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1. Preliminaries



Partitions

Partitions will be written most of the times in a weakly increasing order.

Example: 9 = 1+ 2+ 3+ 3.

Generating function: ∑
n≥0

p(n)qn =
∏
n≥1

1
1− qn

We will never bother with analytic convergence; everything is a
purely formal power series identity.

Pochhamer symbols:

(a; q)j = (1− a)(1− aq) . . . (1− aqj−1)
(q; q)j = (1− q)(1− q2) . . . (1− aqj)

(a; q)∞ = (1− a)(1− aq) . . .
(a1,a2,a3, . . . ; q)t = (a1;q)t(a2;q)t(a3;q)t . . . .
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Rogers-Ramanujan identities

Discovered by:

L. J. Rogers (1894) S. Ramanujan (1913) I. Schur (1917)

RR 1
Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part ≡ 1, 4 (mod 5)

Example
9 = 9 9 = 9
= 1+ 8 = 1+ 1+ 1+ 6
= 2+ 7 = 1+ 4+ 4
= 3+ 6 = 1+ 1+ 1+ 1+ 1+ 4
= 1+ 3+ 5 = 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

↑ difference-2 partitions ↑ partitions with ≡ 1, 4 (mod 5)

2
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Generating functions

Generating functions:∑
n≥0

pdifference 2(n)qn =
1

(1− q)(1− q4)(1− q6)(1− q9) . . .

1+ q1
(1− q) +

q4
(1− q)(1− q2) + · · ·+ qn2

(1− q) . . . (1− qn) + . . .

=
1

(1− q)(1− q4)(1− q6)(1− q9) . . .
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Partition-theoretic sum-side
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Sum-sides

1+ 3+ 6+ 8

1+ 1+ 2+ 2
• • • • • • • •
• • • • • •
• • •
•

∼∼I
Remove the
2-staircase

∼∼I

• •
• •
•
•

RR partitions
of length 4

⇐= Bijection =⇒
Partitions
of length 4

x4q2+4+6 · q4
(q;q)4

J∼∼
Put back
2-staircase

J∼∼
x4 · q4
(q;q)4

∑
ℓ≥0

xℓqℓ(ℓ−1) · qℓ
(q;q)ℓ

J∼∼2-staircase ∼∼I
∑
ℓ≥0

xℓ · qℓ
(q;q)ℓ

4
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Jagged partitions

• • • • • • • • • • • •
• • • • • • • • • • •
• • • •
• • • •
• • •
•

 Remove
2-staircase

 

• •
• • •

× ×

•
•

1+ 3+ 4+ 4+ 11+ 12

 Remove
2-staircase

 1, 1, 0,−2, 3, 2

Jagged partition

5
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Pick a side

Partition-
theoretic
Sum-side

Analytic
sum-side

Product side
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Rogers-Ramanujan 2

RR 1:

∑
n≥0

qn2

(q;q)n
=

∏
m≡±1 (mod 5)

1
(1− qm)

See whether for any C,
∑
n≥0

qn2+Cn
(q;q)n

is a product.

RR 2: Analytic version∑
n≥0

qn2+n
(q;q)n

=
∏

m≡±2 (mod 5)

1
(1− qm)

Now, experiment if there is a partition-theoretic sum-side:

RR 2
Partitions of n whose adjacent parts differ by at least 2 and
whose smallest part is at least 2
are equinumerous with
partitions of n with each part ≡ 2, 3 (mod 5)

7
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A few generalizations

Andrews-Gordon: (mod 7)

Partitions of n where parts satisfy distance at least 2 at distance 2

are equinumerous with

partitions whose parts are ̸≡ 0,±3 (mod 7).

• Analytic sum-side:
∑

n1,n2≥0

qn21+2n22+2n1n2
(q;q)n1(q;q)n2

.

• Deform the q exponent by a linear term
∼∼I Two other identities : ̸≡ 0,±i (mod 7), i = 1, 2.
Guess the partition sum-sides ∼∼I Differ in “initial conditions”.

• In general, there are such identities for all odd moduli:
(mod 2k+ 1).

• For even moduli, one more condition on partition-theoretic
sum-sides ∼∼∼I Andrews-Bressoud identities.
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2. Context



[1] RR and principal subspaces

A = C[x−1, x−2, x−3, . . . ].

r−2 = x−1x−1 = x2−1
r−3 = x−1x−2 + x−2x−1 = 2x−1x−2
r−4 = x−1x−3 + x−2x−3 + x−3x−1 = x2−2 + 2x−1x−3
r−5 = x−1x−4 + x−2x−3 + x−3x−2 + x−4x−1 = 2x−2x−3 + 2x−1x−4

and so on consider r−j, j ≥ 2.

