Some New q-Series Conjectures

Shashank Kanade
University of Denver
Based on joint works with:
Matthew C. Russell, Debajyoti Nandi

1. Preliminaries

Partitions

Partitions will be written most of the times in a weakly increasing order.

Partitions

Partitions will be written most of the times in a weakly increasing order. Example: $9=1+2+3+3$.

Partitions

Partitions will be written most of the times in a weakly increasing order.
Example: $9=1+2+3+3$.
Generating function:

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1} \frac{1}{1-q^{n}}
$$

Partitions

Partitions will be written most of the times in a weakly increasing order.
Example: $9=1+2+3+3$.
Generating function:

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1} \frac{1}{1-q^{n}}
$$

We will never bother with analytic convergence

Partitions

Partitions will be written most of the times in a weakly increasing order.
Example: $9=1+2+3+3$.
Generating function:

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1} \frac{1}{1-q^{n}}
$$

We will never bother with analytic convergence; everything is a purely formal power series identity.

Partitions

Partitions will be written most of the times in a weakly increasing order.
Example: $9=1+2+3+3$.
Generating function:

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1} \frac{1}{1-q^{n}}
$$

We will never bother with analytic convergence; everything is a purely formal power series identity.

Pochhamer symbols:

Partitions

Partitions will be written most of the times in a weakly increasing order.
Example: $9=1+2+3+3$.
Generating function:

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1} \frac{1}{1-q^{n}}
$$

We will never bother with analytic convergence; everything is a purely formal power series identity.

Pochhamer symbols:

$$
\begin{aligned}
(a ; q)_{j} & =(1-a)(1-a q) \ldots\left(1-a q^{j-1}\right) \\
(q ; q)_{j} & =(1-q)\left(1-q^{2}\right) \ldots\left(1-a q^{j}\right) \\
(a ; q)_{\infty} & =(1-a)(1-a q) \ldots \\
\left(a_{1}, a_{2}, a_{3}, \ldots ; q\right)_{t} & =\left(a_{1} ; q\right)_{t}\left(a_{2} ; q\right)_{t}\left(a_{3} ; q\right)_{t} \ldots
\end{aligned}
$$

Partitions

Partitions will be written most of the times in a weakly increasing order.
Example: $9=1+2+3+3$.
Generating function:

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1} \frac{1}{1-q^{n}}
$$

We will never bother with analytic convergence; everything is a purely formal power series identity.

Pochhamer symbols:

$$
\begin{aligned}
(a ; q)_{j} & =(1-a)(1-a q) \ldots\left(1-a q^{j-1}\right) \\
(q ; q)_{j} & =(1-q)\left(1-q^{2}\right) \ldots\left(1-a q^{j}\right) \\
(a ; q)_{\infty} & =(1-a)(1-a q) \ldots \\
\left(a_{1}, a_{2}, a_{3}, \ldots ; q\right)_{t} & =\left(a_{1} ; q\right)_{t}\left(a_{2} ; q\right)_{t}\left(a_{3} ; q\right)_{t} \ldots
\end{aligned}
$$

Rogers-Ramanujan identities

Discovered by:

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894)

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894) S. Ramanujan (1913)

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894) S. Ramanujan (1913) I. Schur (1917)

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1913)
I. Schur (1917)

RR 1

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1913)
I. Schur (1917)

RR 1

Partitions of n whose adjacent parts differ by at least 2

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1913)
I. Schur (1917)

RR 1

Partitions of n whose adjacent parts differ by at least 2 are equinumerous with

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1913)
I. Schur (1917)

RR 1

Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part $\equiv 1,4(\bmod 5)$

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1913)
I. Schur (1917)

RR 1

Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part $\equiv 1,4(\bmod 5)$

Example

$$
\begin{aligned}
9 & =9 \\
& =1+8 \\
& =2+7 \\
& =3+6 \\
& =1+3+5
\end{aligned}
$$

$$
\begin{aligned}
9 & =9 \\
& =1+1+1+6 \\
& =1+4+4 \\
& =1+1+1+1+1+4 \\
& =1+1+1+1+1+1+1+1+1
\end{aligned}
$$

Rogers-Ramanujan identities

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1913)
I. Schur (1917)

RR 1

Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part $\equiv 1,4(\bmod 5)$

Example

$$
\begin{aligned}
9 & =9 \\
& =1+8 \\
& =2+7 \\
& =3+6 \\
& =1+3+5
\end{aligned}
$$

\uparrow difference-2 partitions

$$
\begin{aligned}
9 & =9 \\
& =1+1+1+6 \\
& =1+4+4 \\
& =1+1+1+1+1+4 \\
& =1+1+1+1+1+1+1+1+1
\end{aligned}
$$

\uparrow partitions with $\equiv 1,4(\bmod 5)$

Generating functions

Generating functions:

$$
\sum_{n \geq 0} p_{\text {difference } 2}(n) q^{n}=\frac{1}{(1-q)\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{9}\right) \ldots}
$$

Generating functions

Generating functions:

$$
\begin{aligned}
& \sum_{n \geq 0} p_{\text {difference } 2}(n) q^{n}=\frac{1}{(1-q)\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{9}\right) \cdots} \\
& \begin{array}{c}
1+\frac{q^{1}}{(1-q)}+\frac{q^{4}}{(1-q)\left(1-q^{2}\right)}+\cdots+\frac{q^{n^{2}}}{(1-q) \cdots\left(1-q^{n}\right)}+\ldots \\
\\
=\frac{1}{(1-q)\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{9}\right) \ldots}
\end{array}
\end{aligned}
$$

Generating functions

Generating functions:

$$
\begin{aligned}
& \sum_{n \geq 0} p_{\text {difference } 2}(n) q^{n}=\frac{1}{(1-q)\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{9}\right) \cdots} \\
& \begin{array}{c}
1+\frac{q^{1}}{(1-q)}+\frac{q^{4}}{(1-q)\left(1-q^{2}\right)}+\cdots+\frac{q^{n^{2}}}{(1-q) \cdots\left(1-q^{n}\right)}+\ldots \\
\\
=\frac{1}{(1-q)\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{9}\right) \ldots}
\end{array}
\end{aligned}
$$

Generating functions

Generating functions:

Partition-theoretic sum-side

Sum-sides

$$
1+3+6+8
$$

Sum-sides

$$
\begin{aligned}
& 1+3+6+8 \\
& 10
\end{aligned}
$$

Sum-sides

Remove the
\sim 2-staircase \leadsto

Sum-sides

$1+3+6+8$

Remove the
-

Sum-sides

Sum-sides

RR partitions
of length 4

Sum-sides

Sum-sides

RR partitions
of length 4

Partitions
of length 4
$\frac{x^{4} \cdot q^{4}}{(q ; q)_{4}}$

Sum-sides

RR partitions
of length 4

$$
\Longleftarrow \text { Bijection } \Longrightarrow
$$

Partitions
of length 4
$\sim \sim \underset{\text { 2-staircase }}{\text { Put back }} \sim \sim$
$\frac{x^{4} \cdot q^{4}}{(q ; q)_{4}}$

Sum-sides

$1+3+6+8$

RR partitions
of length 4
$\frac{x^{4} q^{2+4+6} \cdot q^{4}}{(q ; q)_{4}}$

$$
1+1+2+2
$$

\Longleftarrow Bijection \Longrightarrow
Partitions
of length 4
$\frac{x^{4} \cdot q^{4}}{(q ; q)_{4}}$

Sum-sides

RR partitions
of length 4
\Longleftarrow Bijection \Longrightarrow
Partitions
of length 4
$\frac{x^{4} q^{2+4+6} \cdot q^{4}}{(q ; q)_{4}}$
$\sim \sim \underset{\text { 2-staircase }}{\text { Put back }} \sim \sim$
$\frac{x^{4} \cdot q^{4}}{(q ; q)_{4}}$
$\sum_{\ell \geq 0} \frac{x^{\ell} q^{\ell(\ell-1)} \cdot q^{\ell}}{(q ; q)_{\ell}}$
$\leftrightarrow \sim 2$-staircase \leadsto
$\sum_{\ell \geq 0} \frac{x^{\ell} \cdot q^{\ell}}{(q ; q)_{\ell}}$

Jagged partitions

+6m:
$1+3+4+4+11+12$

Jagged partitions

$1+3+4+4+11+12$

Jagged partitions

$1+3+4+4+11+12$

Jagged partitions

$1+3+4+4+11+12$

$\rightsquigarrow \begin{gathered}\text { Remove } \\ \text { 2-staircase }\end{gathered} \rightsquigarrow \quad 1,1,0,-2,3,2$

Jagged partitions

$1+3+4+4+11+12$

$\leadsto \underset{\text { 2-staircase }}{\text { Remove }} \rightsquigarrow$
$1,1,0,-2,3,2$
Jagged partition

Pick a side

Pick a side

Pick a side

Rogers-Ramanujan 2

RR 1:

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}$

Rogers-Ramanujan 2

$$
\text { RR 1: } \sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}
$$

Rogers-Ramanujan 2

$$
\text { RR 1: } \sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}
$$

See whether for any C,

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

RR 2: Analytic version

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

RR 2: Analytic version

$\sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\prod_{m \equiv \pm 2(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

RR 2: Analytic version

$\sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\prod_{m \equiv \pm 2(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
Now, experiment if there is a partition-theoretic sum-side:

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

RR 2: Analytic version

$\sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\prod_{m \equiv \pm 2(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
Now, experiment if there is a partition-theoretic sum-side:
RR 2

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

RR 2: Analytic version

$$
\sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\prod_{m \equiv \pm 2(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}
$$

Now, experiment if there is a partition-theoretic sum-side:

RR 2

Partitions of n whose adjacent parts differ by at least 2 and

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

RR 2: Analytic version

$$
\sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\prod_{m \equiv \pm 2(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}
$$

Now, experiment if there is a partition-theoretic sum-side:

RR 2

Partitions of n whose adjacent parts differ by at least 2 and whose smallest part is at least 2

Rogers-Ramanujan 2

RR 1: $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\prod_{m \equiv \pm 1(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}$
See whether for any $C, \sum_{n \geq 0} \frac{q^{n^{2}+C n}}{(q ; q)_{n}}$ is a product.

