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This talk

Part I: Intro: Rational and Irrational Vertex Algebras
Part II: W -algebras and their characters
Part III: Modularity via regularization
Part IV: Modularity via QMFs

Primarily based on my collaborations with: K. Bringmann
(Cologne), J. Kaszian (Cologne), T. Creutzig (Alberta).
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Vertex algebras

Vertex operator algebras (or 2-dimensional conformal field theory)
have been useful in proving concrete problems in mathematics and
physics.
(a) Finite groups.
(b) Representation theory  new algebraic structures and
combinatorics.
(c) Modular forms.
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Vertex algebras and quantum invariants

But vertex algebra haven’t been used (directly) for computation of
quantum invariants of knots/links.
It is very difficult to compute anything within a vertex tensor
category (e.g. braiding).
There are faster cars on the road (e.g. Quantum Groups).
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Vertex algebras

BUT vertex algebras have an advantage compared to quantum
groups:
Characters of vertex algebra modules are (naturally) functions in
the upper half-plane  action of SL(2,Z ).

On the quantum group side it is highly nontrivial to even define an
action on the center of the quantum group (Lyubashenko, etc.).
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My talk

In my talk I’ll present (old and new) ideas pertaining to characters
of irrational vertex algebras.
We will see that certain q-series appearing in these irrational
theories seem to be related to quantum knot invariants. Anything
deeper going on?
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A ����man’s module’s character is his fate.

Vertex algebras and modules are always infinite-dimensional,
graded with f.d. graded subspaces, satisfy certain axioms.
Therefore one can associate to a V -module M its character (the
main protagonist of my talk):

This function is defined as

chM(τ) = trMqL(0)−c/24 = qh−c/24
∞∑
n=0

dim(Mn)qn

This is often a nice (e.g. modular) function.

Learn as much as we can about V and M just by studying
ch[M](τ).
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Rational Vertex Algebras: key results

(Zhu) Modular invariance of characters holds. In particular,

chMi
(−1

τ
) =

n−1∑
j=0

Si ,jchMj
(τ),

chMi
(τ + 1) = Ti ,ichMi

(τ),

 S ,T -matrices and modular invariance.

The (tensor) category of modules is semi-simple with finitely
many irreducibles Mi , 0 ≤ i ≤ n − 1.

Mi �Mj = ⊕n−1
k=0N

k
ijMk .

 ”fusion algebra”:

xi · xj =
∑
k

Nk
i ,jxk

(Huang) V -Mod is a modular tensor category
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Verlinde formula

Corollary.[Huang] (Verlinde formula):

Nk
ij =

n−1∑
r=0

SirSjrSk∗r
S0r

.
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Quantum dimensions

qdimMi
=

S0,i

S0,0

Generalized quantum dimensions:

qdimMi
(j) =

Sj ,i
Sj ,0

They define one-dimension representations of the Grothendieck (or
fusion) ring.

qdimMi
(j) · qdimMk

(j) =
∑
`

N`
i ,kqdimMl

(j)

This statement is essentially the Verlinde formula.
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Quantum and asymptotic dimensions

Under certain mild conditions there is a purely analytic formula for
quantum dimensions:

qdimM = lim
t→0+

chM(it)

chV (it)

quantum dimension = asymptotic dimension
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Asymptotic behavior of characters for rational vertex
algebras

Let F (t) = ch[M](it). Then (τ = it, t → 0+):

ea/tF (t) ∼ b + O(tN), ∀N ≥ 0



Rational/Irrational Vertex Algebras W -algebras and their characters Modularity via regularization Modularity via QMFs

Asymptotics

Proposition

For rational VOAs:

chM(it)

chV (it)
∼ qdimM + O(tN)

for every N ≥ 1.

The quantum dimension of M is in fact the full asymptotic
expansion of the quotient.



