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1 Introduction
The main objective of this workshop was to bring together a number of leading and emerging researchers
in the area of study of actions of discrete groups on Riemann and Klein surfaces and algebraic curves, and
related topics such as symmetric embeddings of graphs and dessins d’enfants on surfaces. It followed up on
a meeting held at the CIEM in Spain in 2010.

The last two decades have seen a burgeoning of activity in these fields, with various strands coming
together, exploiting the linkages established by Belyi and Grothendieck, and some increasingly useful tech-
niques from combinatorial and computational group theory. In particular, computational experiments and
searches have produced a wealth of examples (either for small genera or infinite families of a particular type),
and these serve as a useful test-bed for conjectures and potential new approaches.

2 Workshop format
The workshop began with introductory lectures, one on each of the eight themes, presented by experts in the
area. These addressed recent developments and described important open problems, and possible approaches
to answering them. Then the participants formed groups to work separately on the first four themes from
late morning on the Tuesday to lunchtime on the Wednesday, and rearranged into new groups to work on the
other four themes from the Wednesday afternoon to the Friday morning.

Also during the week an opportunity was given for open problems to be presented, and ten short talks
were presented by workshop participants on topics related to the workshop themes, on the Monday, Tuesday
and Wednesday afternoons. A conference excursion was made to Lake Louise on the Thursday afternoon,
and enjoyed by all who took part in that.

3 Themes
Introductory talks on the main themes of the workshop were given on the first two days, as follows:

• Theme 1: Regular and edge-transitive maps,
introduced by Marston Conder and Tom Tucker
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• Theme 2: Dessins d’enfants, Belyi’s theorem and Galois action,
introduced by Gabino González-Diez and Ernesto Girondo

• Theme 3: Defining equations for Riemann surfaces,
introduced by Allen Broughton and Aaron Wootton

• Theme 4: Polytopes, hypertopes, maps and maniplexes,
introduced by Dimitri Leemans

• Theme 5: Cayley maps and skew morphisms,
introduced by Robert Jajcay

• Theme 6: n-gonal automorphisms of Riemann surfaces,
introduced by Mariela Carvacho

• Theme 7: External symmetries of regular maps,
introduced by Jozef Širáň

• Theme 8: Pseudo-real surfaces, and large automorphism groups of surfaces,
introduced by Javier Cirre and Grzegorz Gromadzki.

4 Working groups
Below we report on the activities of the eight working groups that were formed during the workshop. The
first four convened early in the week, with two of them merging together, and the last four convened in the
second half of the workshop.

4.1 Regular and Edge-Transitive Maps
[Workshop leaders: Marston Conder, Jozef Širáň, and Tom Tucker]

By a ‘map’ we mean a 2-cell embedding of a connected graph or multigraph on a closed surface (which
may be orientable or non-orientable). Such a map M is edge-transitive if its automorphism group Aut(M)
acts transitively on edges. Graver and Watkins [5] introduced a classification of such maps into 14 types,
according to the local effects of certain generators of the automorphism group. Then Širáň, Tucker and
Watkins [10] showed how to construct orientable maps of each type from certain presentations satisfying
an ‘index two subgroup and a ‘forbidden automorphism’ condition, and used this construction to give finite
orientable maps of each type with Aut(M) ∼= Sn for certain n.

Recently Jones [7] extended this work to surfaces with boundary, and among other things showed that
all but a small number of simple groups occur as the automorphism group of various edge-transitive maps of
all 14 types (with all of these maps being chiral or non-orientable). Gareth Jones was a co-organiser of this
workshop, but sadly was unable to attend, and so we made available to participants a copy of a talk that he
gave on edge-transitive maps at a BIRS meeting in Oaxaca in August 2017.

There have been only a few papers on edge-transitive maps published since 2001. Many questions have
been suggested by some of the above people and others for further study: classifying all such maps for a
given group or family of groups, or on a given surface, or for a given underlying graph or family of graphs;
determining the relative frequency of each type; and seeking generalisations, say to polytopes.

At this workshop, the working group spent time reviewing the 14 types of edge-transitive maps, including
important details about (a) the automorphism group G = Aut(M) with marked generators as a quotient of
some universal group U for the appropriate type, (b) the image G+ of the orientation-preserving subgroup
U+ of U and its meaning for orientability of the map, (c) the nature of forbidden automorphisms permuting
the marked generators and their inverses, and (d) the roles of duality and Petrie duality.