RR 2: Analytic version

$$
\sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\prod_{m \equiv \pm 2(\bmod 5)} \frac{1}{\left(1-q^{m}\right)}
$$

Now, experiment if there is a partition-theoretic sum-side:

RR 2

Partitions of n whose adjacent parts differ by at least 2 and whose smallest part is at least 2
are equinumerous with
partitions of n with each part $\equiv 2,3(\bmod 5)$

A few generalizations

Andrews-Gordon: $(\bmod 7)$

A few generalizations

Andrews-Gordon: (mod 7)
Partitions of n where parts satisfy distance at least 2 at distance 2

A few generalizations

Andrews-Gordon: (mod 7)
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with

A few generalizations

Andrews-Gordon: (mod 7)
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

A few generalizations

Andrews-Gordon: (mod 7)
Partitions of n where parts satisfy distance at least 2 at distance 2
are equinumerous with
partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.

A few generalizations

Andrews-Gordon: (mod 7)
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.
- Deform the q exponent by a linear term

A few generalizations

Andrews-Gordon: (mod 7)
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.
- Deform the q exponent by a linear term
\leadsto Two other identities $: \not \equiv 0, \pm i(\bmod 7), i=1,2$.

A few generalizations

Andrews-Gordon: (mod 7)
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.
- Deform the q exponent by a linear term
\leadsto Two other identities $: \not \equiv 0, \pm i(\bmod 7), i=1,2$.
Guess the partition sum-sides

A few generalizations

Andrews-Gordon: $(\bmod 7)$
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.
- Deform the q exponent by a linear term
\leadsto Two other identities: $\not \equiv 0, \pm i(\bmod 7), i=1,2$.
Guess the partition sum-sides \leadsto Differ in "initial conditions".

A few generalizations

Andrews-Gordon: $(\bmod 7)$
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.
- Deform the q exponent by a linear term
\leadsto Two other identities: $\not \equiv 0, \pm i(\bmod 7), i=1,2$.
Guess the partition sum-sides \leadsto Differ in "initial conditions".
- In general, there are such identities for all odd moduli: $(\bmod 2 k+1)$.

A few generalizations

Andrews-Gordon: $(\bmod 7)$
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.
- Deform the q exponent by a linear term
\leadsto Two other identities : $\not \equiv 0, \pm i(\bmod 7), i=1,2$.
Guess the partition sum-sides \leadsto Differ in "initial conditions".
- In general, there are such identities for all odd moduli: $(\bmod 2 k+1)$.
- For even moduli, one more condition on partition-theoretic sum-sides

A few generalizations

Andrews-Gordon: $(\bmod 7)$
Partitions of n where parts satisfy distance at least 2 at distance 2 are equinumerous with partitions whose parts are $\not \equiv 0, \pm 3(\bmod 7)$.

- Analytic sum-side: $\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+2 n_{2}^{2}+2 n_{1} n_{2}}}{(q ; q)_{n_{1}}(q ; q)}$.
- Deform the q exponent by a linear term
\leadsto Two other identities : $\not \equiv 0, \pm i(\bmod 7), i=1,2$.
Guess the partition sum-sides \leadsto Differ in "initial conditions".
- In general, there are such identities for all odd moduli: $(\bmod 2 k+1)$.
- For even moduli, one more condition on partition-theoretic sum-sides \leadsto Andrews-Bressoud identities.

2. Context

[1] RR and principal subspaces

$\mathcal{A}=\mathbb{C}\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right]$.

[1] RR and principal subspaces

$$
\begin{array}{rlr}
\mathcal{A}= & \mathbb{C}\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right] \\
& r_{-2}=x_{-1} x_{-1} & =x_{-1}^{2}
\end{array}
$$

[1] RR and principal subspaces

$$
\begin{array}{rlr}
\mathcal{A}=\mathbb{C}\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right] \\
& r_{-2}=x_{-1} x_{-1} & \\
& r_{-3}=x_{-1} x_{-2}+x_{-2}^{2} x_{-1} &
\end{array}
$$

[1] RR and principal subspaces

$$
\begin{array}{rlrl}
\mathcal{A}=\mathbb{C}\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right] \\
& r_{-2}=x_{-1} x_{-1} & & \\
& r_{-3}=x_{-1} x_{-2}+x_{-2} x_{-1} & & x_{-1} \\
r_{-4}=x_{-1} x_{-3}+x_{-2} x_{-3}+x_{-3} x_{-1} & & =x_{-1}^{2} x_{-2} \\
& 2 x_{-1} x_{-3}
\end{array}
$$

[1] RR and principal subspaces

$$
\begin{array}{rlrl}
\mathcal{A}=\mathbb{C} & {\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right]} \\
& r_{-2} & =x_{-1} x_{-1} & \\
r_{-3} & =x_{-1} x_{-2}+x_{-2} x_{-1} & & x_{-1}^{2} \\
r_{-4} & =x_{-1} x_{-3}+x_{-2} x_{-3}+x_{-3} x_{-1} & & =2 x_{-1} x_{-2} \\
r_{-5} & =x_{-1} x_{-4}+x_{-2} x_{-3}+x_{-3} x_{-2}+x_{-4} x_{-1} & =2 x_{-2} x_{-3}+2 x_{-1} x_{-4}
\end{array}
$$

[1] RR and principal subspaces

$$
\begin{array}{rlrl}
\mathcal{A}=\mathbb{C}\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right] \\
& r_{-2} & =x_{-1} x_{-1} & \\
r_{-3} & =x_{-1} x_{-2}+x_{-2} x_{-1} & & =x_{-1}^{2} \\
r_{-4} & =x_{-1} x_{-3}+x_{-2} x_{-3}+x_{-3} x_{-1} & & =2 x_{-1} x_{-2} \\
r_{-5} & =x_{-1} x_{-4}+x_{-2} x_{-3}+x_{-3} x_{-2}+x_{-4} x_{-1} & =2 x_{-2} x_{-3}+2 x_{-1} x_{-4}
\end{array}
$$

and so on consider $r_{-j}, j \geq 2$.

[1] RR and principal subspaces

$$
\begin{array}{rlrl}
\mathcal{A}=\mathbb{C}\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right] \\
& r_{-2} & =x_{-1} x_{-1} & \\
r_{-3} & =x_{-1} x_{-2}+x_{-2} x_{-1} & & =x_{-1}^{2} \\
r_{-4} & =x_{-1} x_{-3}+x_{-2} x_{-3}+x_{-3} x_{-1} & & =2 x_{-1} x_{-2} \\
r_{-5} & =x_{-1} x_{-4}+x_{-2} x_{-3}+x_{-3} x_{-2}+x_{-4} x_{-1} & =2 x_{-2} x_{-3}+2 x_{-1} x_{-4}
\end{array}
$$

and so on consider $r_{-j}, j \geq 2$.

$$
W=\mathcal{A} /\left(\mathcal{A}\left\langle r_{-2}, r_{-3}, r_{-4}, \ldots\right\rangle\right)
$$

[1] RR and principal subspaces

$\mathcal{A}=\mathbb{C}\left[x_{-1}, x_{-2}, x_{-3}, \ldots\right]$.

$$
\begin{array}{ll}
r_{-2}=x_{-1} x_{-1} & =x_{-1}^{2} \\
r_{-3}=x_{-1} x_{-2}+x_{-2} x_{-1} & =2 x_{-1} x_{-2} \\
r_{-4}=x_{-1} x_{-3}+x_{-2} x_{-3}+x_{-3} x_{-1} & =x_{-2}^{2}+2 x_{-1} x_{-3} \\
r_{-5}=x_{-1} x_{-4}+x_{-2} x_{-3}+x_{-3} x_{-2}+x_{-4} x_{-1} & =2 x_{-2} x_{-3}+2 x_{-1} x_{-4}
\end{array}
$$

and so on consider $r_{-j}, j \geq 2$.

$$
W=\mathcal{A} /\left(\mathcal{A}\left\langle r_{-2}, r_{-3}, r_{-4}, \ldots\right\rangle\right)
$$

Definition (actually, a Theorem of Calinescu-Lepowsky-Milas): Principal Subspace
This is the principal subspace of level 1 "vacuum module" of $\widehat{\mathfrak{s f}}$.

- Whas a basis of monomials satisfying difference-2 conditions. (proved by several people in different contexts)
- Whas a basis of monomials satisfying difference-2 conditions. (proved by several people in different contexts)
- Graded dimension of $W=$ First RR.
- Whas a basis of monomials satisfying difference-2 conditions. (proved by several people in different contexts)
- Graded dimension of $W=$ First RR.
- The "other" standard module for $\mathfrak{s l}_{2}$ at level 1 gives the second RR.
- Whas a basis of monomials satisfying difference-2 conditions. (proved by several people in different contexts)
- Graded dimension of $W=$ First RR.
- The "other" standard module for $\mathfrak{s l}_{2}$ at level 1 gives the second RR.
- Higher level for $\mathfrak{s l}_{2}$: Andrews-Gordon identities
- Whas a basis of monomials satisfying difference-2 conditions. (proved by several people in different contexts)
- Graded dimension of $W=$ First RR.
- The "other" standard module for $\mathfrak{s l}_{2}$ at level 1 gives the second RR.
- Higher level for $\mathfrak{s l}_{2}$: Andrews-Gordon identities
- Change $\mathfrak{s l}_{2}$: Noncommutative algebras. [Work of Butorac, Capparelli, Calinescu, Georgiev, Lepowsky, Milas, Penn, Primc, Trupčević, Sadowski,...]