W = A/ (A⟨r−2, r−3, r−4, . . . ⟩)

Definition (actually, a Theorem of Calinescu-Lepowsky-Milas):
Principal Subspace
This is the principal subspace of level 1 “vacuum module” of ŝl2.
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• W has a basis of monomials satisfying difference-2 conditions.
(proved by several people in different contexts)

• Graded dimension of W = First RR.
• The “other” standard module for sl2 at level 1 gives the second RR.
• Higher level for sl2: Andrews-Gordon identities
• Change sl2: Noncommutative algebras. [Work of Butorac,
Capparelli, Calinescu, Georgiev, Lepowsky, Milas, Penn, Primc,
Trupčević, Sadowski,...]
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Construct a Koszul complex related to the highly non-regular
sequence {r−2, r−3, r−4, . . . }

· · · C3 =
⊕

i1,i2≤−2

Aξ i1, i2
∂3−→ C2 =

⊕
i1≤−2

Aξ i1
∂2−→ C1 = A ∂1−→ C0 = W� 0

ξ··· ,i,··· , j,··· = · · · ∧ ξi ∧ · · · ∧ ξj ∧ · · · = −ξ··· , j,··· ,i,···.

∂k+1(ξ−i1,−i2,··· ,−ik) =
k∑
n=1

(−1)n−1 · r−in · ξ−i1,−i2,··· ,−̂in,··· ,−ik .

The homology of this complex captures “relations” amongst the
elements r−2, r−3, r−4, . . . .
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A certain limit, Kh(T(n,∞)), called the stable unreduced Khovanov
homology of torus knots, exists (Stošić).

Conjecture (Gorsky-Oblomkov-Rasmussen ‘12)
Kh(T(n,∞)) is dual to the homology of the Koszul complex
determined by the elements r−2, . . . , r−n−1. (Note: their gradings
are different than ours.)
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[2] RR and affine Lie algebras

g : affine Lie algebra.

αi : for i = 0, . . . , t positive simple roots of g.
L(λ) : integrable, highest weight module for g, with highest
weight λ
ℓ : the level of L(λ), ℓ = λ(c). Note that ℓ ∈ N.
ch(L(λ)) : the “character” of L(λ)

ch(L(λ)) = N(λ)
D(g)

∈ eλZ[[e−α0 , . . . , e−αt ]].

χ(L(λ)) : the “principally specialized” character of L(λ),

χ(L(λ)) =
(
e−λ ch(L(λ))

)∣∣
e−α0 ,...,e−αt 7→ q .
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Principally specialized characters

Theorem
Principally specialized characters of integrable modules are infinite
periodic products.

Example: g = ŝl2 = A(1)1 .

χ(L(Λ0)) = χ(L(Λ1)) =
∏
n≥0

(1− q2n+1)−1 = F(q)

χ(L(3Λ0)) = χ(L(3Λ1))

= F(q) ·
∏
n≥0

(1− q5n+2)−1(1− q5n+3)−1

χ(L(2Λ0 + Λ1)) = χ(L(Λ1 + 2Λ0))

= F(q) ·
∏
n≥0

(1− q5n+1)−1(1− q5n+4)−1

.

Second factor: character of the “vacuum space”.
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Sum sides (Fermionic sides)

• The product sides of Rogers-Ramanujan type identities are
obtained by Weyl-Kac character formula + Lepowsky’s numerator
formula

(remove the fudge factor).
• For the sum sides, Lepowsky and Wilson invented a new
mechanism: Z-algebras.

• Sum sides are given by explicitly building a basis using
Z-monomials. Elements of this basis are enumerated by the
partitions counted in sum sides.

• Start with a (large) spanning set and reduce it using
vertex-operator-algebraic relations between Z-modes.

• In many cases, one ends up with a small enough spanning set: a
“half-proved” conjectural identity.
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Many other ways to mine identities:

• Meurman and Primc: Look at the entire modules, not just vacuum
spaces.
∼∼∼I new identities found by Meurman-Primc, Siladić (proved by
Dousse), Primc-Šikić.