The working group then focused on one of the open problems described in the opening presentation on
the first day, namely Classifying the edge-transitive maps for which the subgroupG+ is abelian. This problem
turned out to be a great deal more complicated than the presenters had thought, but was highly illuminating.
The discussion concentrated mostly on a small number of the 14 types, and eventually led to the discovery
that there are no ET maps with abelian G+ for six of the 14 types, and there do exist such maps for six of the
other eight types. Two of the 14 types remained unresolved.
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This problem provided an excellent introduction to the study of edge-transitive maps, and clarified a
number of issues for the main presenters — indeed so much so that a publication on the findings is likely
(once the investigations are completed).

4.2 Belyi Theory
[Workshop leaders: Allen Broughton, Gabino González-Diez and Aaron Wootton]

This theme was combined with ‘Defining Equations for Surfaces’ — see the next subsection.

4.3 Defining Equations for Surfaces
[Workshop leaders: Allen Broughton, Gabino González-Diez and Aaron Wootton]

(a) Defining a surface.
In both of these themes, each surface S of interest typically has either a suitably ‘large’ group of automor-
phisms G, with quotient surface S/G having genus 0, or a ‘nicely structured’ branched covering π : S → P1

(n-gonal morphism). Such surfaces may be constructed in two different ways.

(b) Defining equations.
Let f1, . . . , fN−1 be homogeneous polynomials in X ∈ PN of varying degrees. In general, the algebraic
variety

V (f1, . . . , fN−1) =
{
X ∈ PN : f1(X) = · · · = fN−1(X) = 0

}
(1)

will be an irreducible, complex algebraic curve, and its normalisation will be a smooth surface. The desirable
case is a plane curve where N = 2.

(c) Group actions and monodromy groups.
A conformalG-action on S is described by the set of points {Q1, . . . , Qt} ⊂ P1 over which π : S → S/G =
P1 is ramified, and a t-tuple (c1, . . . , ct) of elements of G, called a generating vector, satisfying

G = 〈c1, . . . , ct〉 and c1c2 · · · ct = 1. (2)

The t-tuple (c1, . . . , ct) is determined by the monodromy of π : S → S/G.
More generally, given any branched cover π : S → P1 of degree n, ramified over {Q1, . . . , Qt}, a

transitive monodromy group Mπ ≤ Σn is determined by a monodromy system (p1, . . . , pt):

Mπ = 〈p1, . . . , pt〉 with p1p2 · · · pt = 1. (3)

The cycle structures of the permutations pi are determined by the cycle structures of the exceptional fibres
π−1(Qi). Conversely, given points {Q1, . . . , Qt} and systems as in (2) or (3), a branched covering surface S
may be defined. This is a typical starting point for defining S, and we want to determine a defining equation
for S as in (1).

(d) Quasi-platonic and Belyi surfaces.
Currently there is intense interest in quasi-platonic surfaces, Belyi surfaces, and their dessins d’enfant. Quasi-
platonic surfaces form the G-action case with t = 3, and Belyi surfaces include all monodromy groups with
t = 3. Both types of surfaces have equations defined over number fields, and the absolute Galois group acts
on both the surfaces and their dessins.

(e) Questions.
At the workshop, the following questions were posed:

• Given a group action of G or monodromy group Mπ with generating systems as in (2) and (3), is there
an algorithm to find defining equations as in (1)? The cyclic case is easy and well known. In the im-
portant Belyi surface case, Monien [9] and Voight et al [12] have developed computationally intensive
methods for determining equations.

• In the quasi-platonic case, can the G-action be used to speed up computation in the methods of Monien
and Voight? Are there estimates for the running time of these algorithms?
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• Can a set of defining equations as (1) be found so that the G-action is induced by a linear action of G
on the ambient space PN? See [11].

• What are the defining equations of a curve S with cyclic group of automorphisms G such that S/G has
genus 1? This generalises the cyclic n-gonal case.

(f) Discussion, outcomes, and further work.
The easy case of cyclic n-gonal surfaces was presented and discussed. The easy examples of explicit equa-
tions of higher genus Belyi surfaces have almost all been determined and exploited. Further work on Galois
action on dessins needs a good library of examples.

Hartmut Monien and John Voight gave extended presentations of their work (as mentioned above) on
constructing a defining equation for any monodromy triple given in (3). The monodromy triple is used to
compute a fundamental region for a Fuchsian group Π such that H/Π ∼= S. One then works with modular
forms for Π, using either numerical linear algebra or numerical PDEs.

The working group enthusiastically supported the future construction of a widely available data base of
equations for those surfaces of low genus or those defined by monodromy systems (generating vectors) of
interesting groups.