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$

$$
C_{0}=W \rightarrow 0
$$

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$

$$
C_{1}=\mathcal{A} \xrightarrow{\partial_{1}} C_{0}=W \rightarrow 0
$$

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$

$$
C_{2}=\bigoplus_{i_{1} \leq-2} \mathcal{A} \xi_{i_{1}} \xrightarrow{\partial_{2}} C_{1}=\mathcal{A} \xrightarrow{\partial_{1}} C_{0}=W \rightarrow 0
$$

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$

$$
C_{3}=\bigoplus_{i_{1}, i_{2} \leq-2} \mathcal{A} \xi_{i_{1}, i_{2}} \xrightarrow{\partial_{3}} C_{2}=\bigoplus_{i_{1} \leq-2} \mathcal{A} \xi_{i_{1}} \xrightarrow{\partial_{2}} C_{1}=\mathcal{A} \xrightarrow{\partial_{1}} C_{0}=W \rightarrow 0
$$

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$
$\cdots C_{3}=\bigoplus_{i_{1}, i_{2} \leq-2} \mathcal{A} \xi_{i_{1}, i_{2}} \xrightarrow{\partial_{3}} C_{2}=\bigoplus_{i_{1} \leq-2} \mathcal{A} \xi_{i_{1}} \xrightarrow{\partial_{2}} C_{1}=\mathcal{A} \xrightarrow{\partial_{1}} C_{0}=W \rightarrow 0$

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$
$\cdots C_{3}=\bigoplus_{i_{1}, i_{2} \leq-2} \mathcal{A} \xi_{i_{1}, i_{2}} \xrightarrow{\partial_{3}} C_{2}=\bigoplus_{i_{1} \leq-2} \mathcal{A} \xi_{i_{1}} \xrightarrow{\partial_{2}} C_{1}=\mathcal{A} \xrightarrow{\partial_{1}} C_{0}=W \rightarrow 0$ $\xi_{\ldots, i, \cdots, j, \ldots}=\cdots \wedge \xi_{i} \wedge \cdots \wedge \xi_{j} \wedge \cdots=-\xi_{\ldots, j, \cdots, i, \ldots}$

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$
$\cdots C_{3}=\bigoplus_{i_{1}, i_{2} \leq-2} \mathcal{A} \xi_{i_{1}, i_{2}} \xrightarrow{\partial_{3}} C_{2}=\bigoplus_{i_{1} \leq-2} \mathcal{A} \xi_{i_{1}} \xrightarrow{\partial_{2}} C_{1}=\mathcal{A} \xrightarrow{\partial_{1}} C_{0}=W \rightarrow 0$ $\xi_{\ldots, i, \cdots, j, \ldots}=\cdots \wedge \xi_{i} \wedge \cdots \wedge \xi_{j} \wedge \cdots=-\xi_{\ldots, j, \cdots, i, \ldots}$
$\partial_{k+1}\left(\xi_{-i_{1},-i_{2}, \cdots,-i_{k}}\right)=\sum_{n=1}^{k}(-1)^{n-1} \cdot r_{-i_{n}} \cdot \xi_{-i_{1},-i_{2}, \cdots,-i_{n}, \cdots,-i_{R}}$.

Construct a Koszul complex related to the highly non-regular sequence $\left\{r_{-2}, r_{-3}, r_{-4}, \ldots\right\}$
$\cdots C_{3}=\bigoplus_{i_{1}, i_{2} \leq-2} \mathcal{A} \xi_{i_{1}, i_{2}} \xrightarrow{\partial_{3}} C_{2}=\bigoplus_{i_{1} \leq-2} \mathcal{A} \xi_{i_{1}} \xrightarrow{\partial_{2}} C_{1}=\mathcal{A} \xrightarrow{\partial_{1}} C_{0}=W \rightarrow 0$
$\xi_{\ldots, i, \ldots, j, \ldots}=\cdots \wedge \xi_{i} \wedge \cdots \wedge \xi_{j} \wedge \cdots=-\xi_{\ldots, j, \ldots, i, \ldots}$
$\partial_{k+1}\left(\xi_{-i_{1},-i_{2}, \cdots,-i_{k}}\right)=\sum_{n=1}^{k}(-1)^{n-1} \cdot r_{-i_{n}} \cdot \xi_{-i_{1},-i_{2}, \cdots,-\widehat{i_{n}}, \cdots,-i_{k}}$.
The homology of this complex captures "relations" amongst the elements $r_{-2}, r_{-3}, r_{-4}, \ldots$.

A certain limit, $\operatorname{Kh}(T(n, \infty))$, called the stable unreduced Khovanov homology of torus knots, exists (Stošić).

A certain limit, $\operatorname{Kh}(T(n, \infty))$, called the stable unreduced Khovanov homology of torus knots, exists (Stošić).

Conjecture (Gorsky-Oblomkov-Rasmussen '12)
$\operatorname{Kh}(T(n, \infty))$ is dual to the homology of the Koszul complex determined by the elements r_{-2}, \ldots, r_{-n-1}. (Note: their gradings are different than ours.)

[2] RR and affine Lie algebras

\mathfrak{g} : affine Lie algebra.

[2] RR and affine Lie algebras

\mathfrak{g} : affine Lie algebra.
$\alpha_{i}:$ for $i=0, \ldots, t$ positive simple roots of \mathfrak{g}.

[2] RR and affine Lie algebras

\mathfrak{g} : affine Lie algebra.
$\alpha_{i}:$ for $i=0, \ldots, t$ positive simple roots of \mathfrak{g}.
$L(\lambda)$: integrable, highest weight module for \mathfrak{g}, with highest weight λ

[2] RR and affine Lie algebras

\mathfrak{g} : affine Lie algebra.
$\alpha_{i}:$ for $i=0, \ldots, t$ positive simple roots of \mathfrak{g}.
$L(\lambda)$: integrable, highest weight module for \mathfrak{g}, with highest weight λ
ℓ : the level of $L(\lambda), \ell=\lambda(c)$. Note that $\ell \in \mathbb{N}$.

[2] RR and affine Lie algebras

\mathfrak{g} : affine Lie algebra.
$\alpha_{i}:$ for $i=0, \ldots, t$ positive simple roots of \mathfrak{g}.
$L(\lambda)$: integrable, highest weight module for \mathfrak{g}, with highest weight λ
ℓ : the level of $L(\lambda), \ell=\lambda(c)$. Note that $\ell \in \mathbb{N}$. $\operatorname{ch}(L(\lambda))$: the "character" of $L(\lambda)$

$$
\begin{aligned}
\operatorname{ch}(L(\lambda)) & =\frac{N(\lambda)}{D(\mathfrak{g})} \\
& \in e^{\lambda} \mathbb{Z}\left[\left[e^{-\alpha_{0}}, \ldots, e^{-\alpha_{t}}\right]\right] .
\end{aligned}
$$

[2] RR and affine Lie algebras

\mathfrak{g} : affine Lie algebra.
$\alpha_{i}:$ for $i=0, \ldots, t$ positive simple roots of \mathfrak{g}.
$L(\lambda)$: integrable, highest weight module for \mathfrak{g}, with highest weight λ
ℓ : the level of $L(\lambda), \ell=\lambda(c)$. Note that $\ell \in \mathbb{N}$.
ch $(L(\lambda))$: the "character" of $L(\lambda)$

$$
\begin{aligned}
\operatorname{ch}(L(\lambda)) & =\frac{N(\lambda)}{D(\mathfrak{g})} \\
& \in e^{\lambda} \mathbb{Z}\left[\left[e^{-\alpha_{0}}, \ldots, e^{-\alpha_{t}}\right]\right] .
\end{aligned}
$$

$\chi(L(\lambda))$: the "principally specialized" character of $L(\lambda)$,

$$
\chi(L(\lambda))=\left.\left(e^{-\lambda} \operatorname{ch}(L(\lambda))\right)\right|_{e^{-\alpha_{0}}, \ldots, e^{-\alpha_{t}} \mapsto q} .
$$

Principally specialized characters

Theorem

Principally specialized characters of integrable modules are infinite periodic products.

Principally specialized characters

Theorem

Principally specialized characters of integrable modules are infinite periodic products.

Example: $\mathfrak{g}=\widehat{\mathfrak{s l}}=A_{1}^{(1)}$.

Principally specialized characters

Theorem

Principally specialized characters of integrable modules are infinite periodic products.

Example: $\mathfrak{g}=\widehat{\mathfrak{s k}}=A_{1}^{(1)}$.

$$
\chi\left(L\left(\Lambda_{0}\right)\right)=\chi\left(L\left(\Lambda_{1}\right)\right)=\prod_{n \geq 0}\left(1-q^{2 n+1}\right)^{-1}=F(q)
$$

Principally specialized characters

Theorem

Principally specialized characters of integrable modules are infinite periodic products.

Example: $\mathfrak{g}=\widehat{\mathfrak{s l}}=A_{1}^{(1)}$.

$$
\begin{aligned}
\chi\left(L\left(\Lambda_{0}\right)\right) & =\chi\left(L\left(\Lambda_{1}\right)\right)=\prod_{n \geq 0}\left(1-q^{2 n+1}\right)^{-1}=F(q) \\
\chi\left(L\left(3 \Lambda_{0}\right)\right) & =\chi\left(L\left(3 \Lambda_{1}\right)\right) \\
& =F(q) \cdot \prod_{n \geq 0}\left(1-q^{5 n+2}\right)^{-1}\left(1-q^{5 n+3}\right)^{-1}
\end{aligned}
$$

Principally specialized characters

Theorem

Principally specialized characters of integrable modules are infinite periodic products.