Rational/Irrational Vertex Algebras W -algebras and their characters Modularity via regularization Modularity via QMFs

Irrational VOAs

For C2-cofinite (or logarithmic) vertex algebra a similar picture
should emerge, at least when we look at the characters.
Miyamoto proved that characters of logarithmic VOAs are sums of
modular forms of non-negative weight.
Verlinde formula for logarithmic vertex algebras is still conjectural
(Creutzig-Gannon , Gainuditinov-Runkel).
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Modular invariance for irrational VOAs

Open Problem: to formulate modular invariance of characters.
Something like

ch[M]

(
−1

τ

)
=

∫
Ω
SM,νch[Mν ](τ)dν +

∑
j∈D

αM,jch[Mj ](τ),

Problem: the integral part is often divergent.
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Continuous Verlinde-type formula for characters

(Even harder) open problem: to formulate a continuous
Verlinde-type formula. Something like

Nk
i ,j =

∫
Ω

SiνSjνSk∗ν
S0ν

dν.

Problem: Badly divergent!
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Asymptotics for irrational VOAs

Problem:

chM(it)

chV (it)
∼ ??

can be arbitrarily bad/complicated. For example, we can have

chM(it)

chV (it)
∼ 1

t
+ O(1)

 growing term  qdimM =∞ (!)
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Asymptotics for irrational VOAs

Taming the VOA Zoo.

Conjecture

For every C1-cofinite module M, as t → 0+:

chM(it)

chV (it)
∼ a0 + a1t + · · ·+ ant

n + ....

In particular, the quantum dimension (= a0) is finite.
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Toy model irrational VOA

Heisenberg (or free boson) VOA:

H(0) = C[x−1, x−2, .....]

Irreducible modules:

ch[H(λ)](τ) = trH(λ)q
L(0)−1/24 =

qλ
2/2

η(τ)
=

eπiτλ
2

η(τ)
.

qdimH(λ) = lim
t→0+

qλ
2/2 = 1

This is consistent with

H(λ)�H(µ) = H(λ+ µ).

1 · 1 = 1
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Irrational theories

The category of C1-cofinite modules for a vertex algebra is closed
under a tensor product  (conjecture) braided tensor category.
The fusion algebra is no longer finite-dimensional so it is desirable
for quantum dimensions to be functions and not just numbers. For
instance, we can have many modules with qdimM = 1. Not
distinguishable!

Idea:
(a0, a1, ..., ) qdimε

M

defined on the space Irreps, parametrized ε ∈ Ω, such that

qdimε
Mi
· qdimε

Mj
=
∑
k

Nk
i ,j qdim

ε
Mk
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More complicated model: W -algebras

(1, p)-singlet vertex algebra (subalgebra of H(0)).
Atypical modules: M1,s :

ch[M1,s ](τ) =
Fs,p(τ)

η(τ)

Fs,p(τ) :=
∑
n∈Z

sgn(n)q
p
(
n+ s

2p

)2

=
∑
n≥0

q
p
(
n+ s

2p

)2

−
∑
n≥0

q
p
(
n+ 2p−s

2p

)2

is Rogers’ false theta function. There are additional
characters/modules ch[Mr ,s ], r 6= 1, obtained by adding a finite
q-series to Fs,p.

Problem: no good modular properties.
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Modular invariance for the singlet and irrational vertex
algebras

Two approaches:
(1.) (with Creutzig (2013)) Replace characters with ε-regularized
characters  modular invariance. Requires extra variables.

(2.) (with Bringmann (2014)) Extend the character to a QMF  
modular invariance for better behaved companions. No longer
holomorphic.

Two approaches are connected via resummation of asymptotic
expansion.
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One picture is worth a thousand words
Method 1.

Figure: Character
Figure: ”Decorated” character
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One picture is worth a thousand words
Method 2.