4.4 Maniplexes and Incidence Geometries
[Workshop leader: Dimitri Leemans]

This working group aimed to gain a better understanding of the link between maniplexes and incidence ge-
ometries, and to develop a kind of ‘dictionary’ that would permit people working in these fields to understand
each other’s research.

Steve Wilson introduced maniplexes as a means of constructing maps, either by drawing a structure on a
surface, or by assembling polygons (just as a 4-cube can be constructed by gluing 3-cubes along faces).

An (n+ 1)-maniplex is a set Ω of flags, together with an ordered set R = [r0, . . . , rn] of sets of pairs of
flags, where each ri may be seen as an involution permuting the flags. Then for 0 ≤ i < n, an i-face is a
connected component of Ri = ∪j 6=irj , and the 0-faces are called the vertices, the 1-faces called the edges,
and the n-faces called the facets. In particular, each facet is itself a maniplex.

The flag-graph of any polytope is a maniplex, but there are many other kinds of examples. A 1-maniplex
is just a set Ω of cardinality 2 (and is the flag graph of the graph K2, while a 2-maniplex is a polygon, and a
3-maniplex may be viewed as a transitive action of a non-degenerate string group.

The working group focused on understanding maniplexes as chamber systems of incidence geometries
obtained from polytopes. The group also worked on ways of removing the ‘string’ condition from the defi-
nition of maniplexes, and developing a notion of hyperplexes which could generalise hypermaps. This work
is still in progress, and is likely to enable people working on maniplexes to exploit research on incidence
geometries, and vice-versa.

4.5 Cayley Maps and Skew Morphisms
[Workshop leader: Robert Jajcay]

A skew-morphism of a group A is a permutation ϕ of A preserving the identity and a function π : A→ Z|ϕ|,
called the power function associated with ϕ, satisfying the property ϕ(ab) = ϕ(a)ϕπ(a)(b) for all a, b ∈ A.
Skew-morphisms were originally introduced for the study of regular Cayley maps, but eventually became
significant in the study of complementary cyclic group extensions.

An orientable mapM is called orientably-regular if for every pair of arcs ofM there exists an orientation-
preserving automorphism of M that takes the first arc to the second. A Cayley map CM(A,X, p) is an
embedding of a connected Cayley graph C(A,X), that has the same local orientation p at each vertex. All
left multiplications within the Cayley group A induce automorphisms of the Cayley map, and many of the
well-known families of orientably-regular maps turn out to be Cayley maps. A Cayley map CM(A,X, p) is
regular if and only if there exists a skew-morphism ϕ of A with the property that ϕ(x) = p(x) for all x ∈ X .
Thus regular Cayley maps on A correspond to orbits of skew-morphisms of A that generate A and are closed
under inverses.
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In the context of group extensions, if A is a group and ϕ is a skew-morphism of A, then the skew-product
of A and 〈ϕ〉 is defined as G = (A × 〈ϕ〉 , ∗) under the operation (a, ϕi) ∗ (b, ϕj) = (aϕi(b), ϕσ(i,j)), for
a suitably defined function σ(i, j). This product is a group, with a complementary factorisation G = AY .
Conversely, if G is any finite group with a complementary factorisation G = AY where Y is cyclic, then
the quotient G = G/CoreG(Y ) is a skew product group associated with the skew morphism ϕ. Hence the
classification of skew-morphisms of a finite group A allows for classification of all regular Cayley maps for
A, as well as all complementary extensions of a group G in the form G = AY with Y cyclic.

Much effort has been devoted recently to classifying skew-morphisms of various classes of groups. Clas-
sifications have been achieved for finite abelian groups of odd prime-power order, elementary abelian 2-
groups, and groups whose order is a product of two primes. (Various product results have also been found.) It
was announced at the workshop that the classification of skew-morphisms of finite dihedral groups has been
completed. The classification for all abelian finite groups now seems within reach. On the other side of the
spectrum, the classification of skew-morphisms of finite simple groups was also announced.

Also discussed at the workshop was a generalised definition of skew-morphisms, related to the concept
of a generalised Cayley map (which is a map admitting a group of automorphisms that acts regularly on
vertices). A suitable definition has been found, and basic properties have been determined. The concept
appears to be related to the theory of 2-extensions of groups.

