\lambda}:=\prod_{i=1}^{N} Y_{i}^{\lambda_{i}}$.
Theorem 2.2 (PBW Theorem) Any $h \in \ddot{\boldsymbol{H}}_{N}$ can be written uniquely in the form

$$
h=\sum_{\lambda, w, \mu} c_{\lambda, w, \mu} X_{\lambda} T_{w} Y_{\mu},
$$

for $c_{\lambda, w, \mu} \in \mathbb{K}_{0}$.
Writing an element $h \in \ddot{\boldsymbol{H}}_{N}$ in the form of $h=\sum_{\lambda, w, \mu} c_{\lambda, w, \mu} X_{\lambda} T_{w} Y_{\mu}$ via the PBW Theorem 2.2, we define a map $\{\cdot\}_{\text {ev }}: \ddot{\boldsymbol{H}}_{N} \rightarrow \mathbb{K}_{0}$ called the evaluation coinvariant by substituting

$$
\begin{equation*}
X_{i} \mapsto t^{-\frac{N+1-2 i}{2}}, \quad T_{i} \mapsto t^{\frac{1}{2}}, \quad Y_{i} \mapsto t^{\frac{N+1-2 i}{2}} . \tag{2.1}
\end{equation*}
$$

2.1.3 Spherical subalgebra

Using a central idempotent in the group algebra of the Weyl group W

$$
\mathbf{e}:=\sum_{w \in W} \frac{t_{w} T_{w}}{t_{w}^{2}}
$$

we can define the spherical DAHA $S \ddot{\boldsymbol{H}}_{N}:=\mathbf{e} \ddot{\boldsymbol{H}}_{N} \mathbf{e} \subset \ddot{\boldsymbol{H}}_{N}$. Note that given a reduced decomposition $w=s_{i_{1}} \cdots s_{i_{k}}$ of an element $w \in W$, we define $t_{w}:=t^{\frac{k}{2}}$. For instance, the idempotents for $N=2$ and $N=3$ are expressed by, respectively,

$$
\mathbf{e}=\frac{t^{\frac{1}{2}} T_{1}+1}{t+1}, \quad \mathbf{e}=\frac{1+t^{\frac{1}{2}} T_{1}+t^{\frac{1}{2}} T_{2}+t T_{1} T_{2}+t T_{2} T_{1}+t^{\frac{3}{2}} T_{1} T_{2} T_{1}}{1+2 t+2 t^{2}+t^{3}}
$$

2.2 Refined Chern-Simons invariants

Now let us define DAHA-Jones polynomials. Indeed, Macdonald polynomials $P_{\lambda}(X) \in$ $\mathbb{K}\left[X_{1}, \ldots, X_{N}\right]^{S_{n}}$ is an element of the spherical DAHA $S \ddot{\boldsymbol{H}}_{N}$ (precisely speaking, up to the idempotent $\mathbf{e})$. Therefore, for the (m, n) torus knot, we choose an element $\gamma_{m, n} \in \operatorname{PSL}(2, \mathbb{Z})$

$$
\gamma_{m, n}=\binom{m *}{n *},
$$

such that reduced DAHA-Jones polynomial is defined by

$$
\overline{\operatorname{rCS}}_{s l(N), \lambda}\left(T_{m, n} ; q, t\right):=\left\{\gamma_{m, n}\left(P_{\lambda}\right)\right\}_{e v} .
$$

The specialization $t=q$ leads to λ-colored $s l(N)$ quantum invariants of the (m, n) torus knot. In addition, the existence of stabilization (DAHA-superpolynomials) $\mathrm{rCS}_{\lambda}\left(T_{m, n} ; a, q, t\right)$ has been proven:

Theorem 2.3 (Stabilization) [GN15] There exists a unique polynomial $\overline{r C S}{ }_{\lambda}\left(T_{m, n} ; a, q, t\right)$ such that:

$$
\overline{r C S}_{s l(N), \lambda}\left(T_{m, n} ; q, t\right)=\overline{r C S}_{\lambda}\left(T_{m, n} ; a=t^{N}, q, t\right) .
$$

The invariant is proven to be equivalent to refined Chern-Simons invariants formulated in [AS15], using

$$
S_{\lambda \mu}=S_{00} P_{\lambda}\left(t^{\rho} q^{\mu}\right) P_{\mu}\left(t^{\rho}\right), \quad T_{\lambda \mu}=\delta_{\lambda \mu} q^{\frac{1}{2} \sum_{i} \lambda_{i}\left(\lambda_{i}-1\right)} t^{\sum_{i} \lambda_{i}(i-1)} .
$$

2.3 Properties

When colors are specified by rectangular Young diagrams, therefined Chern-Simons invariants with the change of variables

$$
\begin{equation*}
a=-\mathbf{a}^{2}, \quad q=\mathbf{q}^{2} \mathbf{t}^{2}, \quad t=\mathbf{q}^{2}, \tag{2.2}
\end{equation*}
$$

conjecturally coincide with Poincaré polynomial polynomials of colored HOMFLYPT homology of the corresponding torus knot. For non-rectangular Young diagrams, it is known that the DAHA-superpolynomials include both positive and negative signs after the change of the variables (2.2).