• Beyond principal specializations: Analytic sum-sides are given by
Hall-Littlewood polynomials. (Ole Warnaar)
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Algebra(s) Level(s) Identities

A(1)1 ,A(2)2 ,A(2)7
G(1)
2 , F(1)4

3,2,2,1,1 Rogers-Ramanujan

A(1)1 ℓ ∈ N Gordon-Andrews, Andrews-Bressoud

A(1)N , C(1)N 2,1 Gordon-Andrews, Andrews-Bressoud

A(2)2 3 Capparelli [1988]

A(2)2 4 Nandi’s conjectures [2014]

A(2)5 2 Göllnitz-Gordon [K. 2017]

D(3)
4 3 Mod-9 conjectures [K.-Russell 2015]

A(2)9 2 Mod-12 conjectures [K.-Russell 2018]
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Capparelli’s identities for A(2)2 level 3

Capparelli’s identity
Partitions of n into distinct parts ̸≡ ±1 (mod 6)

are equinumerous with

partitions of n = π1 + · · ·+ πt with

I Smallest part π1 is at least 2
I Adjacent parts differ by at least 2
I 2 ≤ πi+1 − πi ≤ 3 =⇒ πi + πi+1 ≡ 0 (mod 3).

One more identity.

Proofs by Andrews, Andrews-Alladi-Gordon, Tamba-Xie, Capparelli,
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Nandi’s conjectures for A(2)2 level 4

Conjecture: Nandi (2014), a slight reformulation due to A. Sills
Number of partitions of n into parts ≡ ±2,±3,±4 (mod 14) is the
same as number of partitions n = π1 + · · ·+ πt with:

I π1 ̸= 1
I πi+1 − πi ≥ 2 and πi+2 − πi ≥ 3
I πi+2 − πi = 3 =⇒ πi+1 ̸= πi+2
I πi+2 − πi = 3, πi+2 odd =⇒ πi ̸= πi+1
I πi+2 − πi = 4, πi+2 odd =⇒ πi+1 ̸= πi+2
I Let: ∆ = (π2 − π1, π3 − π2, . . . , πt − πt−1).
None of the following are subwords of ∆ :

(0, 3, 3), (0, 3, 2, 3), (0, 3, 2, 2, 3) . . . ad infinitum.

The point
It is getting harder to implement Z-algebras to mine new identities.
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3. Experimental strategies:
Sums to products



The key: Euler’s algorithm

Given a power series

f(q) = 1+ qN[[q]],

there exists a unique sequence {am}m≥1
of integers such that

f(q) = 1
(1− q)a1 (1− q2)a2 (1− q3)a3 (1− q4)a4 . . . .

Moreover, a1,a2 . . .aN are completely determined by the expansion
of f up to coefficient of qN.

Inverse Euler Transform
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Sum to products: I

• Generate a class of partitions (generalize the conditions in
Capparelli ’s identities for A(2)2 level 3)

• Get first few coefficients (30 or so) of their generating function

f(q) ∈ 1+ qN[[q]]

• Factor the generating function f using Euler’s algorithm
• See if the product representation of f has nice patterns.
• If so, verify the identity further to strike out false positives.
• Check if the product comes from affine Lie algebras.
• 6 new identities found this way by K.-Russell (2014):
3 of these related to D(3)

4 level 3
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Symmetric conjectures

Condition ,

Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or 1⇒ their sum is divisible by 3.

I1 Partitions of n satisfying Condition ,
are equinumerous with
partitions of n with each part ≡ ±1,±3 (mod 9)

I2 Partitions of n satisfying Condition ,
with smallest part at least 2 are equinumerous with
partitions of n with each part ≡ ±2,±3 (mod 9)

I3 Partitions of n satisfying Condition ,
with smallest part at least 3 are equinumerous with
partitions of n with each part ≡ ±3,±4 (mod 9)
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Mod 9 asymmetric conjectures

Recall:

Condition ,

Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or 1⇒ their sum is divisible by 3.

I4 Partitions of n satisfying difference at least 3 at distance 2 and
two consecutive parts differ by 0 or 1⇒ their sum is ≡ 2
(mod 3) and
smallest part at least 2
are equinumerous with
partitions of n with each part ≡ 2, 3, 5, 8 (mod 9)
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Mod 12 asymmetric conjectures

Condition 😈t

Difference at least 3 at distance 3 and

if parts at distance two differ by at most 1, then their sum (together
with the intermediate part) is ≡ t (mod 3), and

smallest part at least t and at most one occurance of t in the
partition.

I5 Partitions of n satisfying Condition 😈1
are equinumerous with
partitions of n with each part ≡ 1, 3, 4, 6, 7, 10, 11 (mod 12).

I6 Partitions of n satisfying Condition 😈2
are equinumerous with
partitions of n with each part ≡ 2, 3, 5, 6, 7, 8, 11 (mod 12).
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Matthew C. Russell in his Rutgers Ph.D. Thesis found companions
I4a, I5a, I6a whose products sides involved “negatives” of the residues
of the asymmetric product sides.