4.6 n-gonal Surfaces
[Workshop leaders: Mariela Carvacho and Aaron Wootton]

An n-gonal morphism of a Riemann surface S is map φ : S → P1 of degree n, and an n-gonal surface is
one that exhibits such a φ. When φ is regular, we say that S is regular with group of deck transformations
deck(φ) = G. Literature on n-gonal morphisms is scant, most being limited to regular morphisms with
G = 〈σ〉 cyclic, and the so-called cyclic n-gonal surfaces) Most of the discussion at and after this workshop
focused on generalising known theory of cyclic n-gonal surfaces to other regular n-gonal surfaces.

(a) The cyclic n-gonal case.
A complete picture is known for cyclic n-gonal surfaces and their automorphism groups when n is a prime
number. This was made possible through a consequence of the Castelnuovo–Severi theorem, which states
that if the genus g of a cyclic p-gonal surface S satisfies g > (p − 1)2, then G = 〈σ〉 is normal in the full
automorphism group of S. When n is not prime, additional assumptions on the automorphism group, or on
the branching data of the quotient map φ : S → S/〈σ〉 = P1 yield a similar inequality. In particular, a similar
complete description appears to be tractable.

(b) Strong branching.
Much of the above theory depends on the concept of ‘strong branching’ and the normality of G. A covering
f : S1 → S2 of Riemann surfaces of degree n is said to be strongly branched if g1 > n2g2 + (n − 1)2,
where gi is the genus of Si (for i = 1, 2). Accola proved that when f is a strongly branched regular map with
deck(f) = G and G is simple, then GC Aut(S1).

(c) Questions.
At the workshop, the following questions were posed:

• What conditions can be imposed on G to ensure that G C Aut(S), and in particular, what weakening
of ‘strongly branched’ can be used?

• Given a regular n-gonal surface S, how can Aut(S) be computed for non-normal G?

(d) Discussion, outcomes and further work.

• It was proved that if the core of G in Aut(S) is trivial, then GC Aut(S) when φ is strongly branched.

• It was agreed that a list should be built of examples of pairs G < Aut(S) where S/G has genus 0, to
help provide a conjectural picture.

• Kay Magaard explained the work of Guralnick and Thompson on monodromy groups of rational maps.
It was envisioned that this could be used as a tool in answering the second question in (c) above.
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4.7 External Symmetries of Regular Maps
[Workshop leader: Jozef Širáň]

A map M on a surface is called regular if its automorphism group Aut(M) acts transitively on incident
vertex-edge-face triples. Every such map has constant valency m and constant face-size `, and this pair of
numbers defines the type ofM . Also every suchM may be identified with a presentation for its automorphism
group G in the form G = 〈 a, b, c | a2 = b2 = c2 = (ab)` = (bc)m = (ca)2 = . . . = 1 〉, as a quotient of the
full (`,m, 2)-triangle group, and denoted by the symbol M(G; a, b, c).

This working group explored duality, Petrie-duality and combinations of these, as well as exponents for
self-invariance under the Coxeter ‘hole’ operators. Together, these concepts are sometimes colloquially called
external symmetries of regular maps, and a regular map of type (`,m) is said to be kaleidoscopic if it admits
all exponents in the multiplicative group of units mod m.

A regular map M(G; a, b, c) is self-dual if its group G admits an automorphism that swaps a with c while
fixing b, and self-Petrie-dual if G admits an automorphism that swaps a with ac while fixing b and c, and
kaleidoscopic if for every unit j mod m the group G has an automorphism that fixes a and c while taking b to
(bc)jc. Then further, M is said to have trinity symmetry (or to be completely self-dual, or ‘self-everything’)
if it is both self-dual and self-Petrie-dual, and to be super-symmetric if it is kaleidoscopic and has trinity
symmetry as well.

In his introductory lecture, Jozef Širáň cited four research-driving questions:

(a) Does there exist a completely self-dual regular map of valency n for every odd n ≥ 5?

(b) Does there exist a kaleidoscopic completely self-dual regular map of valency n for every odd n ≥ 5?

(c) What kind of structure has the external symmetry group of a kaleidoscopic completely self-dual regular
map?

(d) Is it true that for every m ≥ 3 and every subgroup U of C∗m ×C2, there exists a non-orientable regular
map of valency m with exponent group U?

Affirmative answers to the first two questions for all even valencies are already known, and the analogue
of (d) in the orientable case was shown to be true by Conder and Širáň in [3]. Also for valency 8 it was also
shown by Conder, Kwon and Širáň [4] that the order of the external symmetry group can be larger than any
pre-assigned positive integer.