It turns out that refined Chern-Simons invariants have surprisingly rich properties. Especially, it is proven in [Che16] that the reduced invariants the following properties:

- mirror/transposition symmetry

$$
\begin{equation*}
\operatorname{rCS}_{\lambda^{T}}\left(T_{m, n} ; a, q, t\right)=\operatorname{rCS}_{\lambda}\left(T_{m, n} ; a, t^{-1}, q^{-1}\right) . \tag{2.3}
\end{equation*}
$$

- refined exponential growth property

$$
\begin{equation*}
\operatorname{rCS}_{\sum_{i=1}^{\ell} \lambda_{i} \omega_{i}}\left(T_{m, n} ; a, q=1, t\right)=\prod_{i=1}^{\ell}\left[\operatorname{rCS}_{\omega_{i}}\left(T_{m, n} ; a, q=1, t\right)\right]^{\lambda_{i}} \tag{2.4}
\end{equation*}
$$

where ω_{i} are the fundamental weights of $\mathfrak{s l}(N)$.
For instance, (r)-colored refined CS invariants of the trefoil admit cyclotomic expansions

$$
\operatorname{rCS}_{(r)}\left(T_{2,3} ; a, q, t\right):=a^{r} q^{-\frac{r}{2}} t^{-\frac{r}{2}} \sum_{k \geq 0} q^{k r} t^{-k}\binom{r}{k}_{q}\left(\frac{a}{t} ; q\right)_{k}
$$

Question: How are they related to modular forms? (Tails, refinement of modular forms, etc)

3 Large N duality

Conjecture 3.1

$$
\begin{align*}
& \sum_{\lambda} \overline{r C S}_{\lambda}\left(T_{m, n} ; a, q, t\right) g_{\lambda}(q, t) P_{\lambda}(x ; q, t)=\exp \left(\sum_{d=1}^{\infty} \sum_{\mu} \frac{1}{d} \frac{f_{\mu}^{q}\left(T_{m, n} ; a^{d}, q^{d}, t^{d}\right)}{q^{\frac{d}{2}}-q^{-\frac{d}{2}}} s_{\mu}\left(x^{d}\right)\right), \tag{3.1}\\
& \sum_{\lambda} \overline{r C S}_{\lambda}\left(T_{m, n} ; a, q, t\right) P_{\lambda^{T}}(-x ; t, q)=\exp \left(\sum_{d=1}^{\infty} \sum_{\mu} \frac{1}{d} \frac{f_{\mu}^{\bar{t}}\left(T_{m, n} ; a^{d}, q^{d}, t^{d}\right)}{t^{-\frac{d}{2}}-t^{\frac{d}{2}}} s_{\mu}\left(x^{d}\right)\right) . \tag{3.2}
\end{align*}
$$

The refined reformulated invariants $f_{\mu}^{q}\left(T_{m, n}\right)$ and $f_{\mu}^{\bar{\epsilon}}\left(T_{m, n}\right)$, expressed in terms of refined Chern-Simons invariants of a torus knot $T_{m, n}$ via the geometric transition (3.1) and (3.2) can be written

$$
\begin{align*}
f_{\mu}^{q}\left(T_{m, n} ; a, q, t\right) & =\sum_{\rho} M_{\mu \rho}(t) \widehat{f}_{\rho}\left(T_{m, n} ; a, q, t\right) \\
f_{\mu}^{\bar{t}}\left(T_{m, n} ; a, q, t\right) & =\sum_{\rho} M_{\mu \rho}\left(q^{-1}\right) \widehat{f_{\rho}}\left(T_{m, n} ; a, q, t\right) \tag{3.3}
\end{align*}
$$

where, upon the a-grading shift by $\pm \frac{1}{2}, \widehat{f}_{\rho}\left(T_{m, n}\right)$ takes the form

$$
\begin{equation*}
\widehat{f}_{\rho}\left(T_{m, n} ; a, q, t\right)=\sum_{\text {charges }}(-1)^{2 J_{r}} \widehat{N}_{\rho, g, \beta, J_{r}}\left(T_{m, n}\right)\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)^{g}\left(t^{-\frac{1}{2}}-t^{\frac{1}{2}}\right)^{g}\left(\frac{q}{t}\right)^{J_{r}-\frac{\beta}{2}} a^{\beta} \tag{3.4}
\end{equation*}
$$