Figure: Character Figure: Quantum character
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Method 1: Regularized characters

Let ε ∈ C.

ch[Mε
r ,s ](τ) =

1

η(τ)

∑
n≥0

(
e

2πε√
2p

(2pn−s−pr+2p)
q

1
4p

(2pn−s−pr+2p)2

−e
2πε√

2p
(2pn+s−pr+2p)

q
1

4p
(2pn+s−pr+2p)2

)
.

This regularization is canonical! Categorified false theta function.
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Modular invariance for the singlet: ε-regularization

We expect a formula like:

ch[Mε]

(
−1

τ

)
=

∫
Ω
SM,νch[Mν

ε](τ)dν +
∑
j∈D

αM,jch[Mj
ε](τ) (1)
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Modularity

Theorem (Creutzig-M. 2013)

For ε /∈ iR,

ch[Mr ,s ]ε
(
−1

τ

)
=

1

η(τ)

∫
R
Sε(r ,s),µ+α0/2e

πiτµ2/2dµ+ X ε
r ,s(τ)

with

Sε(r ,s),µ+α0/2 = −e−2πε((r−1)α+/2+µ)eπi(r−1)α+µ
sin
(
πsα−(µ+ iε)

)
sin
(
πα+(µ+ iε)

)

and

X ε
r ,s(τ) =

(sgn(Re(ε)) + 1)

4η(τ)

∑
n∈Z

(−1)rneπi
s
p
nq

1
2

( n2

α2
+
−ε2)(

q
−iε n

α+−qiε
n
α+
)
.
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Resurgence

For Re(ε) < 0, essentially the same result appeared in
Gukov-Marino-Putrov (2016).
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Logarithmic open Hopf link invariants

(with Creutzig and Rupert) These regularized quantum dimensions
capture logarithmic open Hopf link invariants (after J. Murakami)
for the unrolled quantum of sl2 at 2p-th root of unity (computed
by Christian Blanchet, Francesco Costantino, Nathan Geer,
Bertrand Patureau-Mirand).
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False theta functions: q-series identities

q-series identities for false theta functions have been studied from
many standpoints: tails of (2, 2p)-links, representation theory,
Bailey pairs, etc.

Example (Ramanujan)

∑
n∈Z

sgn(n)q2n2+n = (q; q)∞
∑
n≥0

qn
2+n

(q; q)2
n

.

Dasbach, Garoufalidis, Garvan, Lovejoy, Folsom, Warnaar, Osburn,
Hajij, Yuasa, Bringmann-M., etc.
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Higher rank W -algebras and ”higher” false theta functions

There are ”higher rank” generalizations of the singlet vertex
algebra whose characters are (what I call) higher rank false theta
functions. Introduced around (2012) and studied by several people.
Let

(i) p ∈ N≥2

(ii) Q, ADE root lattice and L =
√
pQ.

(iii) µ ∈ (
√
pQ)0 and µ = λ+

√
pβ, β ∈ Q

(iv) λ = λ̂+ 1√
p λ̄.
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Characters of atypical W 0(p)Q-modules

ch[W (p, µ)Q ](τ) =
∑

α∈Q∩P+

dim

(
V
(
λ̂+ α

)
β+λ̂

)

·

∑
w∈W

(−1)`(w) q
1
2
||√pw(α+ρ+λ̂)+λ− 1√

p
ρ||2

η(τ)rank(Q)


Here V (γ) is the f.d. irreducible g-module of h.w. γ.
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The character of W 0(p)Q

Here µ = λ̂ = λ̄ = β = 0.

η(τ)rank(Q)ch[W (p)Q ](τ)

=
∑

α∈Q∩P+

dim(V (α)0)
∑
w∈W

(−1)`(w)q
1
2
||√pw(α+ρ)− 1√

p
ρ||2

For Q = A1 this recovers Rogers’ false theta function Fp−1,p.
Important: Multivariable character ch[W (p)Q ](z; τ) s.t.

ch[W (p)Q ](τ) = Const.Term.z{ch[W (p)Q ](z; τ)}
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ε-regularized W 0(p)Q characters

For ε ∈ Cn (space of parameters of Irreps of W ).

ch[W (p)Q ](τ) ch[W (p)εQ ](τ)
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Modular invariance

Theorem (Creutzig-M.)