Example: $\mathfrak{g}=\widehat{\mathfrak{s l}}=A_{1}^{(1)}$.

$$
\begin{aligned}
\chi\left(L\left(\Lambda_{0}\right)\right) & =\chi\left(L\left(\Lambda_{1}\right)\right)=\prod_{n \geq 0}\left(1-q^{2 n+1}\right)^{-1}=F(q) \\
\chi\left(L\left(3 \Lambda_{0}\right)\right) & =\chi\left(L\left(3 \Lambda_{1}\right)\right) \\
& =F(q) \cdot \prod_{n \geq 0}\left(1-q^{5 n+2}\right)^{-1}\left(1-q^{5 n+3}\right)^{-1} \\
\chi\left(L\left(2 \Lambda_{0}+\Lambda_{1}\right)\right) & =\chi\left(L\left(\Lambda_{1}+2 \Lambda_{0}\right)\right) \\
& =F(q) \cdot \prod_{n \geq 0}\left(1-q^{5 n+1}\right)^{-1}\left(1-q^{5 n+4}\right)^{-1} .
\end{aligned}
$$

Principally specialized characters

Theorem

Principally specialized characters of integrable modules are infinite periodic products.

Example: $\mathfrak{g}=\widehat{\mathfrak{s H _ { 2 }}}=A_{1}^{(1)}$.

$$
\begin{aligned}
\chi\left(L\left(\Lambda_{0}\right)\right) & =\chi\left(L\left(\Lambda_{1}\right)\right)=\prod_{n \geq 0}\left(1-q^{2 n+1}\right)^{-1}=F(q) \\
\chi\left(L\left(3 \Lambda_{0}\right)\right) & =\chi\left(L\left(3 \Lambda_{1}\right)\right) \\
& =F(q) \cdot \prod_{n \geq 0}\left(1-q^{5 n+2}\right)^{-1}\left(1-q^{5 n+3}\right)^{-1} \\
\chi\left(L\left(2 \Lambda_{0}+\Lambda_{1}\right)\right) & =\chi\left(L\left(\Lambda_{1}+2 \Lambda_{0}\right)\right) \\
& =F(q) \cdot \prod_{n \geq 0}\left(1-q^{5 n+1}\right)^{-1}\left(1-q^{5 n+4}\right)^{-1} .
\end{aligned}
$$

Second factor: character of the "vacuum space".

Sum sides (Fermionic sides)

- The product sides of Rogers-Ramanujan type identities are obtained by Weyl-Kac character formula + Lepowsky's numerator formula

Sum sides (Fermionic sides)

- The product sides of Rogers-Ramanujan type identities are obtained by Weyl-Kac character formula + Lepowsky's numerator formula (remove the fudge factor).

Sum sides (Fermionic sides)

- The product sides of Rogers-Ramanujan type identities are obtained by Weyl-Kac character formula + Lepowsky's numerator formula (remove the fudge factor).
- For the sum sides, Lepowsky and Wilson invented a new mechanism: Z-algebras.

Sum sides (Fermionic sides)

- The product sides of Rogers-Ramanujan type identities are obtained by Weyl-Kac character formula + Lepowsky's numerator formula (remove the fudge factor).
- For the sum sides, Lepowsky and Wilson invented a new mechanism: Z-algebras.
- Sum sides are given by explicitly building a basis using Z-monomials. Elements of this basis are enumerated by the partitions counted in sum sides.

Sum sides (Fermionic sides)

- The product sides of Rogers-Ramanujan type identities are obtained by Weyl-Kac character formula + Lepowsky's numerator formula (remove the fudge factor).
- For the sum sides, Lepowsky and Wilson invented a new mechanism: Z-algebras.
- Sum sides are given by explicitly building a basis using Z-monomials. Elements of this basis are enumerated by the partitions counted in sum sides.
- Start with a (large) spanning set and reduce it using vertex-operator-algebraic relations between Z-modes.

Sum sides (Fermionic sides)

- The product sides of Rogers-Ramanujan type identities are obtained by Weyl-Kac character formula + Lepowsky's numerator formula (remove the fudge factor).
- For the sum sides, Lepowsky and Wilson invented a new mechanism: Z-algebras.
- Sum sides are given by explicitly building a basis using Z-monomials. Elements of this basis are enumerated by the partitions counted in sum sides.
- Start with a (large) spanning set and reduce it using vertex-operator-algebraic relations between Z-modes.
- In many cases, one ends up with a small enough spanning set: a "half-proved" conjectural identity.

Sum sides (Fermionic sides)

- The product sides of Rogers-Ramanujan type identities are obtained by Weyl-Kac character formula + Lepowsky's numerator formula (remove the fudge factor).
- For the sum sides, Lepowsky and Wilson invented a new mechanism: Z-algebras.
- Sum sides are given by explicitly building a basis using Z-monomials. Elements of this basis are enumerated by the partitions counted in sum sides.
- Start with a (large) spanning set and reduce it using vertex-operator-algebraic relations between Z-modes.
- In many cases, one ends up with a small enough spanning set: a "half-proved" conjectural identity.

Many other ways to mine identities:

- Meurman and Primc: Look at the entire modules, not just vacuum spaces.
\leadsto new identities found by Meurman-Primc, Siladić (proved by Dousse), Primc-Šikić.
- Beyond principal specializations: Analytic sum-sides are given by Hall-Littlewood polynomials. (Ole Warnaar)
Algebra(s) Level(s) Identities

$$
\begin{array}{lll}
A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)} & 3,2,2,1,1 & \text { Rogers-Ramanujan } \\
G_{2}^{(1)}, F_{4}^{(1)}
\end{array}
$$

Algebra(s) Level(s) Identities

$A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)}$	Rogers-Ramanujan	
$G_{2}^{(1)}, F_{4}^{(1)}$	$3,2,2,1,1$	
$A_{1}^{(1)}$	$\ell \in \mathbb{N}$	Gordon-Andrews, Andrews-Bressoud

Algebra(s) Level(s)
Identities

$A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)}$	$3,2,2,1,1$	Rogers-Ramanujan
$G_{2}^{(1)}, F_{4}^{(1)}$		
$A_{1}^{(1)}$	$\ell \in \mathbb{N}$	Gordon-Andrews, Andrews-Bressoud
$A_{N}^{(1)}, C_{N}^{(1)}$	2,1	Gordon-Andrews, Andrews-Bressoud

Algebra(s) Level(s) Identities

$A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)}$	Rogers-Ramanujan	
$G_{2}^{(1)}, F_{4}^{(1)}$	$3,2,2,1,1$	
$A_{1}^{(1)}$	$\ell \in \mathbb{N}$	Gordon-Andrews, Andrews-Bressoud
$A_{N}^{(1)}, C_{N}^{(1)}$	2,1	Gordon-Andrews, Andrews-Bressoud
$A_{2}^{(2)}$	3	Capparelli $[1988]$

Algebra(s)	Level(s)	Identities
$A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)}$	$3,2,2,1,1$	Rogers-Ramanujan
$G_{2}^{(1)}, F_{4}^{(1)}$	$\ell \in \mathbb{N}$	Gordon-Andrews, Andrews-Bressoud
$A_{1}^{(1)}$	2,1	Gordon-Andrews, Andrews-Bressoud
$A_{N}^{(1)}, C_{N}^{(1)}$	3	Capparelli [1988]
$A_{2}^{(2)}$	4	Nandi's conjectures [2014]

Algebra(s)	Level(s)	Identities
$A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)}$	$3,2,2,1,1$	Rogers-Ramanujan
$G_{2}^{(1)}, F_{4}^{(1)}$	$\ell \in \mathbb{N}$	Gordon-Andrews, Andrews-Bressoud
$A_{1}^{(1)}$	2,1	Gordon-Andrews, Andrews-Bressoud
$A_{N}^{(1)}, C_{N}^{(1)}$	3	Capparelli [1988]
$A_{2}^{(2)}$	4	Nandi's conjectures [2014]
$A_{2}^{(2)}$	2	Göllnitz-Gordon [K. 2017]

Algebra(s)	Level(s)	Identities
$A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)}$ $G_{2}^{(1)}, F_{4}^{(1)}$	$3,2,2,1,1$	Rogers-Ramanujan
$A_{1}^{(1)}$	$\ell \in \mathbb{N}$	Gordon-Andrews, Andrews-Bressoud
$A_{N}^{(1)}, C_{N}^{(1)}$	2,1	Gordon-Andrews, Andrews-Bressoud
$A_{2}^{(2)}$	3	Capparelli [1988]
$A_{2}^{(2)}$	4	Nandi's conjectures [2014]
$A_{5}^{(2)}$	2	Göllnitz-Gordon [K. 2017]
$D_{4}^{(3)}$	3	Mod-9 conjectures [K.-Russell 2015]

Algebra(s)	Level(s)	Identities
$A_{1}^{(1)}, A_{2}^{(2)}, A_{7}^{(2)}$	$3,2,2,1,1$	Rogers-Ramanujan
$G_{2}^{(1)}, F_{4}^{(1)}$	$\ell \in \mathbb{N}$	Gordon-Andrews, Andrews-Bressoud
$A_{1}^{(1)}$	2,1	Gordon-Andrews, Andrews-Bressoud
$A_{N}^{(1)}, C_{N}^{(1)}$	3	Capparelli [1988]
$A_{2}^{(2)}$	4	Nandi's conjectures [2014]
$A_{2}^{(2)}$	2	Göllnitz-Gordon [K. 2017]
$A_{5}^{(2)}$	3	Mod-9 conjectures [K.-Russell 2015]
$D_{4}^{(3)}$	2	Mod-12 conjectures [K.-Russell 2018]
$A_{9}^{(2)}$		

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity
Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity
Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$
are equinumerous with

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity
Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$
are equinumerous with
partitions of $n=\pi_{1}+\cdots+\pi_{t}$ with

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity

Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$
are equinumerous with
partitions of $n=\pi_{1}+\cdots+\pi_{t}$ with

- Smallest part π_{1} is at least 2

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity

Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$
are equinumerous with
partitions of $n=\pi_{1}+\cdots+\pi_{t}$ with

- Smallest part π_{1} is at least 2
- Adjacent parts differ by at least 2

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity

Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$
are equinumerous with
partitions of $n=\pi_{1}+\cdots+\pi_{t}$ with

- Smallest part π_{1} is at least 2
- Adjacent parts differ by at least 2
- $2 \leq \pi_{i+1}-\pi_{i} \leq 3 \Longrightarrow \pi_{i}+\pi_{i+1} \equiv 0(\bmod 3)$.