Difference on the partition-theoretic sum-sides: only in the initial
condition.

25



Sums to products: II

• Need a better search space to inch closer to Nandi’s conditions

• Look closer into Lepowsky-Wilson’s mechanism
• Forbid sub-partitions based on how “flat” they are, along with
additional requirements.

3+ 3+ 2+ 2 < 3+ 3+ 3+ 1 < 4+ 2+ 2+ 2 < 4+ 3+ 2+ 1
< 4+ 4+ 1+ 1 < 5+ 2+ 2+ 1 < 5+ 3+ 1+ 1
< 6+ 2+ 1+ 1 < 7+ 1+ 1+ 1.

• Rogers-Ramanujan: Forbid “flattest” length-2 partition of any
integer from appearing as a sub-partition:

forbid the appearance of i+ i, (i+ 1) + i
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Impose such conditions: Forbid the ath “flattest”

length k
partition of any m such that m ≡ x (mod y) from appearing as a
sub-partition.
Many new (infinite) families of identities found.
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Some new identities

K.-Nandi-Russell, 20??

The partitions of any non-negative integer in which each part is
divisible by either 3 or 4

are equinumerous with

partitions of the same integer where:

I Difference between successive parts is not 1, 2 or 5,
I Smallest part is not 1, 2 or 5.

This identity generalizes to a pair of co-prime integers (p,q) in place
of (3, 4).

(2, 3) gives a well known “sequence avoiding” identity of MacMahon.

(2, 2t+ 1) already found by Andrews.
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Conjecture: K.-Nandi-Russell, 20??
Partitions of n where parts are ≡ 0, 2, 4, 5 (mod 6)

are equinumerous with partitions on n where

I An odd part 2j + 1 is not immediately adjacent to either of 2j or
2j− 2.

I Smallest part is not equal to 1 or 3.

Can be embedded in an infinite family.

Recently, Matthew C. Russell found a bijective proof!

... there are several more.
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Conjecture: K.-Nandi-Russell, 20??
[Verified up to partitions of n = 1000]

Product: ≡ 0, 2, 3 (mod 6).

Sum-side:

I If the difference between adjacent parts is 0 then their sum is
̸≡ 4 (mod 6).

I Difference between adjacent parts is not 1.
I If the difference between adjacent parts is 2 or 3 then their sum
is ̸≡ 1 (mod 3).

I If the difference between adjacent parts is 5 then their sum is
̸≡ 1 (mod 6).

I Initial condition is given by a fictitious zero, i.e., smallest part can’t
be 1.
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4. Experimental strategies:
Products to sum



A(2)9

Look at those level 2 modules for A(2)odd that are contained in the
(vector space) tensor product of inequivalent level 1 modules.

Algebra Products Mod

A(2)3 Alladi’s companion to Schur’s identity Mod 6

A(2)5 Göllnitz-Gordon identities Mod 8

A(2)7 Rogers-Ramanujan identities Mod 10 ∼∼I Mod 5

A(2)9 ??? Mod 12

A(2)11 Nandi’s products Mod 14

Here one has to conjecture identities based on educated guesses
unless one is ready to do some extremely tedious algebraic computations
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==⇐=

α1

α0

α2 α3 α4 α51

1

2 2 2 2

Module Product

L(Λ0 + Λ1)
(
q, q4, q6, q8, q11; q12

)−1
∞

L(Λ3)
(
q6; q12

)
∞

(
q2, q3, q4, q8, q9, q10; q12

)−1
∞

L(Λ5)
(
q4, q5, q6, q7, q8; q12

)−1
∞

Should have partition-theoretic sum-sides differing only in initial
conditions.
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Condition 😎 (common to all three):

I No consecutive parts allowed.
I Odd parts do not repeat.
I Even parts appear at most twice.
I If a part 2j appears twice then 2j± 3, 2j± 2 are forbidden. (Also
an additional copy of 2j or a 2j± 1 are forbidden.)