with non-negative integers $\widehat{N}_{\rho, g, \beta, J_{r}}\left(T_{m, n}\right) \in \mathbb{Z}_{\geq 0}$. Note that we define an invertible symmetric matrix

$$
M_{\mu \rho}(t):=\sum_{\sigma} C_{\mu \sigma \rho} B_{\sigma}(t),
$$

where the Clebsch-Gordon coefficients $C_{\mu \sigma \rho}$ of the permutation group \mathfrak{S}_{h} are

$$
\begin{equation*}
C_{\mu \sigma \rho}=\sum_{\vec{k}} \frac{|C(\vec{k})|}{k!} \chi_{\mu}(C(\vec{k})) \chi_{\sigma}(C(\vec{k})) \chi_{\rho}(C(\vec{k})), \tag{3.5}
\end{equation*}
$$

and physics tells us

$$
B_{\sigma}(t)=\left\{\begin{array}{ll}
(-t)^{d} t^{-\frac{|\sigma|-1}{2}} & \sigma: \text { hook rep for } \wedge^{d} V \\
0 & \sigma: \text { otherwise }
\end{array} .\right.
$$

Furthermore, for ρ, g, β fixed, the $2 J_{r}$ charges of non-zero (hence positive) integers $\widehat{N}_{\rho, g, \beta, J_{r}}\left(T_{m, n}\right)$ are either all even or all odd so that no cancellation occurs in the unrefined limit and therefore the LMOV invariant is

$$
\begin{equation*}
\widehat{N}_{\rho, g, \beta}\left(T_{m, n}\right)= \pm \sum_{J_{r} \in \frac{1}{2} \mathbb{Z}} \widehat{N}_{\rho, g, \beta, J_{r}}\left(T_{m, n}\right) . \tag{3.6}
\end{equation*}
$$

The relation between (3.1) and (3.2) can be explained from the mirror/transposition symmetry (2.3).

Conjecture 3.2 Moreover, $\widehat{f}_{\rho}\left(T_{m, n} ; a, q, t\right)$ exhibit the other positivity in the following expansion

$$
\widehat{f}_{\rho}\left(T_{m, n} ; a, q, t\right)=\sum_{\text {charges }} \widehat{N}_{\rho, J_{1}, J_{2}, \beta}^{P T}\left(T_{m, n}\right) q^{J_{1}} t^{J_{2}}(-a)^{\beta}
$$

where $\widehat{N}_{\rho, J_{1}, J_{2}, \beta}^{P T}\left(T_{m, n}\right)$ are non-negative integers. These can be regarded as open analogues of refined Pandharipande-Thomas invariants.

3.0.1 Remark

The BPS states that contribute to the refined index are fermion zero modes on an M2-brane wrapped on a holomorphic curve $\Sigma_{g, h} \subset X$ whose boundary is on L. The fermion zero modes on an M2-brane can be associated to cohomology groups of the moduli space

where the moduli space $\mathcal{M}_{g, h, \beta}$ parametrizes deformations of $\Sigma_{g, h} \subset X$ that preserve a half of supersymmetry. Since the moduli spaces $\mathcal{M}_{g, h, \beta}$ are in general singular, there has yet to be a definition. Although the PT/GV invariants (closed version) are related to modular forms, the relation of its open analogues discussed here to modular forms has not understood at al.

4 Miscellaneous

Other relations of DAHA

For each $l \geq 2$ we put $\alpha_{l}=T_{l-1}^{-1} \cdots T_{2}^{-1} T_{1}^{-2} T_{2} \cdots T_{l-1}$. The following relations hold

$$
X_{l}^{-1} Y_{1} X_{l}=\alpha_{l} Y_{1},
$$

$$
\begin{gathered}
Y_{l} X_{1}=X_{1} Y_{l}+\left(t^{-\frac{1}{2}}-t^{\frac{1}{2}}\right) T_{l-1}^{-1} \cdots T_{2}^{-1} T_{1}^{-1} T_{2}^{-1} \cdots T_{l-1}^{-1} Y_{1} X_{1}, \\
q^{\frac{1}{2}} X_{1} Y_{1}=T_{1}^{-1} \cdots T_{n-2}^{-1} T_{n-1}^{-2} T_{n-2}^{-1} \cdots T_{1}^{-1} Y_{1} X_{1} . \\
\alpha_{2} \cdots \alpha_{l}=T_{1}^{-1} \cdots T_{l-2}^{-1} T_{l-1}^{-2} T_{l-2}^{-1} \cdots T_{1}^{-1},
\end{gathered}
$$