The working group focused on Question (a). Because explicit generating triples of involutions can be
found in the case where G = PSL(2, q) or G = PGL(2, q), it was suggested that suitable candidates for
completely self-dual regular maps of arbitrary valency m ≥ 5 should be sought in these families of groups.
Marston Conder checked and confirmed the feasibility of such an approach for odd valencies 5 to 17 (with the
help of the MAGMA computer system [2]), and he and Steve Wilson and Jozef Širáň made further suggestions
about how this problem might be approached algebraically. The group also had a brief discussion about a
possible approach to Question (b), using parallel products (which were developed several years ago by Steve
Wilson and recently re-considered by Gareth Jones).

Some of the participants in this working group will take these investigations further.

4.8 Pseudo-real Riemann Surfaces, and Large Group Actions on Surfaces
[Workshop leaders: Javier Cirre and Grzegorz Gromadzki]

A compact Riemann surface X is said to be pseudo-real if it admits anti-conformal automorphisms but
no such automorphisms of order 2. Any such surface lies in the so-called real moduli of the moduli space
of compact Riemann surfaces, but cannot be defined by real polynomials. There is no pseudo-real surface
of genus 0 or 1, but it has been known since 2010 that there exist pseudo-real surfaces of genus g for every
g ≥ 2.

An important aspect of current research on pseudo-real surfaces has to do with the largest order M(g) of
the full automorphism group of a pseudo-real surface of genus g ≥ 2. It is known that M(g) ≤ 12(g − 1),
and that this upper bound is attained for infinitely many values of g, but before this workshop, relatively little
was known about lower bounds for M(g). Accordingly, several questions regarding potential lower bounds
for M(g) were considered during the workshop. It was proved that M(g) ≥ 2g for all even g, and that
M(g) ≥ 4(g − 1) for all odd g. This left the question of sharpness of these lower bounds.
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In some work that took place after the workshop, a proof of sharpness of the bound M(g) ≥ 4(g− 1) for
odd g was obtained for a large (and likely infinite) set S of odd values of g. Sadly a similar theorem for even
genera seems well out of reach at this stage.

In the case of conformal actions on all Riemann surfaces, the values of the corresponding parameterM(g)
are known to lie between 8(g + 1) and 84(g − 1), by the celebrated theorems of Accola–Maclachlan [1, 8]
and Hurwitz [6] respectively. The precise values ofM(g) are known for 2 ≤ g ≤ 300 and for some particular
series of values for g, but despite a lot of work on the topic, this function is still not well understood.

Accordingly, instead of looking at individual values of M(g), it makes sense to study the asymptotic
properties of the function M , via the set Ad of accumulation points of the set A of values of the ratio
M(g)/g. It was known before the workshop that for the second derived set A(2) = (Ad)d, we have 12 ∈
A(2) ⊆ {8, 12}, and during the workshop we succeeded in essentially reducing the problem of deciding
whether or not 8 ∈ A(2) to deciding whether or not certain very particular Belyi actions exist.

Articles on both of the above topics are planned to be written.

5 Short talks
The following 20-minute talks on topics related to the workshop themes were given by workshop participants,
on the Monday, Tuesday and Wednesday afternoons:

• Jen Paulhus: A database of group actions
• Alina Vdovina: Buildings and generalisations of dessins
• Dimitri Leemans: Almost simple groups and polytopes
• Alexander Zvonkin: Diophantine invariants of dessins d’enfants
• Becca Winarski: Homomorphisms between mapping class groups of surfaces
• Roman Nedela: Skew morphisms of cyclic groups and complete regular dessins
• Charles Camacho: Counting quasiplatonic cyclic group actions of order n
• Shaofei Du: Nilpotent primer hypermaps with hypervertices of prime valency
• Milagros Izquierdo: Dessins d’enfants and a curve of Wiman
• Dimitri Leemans: Almost simple groups and polytopes
• David Torres: Teichmüller curves and Hilbert modular surfaces.

6 Organisers
• Marston Conder (University of Auckland, New Zealand)
• Nigel Boston (University of Wisconsin at Madison, USA)
• Gabino González-Diez (Universidad Autónoma de Madrid, Spain)
• Gareth Jones (University of Southampton, UK)
• Thomas Tucker (Colgate University, USA)
— helpfully assisted by
• Allen Broughton (Rose-Hulman Institute of Technology, USA)
• Aaron Wootton (University of Portland, USA)
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• Charles Camacho (Oregon State University, USA)
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• Jane Gilman (Rutgers University - Newark, USA)
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• Asia Ivic Weiss (York University, Canada)
• Milagros Izquierdo (University of Linköping, Sweden)
• Robert Jajcay (Comenius University Bratislava, Slovakia)
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