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity

Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$
are equinumerous with
partitions of $n=\pi_{1}+\cdots+\pi_{t}$ with

- Smallest part π_{1} is at least 2
- Adjacent parts differ by at least 2
- $2 \leq \pi_{i+1}-\pi_{i} \leq 3 \Longrightarrow \pi_{i}+\pi_{i+1} \equiv 0(\bmod 3)$.

One more identity.

Capparelli's identities for $A_{2}^{(2)}$ level 3

Capparelli's identity

Partitions of n into distinct parts $\not \equiv \pm 1(\bmod 6)$
are equinumerous with
partitions of $n=\pi_{1}+\cdots+\pi_{t}$ with

- Smallest part π_{1} is at least 2
- Adjacent parts differ by at least 2
- $2 \leq \pi_{i+1}-\pi_{i} \leq 3 \Longrightarrow \pi_{i}+\pi_{i+1} \equiv 0(\bmod 3)$.

One more identity.
Proofs by Andrews, Andrews-Alladi-Gordon, Tamba-Xie, Capparelli, Meurman-Primc, Dousse-Lovejoy.

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$
- $\pi_{i+2}-\pi_{i}=3 \Longrightarrow \pi_{i+1} \neq \pi_{i+2}$

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$
- $\pi_{i+2}-\pi_{i}=3 \Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- $\pi_{i+2}-\pi_{i}=3, \pi_{i+2}$ odd $\Longrightarrow \pi_{i} \neq \pi_{i+1}$

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$
- $\pi_{i+2}-\pi_{i}=3 \Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- $\pi_{i+2}-\pi_{i}=3, \pi_{i+2}$ odd $\Longrightarrow \pi_{i} \neq \pi_{i+1}$
- $\pi_{i+2}-\pi_{i}=4, \pi_{i+2}$ odd $\Longrightarrow \pi_{i+1} \neq \pi_{i+2}$

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$
- $\pi_{i+2}-\pi_{i}=3 \Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- $\pi_{i+2}-\pi_{i}=3, \pi_{i+2}$ odd $\Longrightarrow \pi_{i} \neq \pi_{i+1}$
- $\pi_{i+2}-\pi_{i}=4, \pi_{i+2}$ odd $\Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- Let: $\Delta=\left(\pi_{2}-\pi_{1}, \pi_{3}-\pi_{2}, \ldots, \pi_{t}-\pi_{t-1}\right)$.

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills
Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$
- $\pi_{i+2}-\pi_{i}=3 \Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- $\pi_{i+2}-\pi_{i}=3, \pi_{i+2}$ odd $\Longrightarrow \pi_{i} \neq \pi_{i+1}$
- $\pi_{i+2}-\pi_{i}=4, \pi_{i+2}$ odd $\Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- Let: $\Delta=\left(\pi_{2}-\pi_{1}, \pi_{3}-\pi_{2}, \ldots, \pi_{t}-\pi_{t-1}\right)$.

None of the following are subwords of Δ :

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills
Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$
- $\pi_{i+2}-\pi_{i}=3 \Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- $\pi_{i+2}-\pi_{i}=3, \pi_{i+2}$ odd $\Longrightarrow \pi_{i} \neq \pi_{i+1}$
- $\pi_{i+2}-\pi_{i}=4, \pi_{i+2}$ odd $\Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- Let: $\Delta=\left(\pi_{2}-\pi_{1}, \pi_{3}-\pi_{2}, \ldots, \pi_{t}-\pi_{t-1}\right)$.

None of the following are subwords of Δ :
$(0,3,3),(0,3,2,3),(0,3,2,2,3) \ldots$ ad infinitum.

Nandi's conjectures for $A_{2}^{(2)}$ level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills
Number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ is the same as number of partitions $n=\pi_{1}+\cdots+\pi_{t}$ with:

- $\pi_{1} \neq 1$
- $\pi_{i+1}-\pi_{i} \geq 2$ and $\pi_{i+2}-\pi_{i} \geq 3$
- $\pi_{i+2}-\pi_{i}=3 \Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- $\pi_{i+2}-\pi_{i}=3, \pi_{i+2}$ odd $\Longrightarrow \pi_{i} \neq \pi_{i+1}$
- $\pi_{i+2}-\pi_{i}=4, \pi_{i+2}$ odd $\Longrightarrow \pi_{i+1} \neq \pi_{i+2}$
- Let: $\Delta=\left(\pi_{2}-\pi_{1}, \pi_{3}-\pi_{2}, \ldots, \pi_{t}-\pi_{t-1}\right)$.

None of the following are subwords of Δ : $(0,3,3),(0,3,2,3),(0,3,2,2,3) \ldots$ ad infinitum.

The point

It is getting harder to implement Z-algebras to mine new identities.
3. Experimental strategies: Sums to products

The key: Euler's algorithm

Given a power series

The key: Euler's algorithm

Given a power series

$$
f(q)=1+q \mathbb{N}[[q]],
$$

The key: Euler's algorithm

Given a power series

$$
f(q)=1+q \mathbb{N}[[q]],
$$

there exists a unique sequence $\left\{a_{m}\right\}_{m \geq 1}$

The key: Euler's algorithm

Given a power series

$$
f(q)=1+q \mathbb{N}[[q]],
$$

there exists a unique sequence $\left\{a_{m}\right\}_{m \geq 1}$ of integers such that

The key: Euler's algorithm

Given a power series

$$
f(q)=1+q \mathbb{N}[[q]],
$$

there exists a unique sequence $\left\{a_{m}\right\}_{m \geq 1}$ of integers such that

$$
f(q)=\frac{1}{(1-q)^{a_{1}}\left(1-q^{2}\right)^{a_{2}}\left(1-q^{3}\right)^{a_{3}}\left(1-q^{4}\right)^{a_{4}} \cdots} .
$$

The key: Euler's algorithm

Given a power series

$$
f(q)=1+q \mathbb{N}[[q]],
$$

there exists a unique sequence $\left\{a_{m}\right\}_{m \geq 1}$ of integers such that

$$
f(q)=\frac{1}{(1-q)^{a_{1}}\left(1-q^{2}\right)^{a_{2}}\left(1-q^{3}\right)^{a_{3}}\left(1-q^{4}\right)^{a_{4}} \cdots} .
$$

Moreover, $a_{1}, a_{2} \ldots a_{N}$ are completely determined by the expansion of f up to coefficient of q^{N}.

The key: Euler's algorithm

Given a power series

$$
f(q)=1+q \mathbb{N}[[q]],
$$

there exists a unique sequence $\left\{a_{m}\right\}_{m \geq 1}$ of integers such that

$$
f(q)=\frac{1}{(1-q)^{a_{1}}\left(1-q^{2}\right)^{a_{2}}\left(1-q^{3}\right)^{a_{3}}\left(1-q^{4}\right)^{a_{4}} \cdots}
$$

Moreover, $a_{1}, a_{2} \ldots a_{N}$ are completely determined by the expansion of f up to coefficient of q^{N}.

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)
- Get first few coefficients (30 or so) of their generating function

$$
f(q) \in 1+q \mathbb{N}[[q]]
$$

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)
- Get first few coefficients (30 or so) of their generating function

$$
f(q) \in 1+q \mathbb{N}[[q]]
$$

- Factor the generating function f using Euler's algorithm

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)
- Get first few coefficients (30 or so) of their generating function

$$
f(q) \in 1+q \mathbb{N}[[q]]
$$

- Factor the generating function f using Euler's algorithm
- See if the product representation of f has nice patterns.

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)
- Get first few coefficients (30 or so) of their generating function

$$
f(q) \in 1+q \mathbb{N}[[q]]
$$

- Factor the generating function f using Euler's algorithm
- See if the product representation of f has nice patterns.
- If so, verify the identity further to strike out false positives.

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)
- Get first few coefficients (30 or so) of their generating function

$$
f(q) \in 1+q \mathbb{N}[[q]]
$$

- Factor the generating function f using Euler's algorithm
- See if the product representation of f has nice patterns.
- If so, verify the identity further to strike out false positives.
- Check if the product comes from affine Lie algebras.