For εi /∈ iR,

ch[W 0(p, µ)εQ ]

(
−1

τ

)
=

CQ

η(τ)n

∫
Rn

q
1
2 (w ,A−1w)e2πi(λ̂+µ,w+iε)num(−√pλ̄)(−w+iε

p )∏
α∈∆+

sin(α,w + iε)
dnw

+ lower ”degree” iterated integrals,

where lower terms are (i < n)-fold iterated integrals multiplied
with theta functions (wall-crossings). If Re(εi ) < 0 , there are no
lower degree terms.
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Modular invariance

Now we can study

qdimε
W 0(p,µ)Q

It is extremely complicated to compute this for all values of ε. We
did show that in a specific range this compute quantum dimensions
of the level p − h∨ ≥ 0 WZW model.
We expect that these are related to logarithmic open Hopf link
invariants of unrolled quantum group at 2p-th root of unity.
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Method 2: Quantum modular forms

Introduced by Zagier in his 2010 Clay lectures. Studied by many
people in the audience: Lawrence, Hikami, Folsom, Lovejoy,
Garoufalidis, Osburn, Zwegers.

First definition. We say that f : Q \ S → C (here S is an
appropriate subset of Q) is a quantum modular form of weight k
and multiplier ε for Γ ⊂ SL(2,Z) if for all γ ∈ Γ the functions
hγ : Q− (S ∪ γ−1(∞)) defined by

hγ(x) := f (x)− ε(γ)(cx + d)−k f (
ax + b

cx + d
)

satisfies a ”suitable” property of continuity or analyticity (with
respect to the real topology).
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Strong QMF

Definition. A strong qmf is a function f on H ∪H ∪Q
holomorphic in H and holomorphic or real analytic in H̄ such that:
1. (as before) hγ is ”sufficiently nice”.
2. Let f̃ := fH and f ∗ := fH̄. Then f̃ (τ) and f ∗(τ) ”agree” to
infinite order, that is : at every rational number d

c ∈ Q as t → 0+:

f̃ (
d

c
+

it

2π
) ∼

∑
n≥0

β(n)tn

f ∗(
d

c
− it

2π
) ∼

∑
n≥0

β(n)(−t)n
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Higher depth QMF

After Zagier-Zwegers’ higher depth mock modular forms.

Definition (Bringmann, Kaszian, M.)

A function f : Q → (Q ⊂ Q) is called a quantum modular form of
depth N ∈ N, weight k ∈ 1

2Z, multiplier χ, and quantum set Q for
Γ if for M =

(
a b
c d

)
∈ Γ

f (τ)− χ(M)−1(cτ + d)−k f (Mτ) ∈
∑
j

QN−1
κj

(Γ, χj)O(R),

where j runs through a finite set, κj ∈ 1
2Z, the χj are characters,

O(R) is the space of real-analytic functions on R ⊂ R which
contains an open subset of , Q1

k(Γ, χ) := Qk(Γ, χ), Q0
k(Γ, χ) := 1,

and QN
k (Γ, χ) denotes the space of quantum modular forms of

weight k , depth N, multiplier χ for Γ.