For $n>j \geq i \geq 1$, we have

$$
\begin{gathered}
Y_{i+1}^{-1} X_{i} Y_{i+1} X_{i}^{-1}=T_{i}^{2} \\
Y_{j+1}^{-1} X_{i} Y_{j+1} X_{i}^{-1}=T_{j} \cdots T_{i+1} T_{i}^{2} T_{i+1}^{-1} \cdots T_{i}^{-1} \\
X_{j+1}^{-1} Y_{i} X_{j+1} Y_{i}^{-1}=T_{j} \cdots T_{i+1} T_{i}^{-2} T_{i+1}^{-1} \cdots T_{j}^{-1}
\end{gathered}
$$

Macdonald functions

The Macdonald functions $P_{\lambda}(x ; q, t)$ are uniquely defined by orthogonality and normalization conditions:

$$
\begin{array}{ll}
\left\langle P_{\lambda}, P_{\mu}\right\rangle_{q, t}=0, & \text { if } \lambda \neq \mu, \\
P_{\lambda}(x ; q, t)=m_{\lambda}(x)+\sum_{\mu<\lambda} u_{\lambda \mu}(q, t) m_{\mu}(x), & u_{\lambda \mu}(q, t) \in \mathbb{Q}(q, t),
\end{array}
$$

where the inner product is defined by

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{q, t}=\delta_{\lambda \mu} z_{\lambda} \prod_{i \geq 1} \frac{1-q^{\lambda_{i}}}{1-t^{\lambda_{i}}}, \quad z_{\lambda}=\prod_{i \geq 1} i^{m_{i}} m_{i}!
$$

At the $q=t$ specialization, the Macdonald functions reduce to the Schur functions. From the definition one can show

$$
\frac{(q / t)^{|\lambda|}}{g_{\lambda}(q, t)}:=\left\langle P_{\lambda}, P_{\lambda}\right\rangle_{q, t}=\prod_{s \in \lambda} \frac{1-q^{a(s)+1} t^{l(s)}}{1-q^{a(s)} t^{l(s)+1}},
$$

Explicit formulas of refined reformulated invariants

$$
\begin{aligned}
& \frac{f_{\square}^{q}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}=\overline{\mathrm{rCS}}_{\square}, \\
& \frac{t^{\frac{1}{2}}}{q^{\frac{1}{2}}} \frac{f_{\square}^{q}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}=\frac{q t-1}{q^{2}-1} \overline{\mathrm{rCS}}_{\square}-\frac{t-1}{2(q-1)}\left(\overline{\mathrm{rCS}}_{\square}\right)^{2}-\frac{t+1}{2(q+1)} \overline{\mathrm{rCS}}_{\square}^{(2)}, \\
& \frac{t^{\frac{1}{2}}}{q^{\frac{1}{2}}} \frac{f_{\boxminus}^{q}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}=\frac{t-q}{q^{2}-1} \overline{\mathrm{rCS}}_{\square}+\frac{t^{2}-1}{q t-1} \overline{\mathrm{rCS}}_{\boxminus}-\frac{t-1}{2(q-1)}\left(\overline{\left.\mathrm{rCS}_{\square}\right)^{2}+\frac{t+1}{2(q+1)} \overline{\mathrm{rCS}}_{\square}^{(2)}, ~}\right. \\
& \frac{f_{\square}^{\bar{t}}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}=\overline{\mathrm{rCS}_{\square}}, \\
& \frac{-f_{\square}^{\bar{t}}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}=\overline{\mathrm{rCS}}_{\mathrm{B}}+\frac{1}{2} \overline{\mathrm{rCS}}_{\square}^{(2)}-\frac{1}{2}\left(\overline{\mathrm{rCS}}_{\square}\right)^{2}, \\
& \frac{-f_{\boxminus}^{\bar{t}}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}=\overline{\mathrm{rCS}}_{\square}+\frac{q-t}{q t-1} \overline{\mathrm{rCS}}_{\boxminus}-\frac{1}{2} \overline{\operatorname{rCS}}_{\square}^{2}-\frac{1}{2} \overline{\mathrm{rCS}}_{\square}^{(2)}
\end{aligned}
$$

References

[AS15] M. Aganagic and S. Shakirov. Knot Homology and Refined Chern-Simons Index. Commun. Math. Phys., 333(1):187-228, 2015, arXiv:1105.5117.
[Che13] I. Cherednik. Jones polynomials of torus knots via DAHA. Int.Math.Res.Not., 23:5366-5425, 2013, arXiv:1111.6195.
[Che16] I. Cherednik. DAHA-Jones polynomials of torus knots. Selecta Mathematica, 22(2):1013-1053, 2016, arXiv:1406. 3959.
[GN15] E. Gorsky and A. Negut. Refined knot invariants and Hilbert schemes. J. Math. Pure. Appl., 104:403-435, 2015, arXiv:1304.3328.