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)
- Get first few coefficients (30 or so) of their generating function

$$
f(q) \in 1+q \mathbb{N}[[q]]
$$

- Factor the generating function f using Euler's algorithm
- See if the product representation of f has nice patterns.
- If so, verify the identity further to strike out false positives.
- Check if the product comes from affine Lie algebras.
- 6 new identities found this way by K.-Russell (2014): 3 of these related to $D_{4}^{(3)}$ level 3

Sum to products: I

- Generate a class of partitions (generalize the conditions in Capparelli's identities for $A_{2}^{(2)}$ level 3)
- Get first few coefficients (30 or so) of their generating function

$$
f(q) \in 1+q \mathbb{N}[[q]]
$$

- Factor the generating function f using Euler's algorithm
- See if the product representation of f has nice patterns.
- If so, verify the identity further to strike out false positives.
- Check if the product comes from affine Lie algebras.
- 6 new identities found this way by K.-Russell (2014): 3 of these related to $D_{4}^{(3)}$ level 3

Symmetric conjectures

Condition ©

Symmetric conjectures

Condition ©

Difference at least 3 at distance 2 and

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .

Symmetric conjectures

Condition ©

Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition ©

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot are equinumerous with

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition ©
are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition ${ }^{-}$
are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition \odot

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition © are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition © with smallest part at least 2 are equinumerous with

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition © are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition ©
with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition ©
are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition ©
with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition ©

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition ©
are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition ©
with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition ©
with smallest part at least 3 are equinumerous with

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition ©
are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition ©
with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition ©
with smallest part at least 3 are equinumerous with partitions of n with each part $\equiv \pm 3, \pm 4(\bmod 9)$

Symmetric conjectures

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition ©
are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition ©
with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition ©
with smallest part at least 3 are equinumerous with partitions of n with each part $\equiv \pm 3, \pm 4(\bmod 9)$

Mod 9 asymmetric conjectures

Recall:
Condition ©

Mod 9 asymmetric conjectures

Recall:
Condition ${ }^{\text {: }}$
Difference at least 3 at distance 2 and

Mod 9 asymmetric conjectures

Recall:
Condition ${ }^{\text {: }}$
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .

Mod 9 asymmetric conjectures

Recall:
Condition ${ }^{\text {: }}$
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .

Mod 9 asymmetric conjectures

Recall:
Condition ${ }^{\text {: }}$
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{4} Partitions of n satisfying difference at least 3 at distance 2 and

Mod 9 asymmetric conjectures

Recall:

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is $\equiv 2$ $(\bmod 3)$ and

Mod 9 asymmetric conjectures

Recall:

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is $\equiv 2$ $(\bmod 3)$ and
smallest part at least 2

Mod 9 asymmetric conjectures

Recall:

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is $\equiv 2$ $(\bmod 3)$ and
smallest part at least 2
are equinumerous with

Mod 9 asymmetric conjectures

Recall:

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is $\equiv 2$ $(\bmod 3)$ and
smallest part at least 2
are equinumerous with
partitions of n with each part $\equiv 2,3,5,8(\bmod 9)$

Mod 12 asymmetric conjectures

Condition ${ }_{\mathrm{S}}$

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}^{t}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}^{\text {t }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.

I5 Partitions of n satisfying Condition ${ }_{1}$

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${ }_{1}$ are equinumerous with

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}^{\text {t }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${ }_{1}$
are equinumerous with
partitions of n with each part $\equiv 1,3,4,6,7,10,11(\bmod 12)$.

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}^{\text {t }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${ }_{1}$ are equinumerous with partitions of n with each part $\equiv 1,3,4,6,7,10,11(\bmod 12)$.
I_{6} Partitions of n satisfying Condition $)_{2}$

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}^{\text {t }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${ }_{1}$
are equinumerous with
partitions of n with each part $\equiv 1,3,4,6,7,10,11(\bmod 12)$.
I_{6} Partitions of n satisfying Condition $)_{2}$ are equinumerous with

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}^{\text {t }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${ }_{1}$
are equinumerous with
partitions of n with each part $\equiv 1,3,4,6,7,10,11(\bmod 12)$.
I_{6} Partitions of n satisfying Condition $)_{2}$
are equinumerous with
partitions of n with each part $\equiv 2,3,5,6,7,8,11(\bmod 12)$.

Mod 12 asymmetric conjectures

Condition ${ }_{\text {© }}^{\text {t }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${ }_{1}$
are equinumerous with
partitions of n with each part $\equiv 1,3,4,6,7,10,11(\bmod 12)$.
I_{6} Partitions of n satisfying Condition $)_{2}$
are equinumerous with
partitions of n with each part $\equiv 2,3,5,6,7,8,11(\bmod 12)$.

Matthew C. Russell in his Rutgers Ph.D. Thesis found companions $I_{4 a}, I_{5 a}, I_{6 a}$ whose products sides involved "negatives" of the residues of the asymmetric product sides.

Difference on the partition-theoretic sum-sides: only in the initial condition.

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
3+3+2+2
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
3+3+2+2<3+3+3+1
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
3+3+2+2<3+3+3+1<4+2+2+2
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
3+3+2+2<3+3+3+1<4+2+2+2<4+3+2+1
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1
\end{aligned}
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1<5+2+2+1
\end{aligned}
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1<5+2+2+1<5+3+1+1
\end{aligned}
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1<5+2+2+1<5+3+1+1 \\
& <6+2+1+1
\end{aligned}
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1<5+2+2+1<5+3+1+1 \\
& <6+2+1+1<7+1+1+1
\end{aligned}
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1<5+2+2+1<5+3+1+1 \\
& <6+2+1+1<7+1+1+1
\end{aligned}
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1<5+2+2+1<5+3+1+1 \\
& <6+2+1+1<7+1+1+1
\end{aligned}
$$

- Rogers-Ramanujan: Forbid "flattest" length-2 partition of any integer from appearing as a sub-partition:

$$
\text { forbid the appearance of } i+i,(i+1)+i
$$

Sums to products: II

- Need a better search space to inch closer to Nandi's conditions
- Look closer into Lepowsky-Wilson's mechanism
- Forbid sub-partitions based on how "flat" they are, along with additional requirements.

$$
\begin{aligned}
3+3+2+2 & <3+3+3+1<4+2+2+2<4+3+2+1 \\
& <4+4+1+1<5+2+2+1<5+3+1+1 \\
& <6+2+1+1<7+1+1+1
\end{aligned}
$$

- Rogers-Ramanujan: Forbid "flattest" length-2 partition of any integer from appearing as a sub-partition:

$$
\text { forbid the appearance of } i+i,(i+1)+i
$$

Impose such conditions: Forbid the a th "flattest"

Impose such conditions: Forbid the a th "flattest" length k partition of any m such that

Impose such conditions: Forbid the a th "flattest" length k partition of any m such that $m \equiv x(\bmod y)$ from appearing as a sub-partition.

Impose such conditions: Forbid the a th "flattest" length k partition of any m such that $m \equiv x(\bmod y)$ from appearing as a sub-partition.

Many new (infinite) families of identities found.

Impose such conditions: Forbid the a th "flattest" length k partition of any m such that $m \equiv x(\bmod y)$ from appearing as a sub-partition.

Many new (infinite) families of identities found.

Some new identities

K.-Nandi-Russell, 20??

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4
are equinumerous with

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4
are equinumerous with
partitions of the same integer where:

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4
are equinumerous with
partitions of the same integer where:

- Difference between successive parts is not 1, 2 or 5 ,

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4
are equinumerous with
partitions of the same integer where:

- Difference between successive parts is not 1, 2 or 5 ,
- Smallest part is not 1,2 or 5 .

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4
are equinumerous with
partitions of the same integer where:

- Difference between successive parts is not 1, 2 or 5,
- Smallest part is not 1, 2 or 5 .

This identity generalizes to a pair of co-prime integers (p, q) in place of $(3,4)$.

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4
are equinumerous with
partitions of the same integer where:

- Difference between successive parts is not 1, 2 or 5 ,
- Smallest part is not 1, 2 or 5 .

This identity generalizes to a pair of co-prime integers (p, q) in place of $(3,4)$.
$(2,3)$ gives a well known "sequence avoiding" identity of MacMahon.

Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is divisible by either 3 or 4
are equinumerous with
partitions of the same integer where:

- Difference between successive parts is not 1, 2 or 5,
- Smallest part is not 1, 2 or 5 .

This identity generalizes to a pair of co-prime integers (p, q) in place of $(3,4)$.
$(2,3)$ gives a well known "sequence avoiding" identity of MacMahon.
$(2,2 t+1)$ already found by Andrews.

Conjecture: K.-Nandi-Russell, 20??
Partitions of n where parts are $\equiv 0,2,4,5(\bmod 6)$

Conjecture: K.-Nandi-Russell, 20??

Partitions of n where parts are $\equiv 0,2,4,5(\bmod 6)$
are equinumerous with partitions on n where

Conjecture: K.-Nandi-Russell, 20??

Partitions of n where parts are $\equiv 0,2,4,5(\bmod 6)$
are equinumerous with partitions on n where

- An odd part $2 j+1$ is not immediately adjacent to either of $2 j$ or $2 j-2$.

Conjecture: K.-Nandi-Russell, 20??

Partitions of n where parts are $\equiv 0,2,4,5(\bmod 6)$
are equinumerous with partitions on n where

- An odd part $2 j+1$ is not immediately adjacent to either of $2 j$ or $2 j-2$.
- Smallest part is not equal to 1 or 3 .

Conjecture: K.-Nandi-Russell, 20??

Partitions of n where parts are $\equiv 0,2,4,5(\bmod 6)$
are equinumerous with partitions on n where

- An odd part $2 j+1$ is not immediately adjacent to either of $2 j$ or $2 j-2$.
- Smallest part is not equal to 1 or 3 .

Can be embedded in an infinite family.

Conjecture: K.-Nandi-Russell, 20??