Similarly we define vector-valued higher depth QMF.
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Back to rank one: (1, p)-singlet algebra

Let us recall atypical characters ch[Mr ,s ](τ). They involve
(1 ≤ j ≤ p − 1) Fj ,p(τ) and η(τ) (which we ignore),

Fj ,p(τ) :=
∑
n∈Z

sgn(n)q
p
(
n+ j

2p

)2

=
∑
n≥0

q
p
(
n+ j

2p

)2

−
∑
n≥0

q
p
(
n+ 2p−j

2p

)2

Rogers’ false theta function.
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False theta series Fj ,p and quantum knots invariants

These q-series already appeared in the literature on quantum
knot/link invariants.
Hikami’s work (Kashaev’s invariants for torus link T (2, 2p), for q
2p-th root of unity).
For j = p − 1 this is the tail of the (2, 2p) torus knot
(Garoufalidis?).
Also studied (in some special cases) by Zagier and
Lawrence-Zagier.
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Quantum modularity of Fj ,p

Theorem (Hikami,..., Bringmann-M.)

Fj ,p(τ) and Ej ,p(τ) :=

∫ i∞

−τ̄

∂Θj ,p(z)√
−i(τ + z)

dz , τ ∈ H.

agree at all orders at all roots of unity (here ∂Θj ,p is a unary theta
function of weight 3/2).

We call Ej ,p(τ) the ”companion” of Fj ,p(τ).
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Vector valued quantum modularity

They combine into a vector-valued QMF:

Ej ,p (τ)− 1√
−iτ

√
2

p

p−1∑
k=1

sin

(
πkj

p

)
Ek,p

(
−1

τ

)
= i
√

2p · rfj,p(τ),

where, for f a holomorphic modular form of weight k ,

rfj,p(τ) :=

∫ i∞

0

∂Θj ,p(w)√
−i(w + τ))

dw . (2)
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From Eichler to Mordell with Zwegers

Proposition

∫ i∞

0

∂Θj ,p(z)√
−i(τ + z)

dz =
1√
2

∫
R

cot

(
πi

(
x − i

j

2p

))
e2πiτx2

dx .

Proposition

Ej ,p
(
−1

τ

)
1√
−2iτ

+

p−1∑
m=1

sin

(
πmj

p

)
︸ ︷︷ ︸

S−matrix

Em,p(τ)

= −i
p−1∑
m=1

sin

(
πmj

p

)∫
R

cot

(
πi

(
x − i

j

2p

))
︸ ︷︷ ︸

S−kernel

· e2πiτx2︸ ︷︷ ︸
generic characters

dx .
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Weight 3
2 quantum modular forms

Slightly different Eichler integrals and ”weight” 3/2 false thetas.
Hikami’s work on Kashaev’s invariants of (p, q)-torus knots (and in
Lawrence-Zagier).
Remarkably, these q-series are essentially characters of modules for
another family of vertex algebras called (p, q)-singlet vertex
algebras (Adamovic-M., Creutzig-M. Wood, Bringmann-M.).
In particular, for (2, 3)-torus knot (Kontsevich ”strange” function),
the relevant vertex algebra is highly degenerate and has central
charge 0.
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Back to characters of W -algebras W 0(p)Q

Motivated by the rank one case.

Conjecture

Fp,Q(q) =
∑

α∈Q∩P+

dim(V (α)0)
∑
w∈W

(−1)`(w)q
1
2
||√pw(α+ρ)− 1√

p
ρ||2

extends to a depth n = rank(Q) quantum modular form.
Moreover, it is a component of a vector-valued QMF (of depth n).

(with Bringmann and Kaszian) This is true for A2!
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Explicit formula for W 0(p)A2
characters

Let 1 ≤ s1, s2 ≤ p:

Fs1,s2 (q) :=∑
m1,m2≥1

m1≡m2 (mod 3)

min(m1,m2)q
p
3

(
(m1−

s1
p )2

+(m2−
s2
p )2

+(m1−
s1
p )(m2−

s2
p )

)

×
(

1− qm1s1 − qm2s2 + qm1s1+(m1+m2)s2 + qm2s2+(m1+m2)s1 − q(m1+m2)(s1+s2)
)
.