Product Partition-theoretic sum-side(
q, q4, q6, q8, q11; q12

)−1
∞ Condition 😎 and no 2+ 2 s

(
q6; q12

)
∞

(
q2, q3, q4, q8, q9, q10; q12

)−1
∞ Condition 😎 and no 1 s

(
q4, q5, q6, q7, q8; q12

)−1
∞ Condition 😎 and no 1, 2 or 3 s
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Remove 2-staircase

∼∼∼I Jagged partitions ∼∼∼I (x,q) g.f. ∼∼∼I
Reinstate the 2-staircase ∼∼∼I x 7→ 1 ∼∼∼I Analytic sum-sides

∑
i,j,k≥0

(−1)k q
(i+2j+3k)(i+2j+3k−1)+3k2+i+6j+6k

(q;q)i (q4;q4)j (q6;q6)k
=

1
(q,q4,q6,q8,q11; q12)∞∑

i,j,k≥0

(−1)k q
(i+2j+3k)(i+2j+3k−1)+3k2+2i+2j+6k

(q;q)i (q4;q4)j (q6;q6)k
=

(
q6; q12

)
∞

(q2,q3,q4,q8,q9,q10; q12)∞∑
i,j,k≥0

(−1)k q
(i+2j+3k)(i+2j+3k−1)+3k2+4i+6j+12k

(q;q)i (q4;q4)j (q6;q6)k
=

1
(q4,q5,q6,q7,q8; q12)∞

Analytic sum-sides differ only in the linear term in the exponent of q.

∼∼I Vary this term!
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Analytic sum-sides differ only in the linear term in the exponent of q.

∼∼I Vary this term!
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∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q4,q5,q9,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+i−3j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q5,q7,q8,q9;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2−2j−3k
(q;q)i (q4;q4)j (q6;q6)k

=

(
q3;q12

)
∞

(q,q2,q5,q6,q9,q10;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+i+2j+3k
(q;q)i (q4;q4)j (q6;q6)k

=
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q9;q12
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∞

(q2,q3,q6,q7,q10,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2−j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q3,q7,q8,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+2i+3j+6k
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q3,q4,q5,q7,q11;q12)∞

Observe the pairings on the products.

Remove stairs, get partition sum-sides.

35



∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q4,q5,q9,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+i−3j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q5,q7,q8,q9;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2−2j−3k
(q;q)i (q4;q4)j (q6;q6)k

=

(
q3;q12

)
∞

(q,q2,q5,q6,q9,q10;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+i+2j+3k
(q;q)i (q4;q4)j (q6;q6)k

=

(
q9;q12

)
∞

(q2,q3,q6,q7,q10,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2−j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q3,q7,q8,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+2i+3j+6k
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q3,q4,q5,q7,q11;q12)∞

Observe the pairings on the products.

Remove stairs, get partition sum-sides.
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Remove stairs, get partition sum-sides.
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(q3,q4,q5,q7,q11;q12)∞

Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4]

Remove stairs, get partition sum-sides. 35
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(−1)k qi2+4ij+6ik+4j2+12jk+12k2+2i+3j+6k
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q3,q4,q5,q7,q11;q12)∞

Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4]

Remove stairs, get partition sum-sides. [1]-[2], 35



∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+j
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(q3,q4,q5,q7,q11;q12)∞

Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4]

Remove stairs, get partition sum-sides. [1]-[2], [3]-[4], 35



∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+j
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1
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(q3,q4,q5,q7,q11;q12)∞

Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4]

Remove stairs, get partition sum-sides. [1]-[2], [3]-[4], [5]-[6] 35



∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q4,q5,q9,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+i−3j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q5,q7,q8,q9;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2−2j−3k
(q;q)i (q4;q4)j (q6;q6)k

=

(
q3;q12

)
∞

(q,q2,q5,q6,q9,q10;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+i+2j+3k
(q;q)i (q4;q4)j (q6;q6)k

=

(
q9;q12

)
∞

(q2,q3,q6,q7,q10,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2−j
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q,q3,q7,q8,q11;q12)∞∑
i,j,k≥0

(−1)k qi2+4ij+6ik+4j2+12jk+12k2+2i+3j+6k
(q;q)i (q4;q4)j (q6;q6)k

=
1

(q3,q4,q5,q7,q11;q12)∞

Observe the pairings on the products. [1]-[5], [2]-[6], [3]-[4]

Remove stairs, get partition sum-sides. [1]-[2], [3]-[4], [5]-[6] 35



Evidence

• Can verify up to partitions of 500 using recursions/expansions.

• S1 = S2 + qS3 where Si ↔ Identity i for A(2)9 .
• Let
x = lim

q→1−
S1(q)
S2(q)

y = lim
q→1−

S1(q)
S3(q)

z = lim
q→1−

S2(q)
S3(q)

.

Limits coming from sum-side match the ones coming from
product-sides (assuming the limits from sum-sides exist).
Namely,

x =
√
3+ 1
2 y = 2+

√
3 z = 1+

√
3.

36
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