Partitions of n where parts are $\equiv 0,2,4,5(\bmod 6)$
are equinumerous with partitions on n where

- An odd part $2 j+1$ is not immediately adjacent to either of $2 j$ or $2 j-2$.
- Smallest part is not equal to 1 or 3 .

Can be embedded in an infinite family.
Recently, Matthew C. Russell found a bijective proof!

Conjecture: K.-Nandi-Russell, 20??

Partitions of n where parts are $\equiv 0,2,4,5(\bmod 6)$
are equinumerous with partitions on n where

- An odd part $2 j+1$ is not immediately adjacent to either of $2 j$ or $2 j-2$.
- Smallest part is not equal to 1 or 3 .

Can be embedded in an infinite family.
Recently, Matthew C. Russell found a bijective proof!
... there are several more.

Conjecture: K.-Nandi-Russell, 20??

[Verified up to partitions of $n=1000$]

Conjecture: K.-Nandi-Russell, 20??

[Verified up to partitions of $n=1000$]
Product: $\equiv 0,2,3(\bmod 6)$.

Conjecture: K.-Nandi-Russell, 20??

[Verified up to partitions of $n=1000$]
Product: $\equiv 0,2,3(\bmod 6)$.
Sum-side:

- If the difference between adjacent parts is 0 then their sum is $\not \equiv 4(\bmod 6)$.

Conjecture: K.-Nandi-Russell, 20??
[Verified up to partitions of $n=1000$]
Product: $\equiv 0,2,3(\bmod 6)$.
Sum-side:

- If the difference between adjacent parts is 0 then their sum is $\not \equiv 4(\bmod 6)$.
- Difference between adjacent parts is not 1 .

Conjecture: K.-Nandi-Russell, 20??

[Verified up to partitions of $n=1000$]
Product: $\equiv 0,2,3(\bmod 6)$.
Sum-side:

- If the difference between adjacent parts is 0 then their sum is $\not \equiv 4(\bmod 6)$.
- Difference between adjacent parts is not 1 .
- If the difference between adjacent parts is 2 or 3 then their sum is $\not \equiv 1(\bmod 3)$.

Conjecture: K.-Nandi-Russell, 20??

[Verified up to partitions of $n=1000$]
Product: $\equiv 0,2,3(\bmod 6)$.
Sum-side:

- If the difference between adjacent parts is 0 then their sum is $\not \equiv 4(\bmod 6)$.
- Difference between adjacent parts is not 1 .
- If the difference between adjacent parts is 2 or 3 then their sum is $\not \equiv 1(\bmod 3)$.
- If the difference between adjacent parts is 5 then their sum is $\not \equiv 1(\bmod 6)$.

Conjecture: K.-Nandi-Russell, 20??

[Verified up to partitions of $n=1000$]
Product: $\equiv 0,2,3(\bmod 6)$.
Sum-side:

- If the difference between adjacent parts is 0 then their sum is $\not \equiv 4(\bmod 6)$.
- Difference between adjacent parts is not 1 .
- If the difference between adjacent parts is 2 or 3 then their sum is $\not \equiv 1(\bmod 3)$.
- If the difference between adjacent parts is 5 then their sum is $\not \equiv 1(\bmod 6)$.
- Initial condition is given by a fictitious zero, i.e., smallest part can't be 1.

Conjecture: K.-Nandi-Russell, 20??

[Verified up to partitions of $n=1000$]
Product: $\equiv 0,2,3(\bmod 6)$.
Sum-side:

- If the difference between adjacent parts is 0 then their sum is $\not \equiv 4(\bmod 6)$.
- Difference between adjacent parts is not 1 .
- If the difference between adjacent parts is 2 or 3 then their sum is $\not \equiv 1(\bmod 3)$.
- If the difference between adjacent parts is 5 then their sum is $\not \equiv 1(\bmod 6)$.
- Initial condition is given by a fictitious zero, i.e., smallest part can't be 1.

4. Experimental strategies:

Products to sum

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Algebra	Products	Mod
$A_{3}^{(2)}$	Alladi's companion to Schur's identity	Mod 6

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Algebra	Products	Mod
$A_{3}^{(2)}$	Alladi's companion to Schur's identity	Mod 6
$A_{5}^{(2)}$	Göllnitz-Gordon identities	Mod 8

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Algebra	Products	Mod
$A_{3}^{(2)}$	Alladi's companion to Schur's identity	$\operatorname{Mod} 6$
$A_{5}^{(2)}$	Göllnitz-Gordon identities	$\operatorname{Mod} 8$
$A_{7}^{(2)}$	Rogers-Ramanujan identities	Mod 10 $\leadsto \operatorname{Mod} 5$

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Algebra	Products	Mod
$A_{3}^{(2)}$	Alladi's companion to Schur's identity	$\operatorname{Mod} 6$
$A_{5}^{(2)}$	Göllnitz-Gordon identities	$\operatorname{Mod} 8$
$A_{7}^{(2)}$	Rogers-Ramanujan identities	Mod 10 $\sim \operatorname{Mod} 5$
$A_{9}^{(2)}$???	$\operatorname{Mod} 12$

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Algebra	Products	Mod
$A_{3}^{(2)}$	Alladi's companion to Schur's identity	Mod 6
$A_{5}^{(2)}$	Göllnitz-Gordon identities	Mod 8
$A_{7}^{(2)}$	Rogers-Ramanujan identities	Mod 10 $\sim \operatorname{Mod} 5$
$A_{9}^{(2)}$???	Mod 12
$A_{11}^{(2)}$	Nandi's products	Mod 14

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Algebra	Products	Mod
$A_{3}^{(2)}$	Alladi's companion to Schur's identity	$\operatorname{Mod} 6$
$A_{5}^{(2)}$	Göllnitz-Gordon identities	$\operatorname{Mod} 8$
$A_{7}^{(2)}$	Rogers-Ramanujan identities	Mod 10 $\leadsto \operatorname{Mod} 5$
$A_{9}^{(2)}$???	$\operatorname{Mod} 12$
$A_{11}^{(2)}$	Nandi's products	$\operatorname{Mod} 14$

Here one has to conjecture identities based on educated guesses

Look at those level 2 modules for $A_{\text {odd }}^{(2)}$ that are contained in the (vector space) tensor product of inequivalent level 1 modules.

Algebra	Products	Mod
$A_{3}^{(2)}$	Alladi's companion to Schur's identity	Mod 6
$A_{5}^{(2)}$	Göllnitz-Gordon identities	Mod 8
$A_{7}^{(2)}$	Rogers-Ramanujan identities	Mod 10 $\sim \operatorname{Mod} 5$
$A_{9}^{(2)}$???	Mod 12
$A_{11}^{(2)}$	Nandi's products	Mod 14

Here one has to conjecture identities based on educated guesses unless one is ready to do some extremely tedious algebraic computations

Module	Product
$L\left(\Lambda_{0}+\Lambda_{1}\right)$	$\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}^{-1}$
$L\left(\Lambda_{3}\right)$	$\left(q^{6} ; q^{12}\right)_{\infty}\left(q^{2}, q^{3}, q^{4}, q^{8}, q^{9}, q^{10} ; q^{12}\right)_{\infty}^{-1}$
$L\left(\Lambda_{5}\right)$	$\left(q^{4}, q^{5}, q^{6}, q^{7}, q^{8} ; q^{12}\right)_{\infty}^{-1}$

Module	Product
$L\left(\Lambda_{0}+\Lambda_{1}\right)$	$\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}^{-1}$
$L\left(\Lambda_{3}\right)$	$\left(q^{6} ; q^{12}\right)_{\infty}\left(q^{2}, q^{3}, q^{4}, q^{8}, q^{9}, q^{10} ; q^{12}\right)_{\infty}^{-1}$
$L\left(\Lambda_{5}\right)$	$\left(q^{4}, q^{5}, q^{6}, q^{7}, q^{8} ; q^{12}\right)_{\infty}^{-1}$

Should have partition-theoretic sum-sides differing only in initial conditions.

Condition (e) (common to all three):

Condition (common to all three):

- No consecutive parts allowed.

Condition () (common to all three):

- No consecutive parts allowed.
- Odd parts do not repeat.

Condition () (common to all three):

- No consecutive parts allowed.
- Odd parts do not repeat.
- Even parts appear at most twice.

Condition () (common to all three):

- No consecutive parts allowed.
- Odd parts do not repeat.
- Even parts appear at most twice.
- If a part $2 j$ appears twice then $2 j \pm 3,2 j \pm 2$ are forbidden.

Condition () (common to all three):

- No consecutive parts allowed.
- Odd parts do not repeat.
- Even parts appear at most twice.
- If a part $2 j$ appears twice then $2 j \pm 3,2 j \pm 2$ are forbidden. (Also an additional copy of $2 j$ or a $2 j \pm 1$ are forbidden.)

Condition ${ }^{()}$(common to all three):

- No consecutive parts allowed.
- Odd parts do not repeat.
- Even parts appear at most twice.
- If a part $2 j$ appears twice then $2 j \pm 3,2 j \pm 2$ are forbidden. (Also an additional copy of $2 j$ or a $2 j \pm 1$ are forbidden.)

Product	Partition-theoretic sum-side
$\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}^{-1}$	Condition $;$ and no $2+2 \mathrm{~s}$

Condition () (common to all three):

- No consecutive parts allowed.
- Odd parts do not repeat.
- Even parts appear at most twice.
- If a part $2 j$ appears twice then $2 j \pm 3,2 j \pm 2$ are forbidden. (Also an additional copy of $2 j$ or a $2 j \pm 1$ are forbidden.)