Remarkable double series!
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Quantum modularity for W 0(p)A2
characters

We first decompose

Fs1,s2(q) = F1(q) + F2(q)

into ”weight” one and ”weight” two components.
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Higher depth quantum modular forms

Theorem (Bringmann, Kaszian, M. 2018)

For every p ≥ 2, every 1 ≤ s1, s2 ≤ p, series F1 and F2 extend to
depth two quantum modular forms on Q of weight 1 and 2,
respectively.

We constructed explicit mock companions E1(τ) and E2(τ) (in the
upper half-plane).
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Companions of F1 and F2

Theorem (Bringmann, Kaszian, M. 2018)

(a) E1 is a sum of iterated Eichler integrals

If ,g (τ) :=

∫ i∞

−τ

∫ i∞

w1

f (w1)g(w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

where f and g have weight 3/2.
(b) E2 is a sum of iterated Eichler integrals

If̃ ,g (τ) :=

∫ i∞

−τ

∫ i∞

w1

f̃ (w1)g(w2)√
−i(w1 + τ)3

√
−i(w2 + τ)

dw2dw1

where f̃ has weight 1/2 and g weight 3/2.
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Higher depth vector-valued examples

For general p it gets messy but for p = 2, the relevant space is
2-dimensional: Vector-valued QMF of depth two (with Bringmann
and Kaszian):

∫ i∞

−τ

∫ i∞

w1

η(w1)3η(3w2)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1∫ i∞

−τ

∫ i∞

w1

η(w1)3η
(
w2
3

)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.
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Completion

Theorem (Bringmann, Kaszian, M. 2017-18)

In some cases, E1(τ) and E2(τ) can be completed to higher depth
harmonic Maass forms (after Zagier and Zwegers).

This result uses generalized ”double-error” integrals introduced by
Sergei Alexandrov, Sibasish Banerjee, Jan Manschot, Boris Pioline
(2016).



Rational/Irrational Vertex Algebras W -algebras and their characters Modularity via regularization Modularity via QMFs

More precise conjecture

Consider r -fold Eichler integral:

If1,...,fr :=

∫ i∞

−τ

∫ i∞

wr−1

· · ·
∫ i∞

w2

r∏
j=1

fj(wj)

(−i(wj + τ))2−kj
dw1 · · · dwr ,

where fj are of weight 1/2 or 3/2. Then

Conjecture

For every p ≥ 2, FQ,p(q) is a component of a quantum modular
form of depth rank(Q) whose companion in the upper half-plane is
a linear combination of If1,...,fr .
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Modular invariance: higher Mordell Integral

Error of quantum modularity for Fs1,s2(q).

Theorem (Bringmann, Kaszian, M.)

Component of the error term for E1 :∫ i∞

0

∫ i∞

w1

θ1 (α; w) + θ2 (α; w)√
−i (w1 + τ)

√
−i (w2 + τ)

dw2dw1

.
=

∫
R2

cot (πiw1 + πα1) cot (πiw2 + πα2) e2πiτ(3w2
1 +3w1w2+w2

2 )dw1dw2.

Similar formula for the E2 error term. This only applies to
non-integral α values!
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Future directions

1. Depth three is highly non-trivial. For sl4,
dim(V (m1ω1 + m2ω2 + m3ω3)0) is very messy!
2. Automorphic forms and higher depth.
3. Asymptotics properties of iterated Eichler integrals and values
of L-functions  multiple L-values and shuffle relations for iterated
integrals.
4. Cohomological interpretation (Manin’s work on iterated
integrals and non-abelian cohomology).
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Questions for the audience

(a) Is F1,1(q) the tail of the (2, 2p) torus knot colored by sl3
representations V (nρ), where V (ρ) is the adjoint representation?

(b) Can you write a q-hypergeometric representation for
Fs1,s2 (q)

(q;q)2
∞

?

(c) General false theta functions

Fp,Q,λ(it) = qa + ....

Fp,Q,λ(it) ∼ dim(V (λ))

p|∆+|
+ O(t)

Does this remind you of something?
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THANK YOU!
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