Product	Partition-theoretic sum-side
$\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}^{-1}$	Condition Θ and no $2+2 \mathrm{~s}$
$\left(q^{6} ; q^{12}\right)_{\infty}\left(q^{2}, q^{3}, q^{4}, q^{8}, q^{9}, q^{10} ; q^{12}\right)_{\infty}^{-1}$	Condition Θ and no 1 s

Condition $)^{()}$(common to all three):

- No consecutive parts allowed.
- Odd parts do not repeat.
- Even parts appear at most twice.
- If a part $2 j$ appears twice then $2 j \pm 3,2 j \pm 2$ are forbidden. (Also an additional copy of $2 j$ or a $2 j \pm 1$ are forbidden.)

Product	Partition-theoretic sum-side
$\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}^{-1}$	Condition Θ and no $2+2 \mathrm{~s}$
$\left(q^{6} ; q^{12}\right)_{\infty}\left(q^{2}, q^{3}, q^{4}, q^{8}, q^{9}, q^{10} ; q^{12}\right)_{\infty}^{-1}$	Condition Θ and no 1 s
$\left(q^{4}, q^{5}, q^{6}, q^{7}, q^{8} ; q^{12}\right)_{\infty}^{-1}$	Condition Θ and no 1,2 or 3 s

Remove 2-staircase

Remove 2-staircase \leadsto Jagged partitions

Remove 2-staircase \leadsto Jagged partitions $\leadsto(x, q)$ g.f.

Remove 2-staircase \leadsto Jagged partitions $\leadsto(x, q)$ g.f. \leadsto Reinstate the 2-staircase

Remove 2-staircase \leadsto Jagged partitions $\leadsto(x, q)$ g.f. \leadsto Reinstate the 2-staircase $\leadsto x \mapsto 1$

Remove 2-staircase \leadsto Jagged partitions $\leadsto(x, q)$ g.f. \leadsto Reinstate the 2-staircase $\leadsto x \mapsto 1 \leadsto$ Analytic sum-sides

Remove 2-staircase \leadsto Jagged partitions $\leadsto(x, q)$ g.f. \leadsto Reinstate the 2-staircase $\leadsto x \mapsto 1 \leadsto$ Analytic sum-sides

$$
\begin{aligned}
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+i+6 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+2 i+2 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{6} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{4}, q^{8}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+4 i+6 j+12 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{4}, q^{5}, q^{6}, q^{7}, q^{8} ; q^{12}\right)_{\infty}}
\end{aligned}
$$

Remove 2-staircase \leadsto Jagged partitions $\leadsto(x, q)$ g.f. \leadsto Reinstate the 2-staircase $\leadsto x \mapsto 1 \leadsto$ Analytic sum-sides

$$
\begin{aligned}
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+i+6 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+2 i+2 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{6} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{4}, q^{8}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+4 i+6 j+12 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{4}, q^{5}, q^{6}, q^{7}, q^{8} ; q^{12}\right)_{\infty}}
\end{aligned}
$$

Analytic sum-sides differ only in the linear term in the exponent of q.

Remove 2-staircase \leadsto Jagged partitions $\leadsto(x, q)$ g.f. \leadsto Reinstate the 2-staircase $\leadsto x \mapsto 1 \leadsto$ Analytic sum-sides

$$
\begin{aligned}
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+i+6 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{6}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+2 i+2 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{6} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{4}, q^{8}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0}(-1)^{k} \frac{q^{(i+2 j+3 k)(i+2 j+3 k-1)+3 k^{2}+4 i+6 j+12 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{4}, q^{5}, q^{6}, q^{7}, q^{8} ; q^{12}\right)_{\infty}}
\end{aligned}
$$

Analytic sum-sides differ only in the linear term in the exponent of q.
\leadsto Vary this term!

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 i j+6 i k+4 i^{2}+12 j i k+22 k^{2}+i-3 j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 i k+12 k^{2}-2 j-3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.q^{2}+4 j+6 i k+4\right)^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{1}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}-j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right) j\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i-3 j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-2 j-3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}}
\end{aligned}
$$

Observe the pairings on the products.

$$
\begin{aligned}
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i-3 j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-2 j-3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
\sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}} & =\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}}
\end{aligned}
$$

Observe the pairings on the products. [1]-[5],

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i-3 j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-2 j-3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i 2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i+2 j+3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}} \\
& \text { Observe the pairings on the products. } \quad[1]-[5], \quad[2]-[6],
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i-3 j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i 2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-2 j-3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}-j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{i^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}} \\
& \text { Observe the pairings on the products. } \quad[1]-[5], \quad[2]-[6], \quad[3]-[4]
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 j j+6 i k+4\right)^{2}+12 j k+12 k^{2}+j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 i j+6 i k+4 j^{2}+12 j k+22 k^{2}+i-3 j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{i^{2}}+4 i j+6 i k+4\right)^{2}+12 i k+12 k^{2}-2 j-3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{q^{2}+4 i j+6 i k+4 j^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 i j+6 i k+4\right)^{2}+12 i k+12 k^{2}-j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}} \\
& \text { Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4] } \\
& \text { Remove stairs, get partition sum-sides. }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 i j+6 i k+4\right)^{2}+12 j k+22^{2} k^{2}+i-3 j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j\right)}\left(q ;(i k+4)^{2}+12 i j k+12 k^{2}-2 j-3 k\right.}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.q^{2}+4 j j+6 i k+4\right)^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}-j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}} \\
& \text { Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4] } \\
& \text { Remove stairs, get partition sum-sides. [1]-[2], }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+j}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 i j+6 i k+4 j^{2}+12 j k+22 k^{2}+i-3 j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{i^{2}}+4 j j+6 i k+4\right)^{2}+12 j k+212 k^{2}-2 j-3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+i+2 j+3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{1}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}-j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}} \\
& \text { Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4] } \\
& \text { Remove stairs, get partition sum-sides. [1]-[2], [3]-[4], }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 j j+6 i k+4\right)^{2}+12 j k+12 k^{2}+j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 i j+6 i k+4 i^{2}+12 j i k+22 k^{2}+i-3 j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 j j+6 i k+4\right)^{2}+12 i k+12 k^{2}-2 j-3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{q^{2}+4 j+6 i k+4 j^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}-j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right) j\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}}
\end{aligned}
$$

Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4] Remove stairs, get partition sum-sides. [1]-[2], [3]-[4], [5]-[6]

$$
\begin{aligned}
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 j j+6 i k+4 j^{2}+22 j k+12 k^{2}+j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{4}, q^{5}, q^{9}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{2}+4 i j+6 i k+4 i^{2}+12 j i k+22 k^{2}+i-3 j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{5}, q^{7}, q^{8}, q^{9} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{i^{2}}+4 i j+6 i k+4\right)^{2}+12 i k k+2 k^{2}-2 j-3 k}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{3} ; q^{12}\right)_{\infty}}{\left(q, q^{2}, q^{5}, q^{6}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.q^{2}+4 j j+6 i k+4\right)^{2}+12 j k+12 k^{2}+i+2 j+3 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{\left(q^{9} ; q^{12}\right)_{\infty}}{\left(q^{2}, q^{3}, q^{6}, q^{7}, q^{10}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{\left.(-1)^{k} q^{1}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}-j}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q, q^{3}, q^{7}, q^{8}, q^{11} ; q^{12}\right)_{\infty}} \\
& \sum_{i, j, k \geq 0} \frac{(-1)^{k} q^{\left.i^{2}+4 i j+6 i k+4\right)^{2}+12 j k+12 k^{2}+2 i+3 j+6 k}}{(q ; q)_{i}\left(q^{4} ; q^{4}\right)_{j}\left(q^{6} ; q^{6}\right)_{k}}=\frac{1}{\left(q^{3}, q^{4}, q^{5}, q^{7}, q^{11} ; q^{12}\right)_{\infty}} \\
& \text { Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4] } \\
& \text { Remove stairs, get partition sum-sides. [1]-[2], [3]-[4], [5]-[6] }
\end{aligned}
$$

Evidence

- Can verify up to partitions of 500 using recursions/expansions.

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.
- Let

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.
- Let
$x=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{2}(q)}$

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.
- Let
$x=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{2}(q)} \quad y=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{3}(q)}$

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.
- Let
$x=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{2}(q)} \quad y=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{3}(q)} \quad z=\lim _{q \rightarrow 1^{-}} \frac{S_{2}(q)}{S_{3}(q)}$.

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.
- Let
$x=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{2}(q)} \quad y=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{3}(q)} \quad z=\lim _{q \rightarrow 1^{-}} \frac{S_{2}(q)}{S_{3}(q)}$.
Limits coming from sum-side match the ones coming from product-sides

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.
- Let
$x=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{2}(q)} \quad y=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{3}(q)} \quad z=\lim _{q \rightarrow 1^{-}} \frac{S_{2}(q)}{S_{3}(q)}$.
Limits coming from sum-side match the ones coming from product-sides (assuming the limits from sum-sides exist). Namely,

Evidence

- Can verify up to partitions of 500 using recursions/expansions.
- $S_{1}=S_{2}+q S_{3}$ where $S_{i} \leftrightarrow$ Identity i for $A_{9}^{(2)}$.
- Let
$x=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{2}(q)} \quad y=\lim _{q \rightarrow 1^{-}} \frac{S_{1}(q)}{S_{3}(q)} \quad z=\lim _{q \rightarrow 1^{-}} \frac{S_{2}(q)}{S_{3}(q)}$.
Limits coming from sum-side match the ones coming from product-sides (assuming the limits from sum-sides exist). Namely,

$$
x=\frac{\sqrt{3}+1}{2} \quad y=2+\sqrt{3} \quad z=1+\sqrt{3}
$$

