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1. Definitions

Topological Map M: a 2-cell embedding of a graph into a
surface. The embedded graph X is called the underlying graph of
the map M.

Automorphism of a map M : a self-homeomorphism of the surface,
any automorphism of the map must be an automorphism of the
underlying graph X

Orientation-Preserving Automorphism of an orientable map M :
an automorphism of preserving orientation of the map

Automorphism group Aut(M) :

Orientation-preserving automorphisms group Aut+M
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Hypermap:

A hypermap H is a 2-cell embedding of a connected bipartite
graph G into a compact and connected surface S without border

The vertices of G in two biparts are respectively called the
hypervertices and hyperedges of the hypermap, and the connected
regions of G\S are called hyperfaces.
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Choose a certer for each hyperface and subdivide the hypermap by
adjoining the hyperface centers to its adjacent hypervertices and
hyperedges.

Get a triangular subdivision whose triangles are the flags of this
hypermap, which are represented by little triangle around
hypervertices

Define three involuntary permutations γ0, γ1 and γ2 on the flag set
F :
γ0 exchanges two flags adjacent to the same hyperedge and center
but distinct hypervertices;
γ1 exchanges two flags adjacent to the same hypervertex and
center but distinct hyperedges;
γ2 exchanges two flags adjacent to the same hypervertex and
hyperedge but distinct centers.
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The subgroup 〈γ0, γ1, γ2〉 of SF acts transitively on F .

In the orientable case, the even word subgroup 〈γ0γ1, γ1γ2〉 of
〈γ0, γ1, γ2〉 acts on F with two orbits.

Each orbit determines an orientation described by the action of the
even word subgroup. Fixing an orientation we get an oriented
hypermap.
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Given one of two orbits, say F1, every orbit of 〈γ0γ1〉, 〈γ1γ2〉 and
〈γ0γ2〉 on F1 is respectively the flags contained in one hyperface,
the flags around one hypervertex and the flags around one
hyperedge.
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Algebraically, given a finite set D and a transitive group 〈R, L〉 on
D, define an oriented hypermap H = (D; R, L):

the orbits of 〈R〉, 〈L〉 and 〈RL〉 on D are called hyperfaces,
hypervertices and hyperedges, respectively, with incidence given by
non-empty intersection.

D is called the dart set and the group Mon(H) = 〈R, L〉 is called
the monodromy group of the hypermap.

In the case (RL)2 = 1, H is an oriented map.
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For oriented hypermaps H = (D; R, L) and H′ = (D ′; R ′, L′), a
covering ψ : H → H′ is a mapping ψ : D → D ′ satisfying
Rψ = ψR ′ and Lψ = ψL′.

Now, the assignment R 7→ R ′ and L 7→ L′ extends to an
epimorphism Mon(H) = 〈R, L〉 → Mon(H′) = 〈R ′, L′〉 of the
monodromy groups.

As usual, one may define an isomorphism, an automorphism and
the automorphism group Aut(H) for hypermaps. It is
straightforward that |Aut(H)| ≤ |D|.
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An oriented hypermap is called regular if the action of
Mon(H) = 〈R, L〉 on D is regular. In this case, the set D can then
be replaced by G := Mon(H), so that Mon(H) and Aut(H) can
be viewed as the left and right regular multiplications of G ,
respectively.

Denote H by a triple H = (G ; r , `), where G = 〈r , `〉. Then the
hyperfaces (resp. hypervertices and hyperedges) correspond to
right cosets of G relative to 〈r〉, (resp. 〈`〉 and 〈r`〉).

Given a group G , (G ; r1, `1) ∼= (G ; r2, `2) if and only if there exists
an automorphism σ of G such that rσ1 = r2 and `σ1 = `2.
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2. (face-) Primer map

(face-) Primer map H: Aut(H) induces a faithful action on F

The primer hypermaps were introduced by Breda d’Azevedo and
Fernandes in 2011.

For any hypermap (G ; r , `), (G/〈r〉G ; r , `) is primer.

The first step might be to determine the primer hypermaps. Based
on the knowledge of primer hypermaps, one may determine general
hypermaps.

To recover a hypermap from its primer hypermap is essentially
extension problem, of a group by a cyclic group.
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1. A.Breda d’Azevedo, M.E.Fernandes, Classification of primer
hypermaps with a prime number of hyperfaces, Europ.J.Combin,
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3. Nilpotent hypermaps

General question: determine the regular maps and regular
hypermaps with given (fibre-preserving) automorphism group G .

There are some papers on the finite simple groups G . We shall
focus on nilpotent groups.
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1. A. Malnič, R. Nedela and M. Škoviera, Regular maps with
nilpotent automorphism groups, European J. Combin. 33 (2012),
1974–1986.
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2. M.D.E., Conder, S.,F. Du, R. Nedela, M. S̆koviera, Regular
maps with nilpotent automorphism group, J. Algebraic Combin.
44(2016), 863-874.

Assume that G = Aut+(M) is nilpotent and the underlying graph
of the map is simple. It is proved that

(i) the number of vertices of any such map is bounded by a
function fc of the nilpotency class of the group G , where fc is
given by applying a theorem of Labute on the ranks of the factors
of the lower central series of Γ (via the associated Lie algebra),

(ii) for a fixed nilpotency class c there is exactly one such simple
regular map Mc attaining the bound, and that this map is
universal, in the sense that every simple regular map M for which
Aut+(M) is nilpotent of class at most c is a quotient of Mc .
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4. Nilpotent Primer Hypermaps

A PNp hypermap H means a primer hypermap such that Aut(H)
is nilpotent and the hypervertex-valency is a prime p.

Theorem: Let H be a PNp hypermap. Then

(1) Aut(H) is a finite p-group;

(2) H has at most p1+fc hyperfaces, where c is the nilpotent class
of Aut(H);

(3) For every integer c ≥ 1, there exists a unique PNp hypermap
HC of class c, having p1+fc hyperfaces, and type either
(p, pm+1, pm) for c = m(p − 1) + 1 or (p, pm, pm) for
(m − 1)(p − 1) + 1 < c < m(p − 1) + 1.

(4) Every PNp hypermap of class at most c is a quotient of Hc .
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By µ(k) we denote the Möbius function. Given a prime p, for a
positive integer n, let ρ(n) be the largest integer such that
n − ρ(n)(p − 1) > 1

Set αk = − 1
k!

dk

dxk
(ln 1−2x+xp+1

(1−x)2 )
∣∣
x=0

.

Set f1 = 0 and fn =
∑n

i=2 Ri for n ≥ 2, where

Rn =

ρ(n)−1∑
i=0

∑
k
∣∣ (n − i(p − 1))

k > 1

µ(
n − i(p − 1)

k
)

k

n − i(p − 1)
αk .
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Outline of the proof

Let H a PNp hypermap with the group G = 〈r , `〉.

Lemma

The automorphism group G = 〈r , `〉 is a finite p-group, where
|r | = pm for some integer m and |`| = p.
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Let Γ = 〈x , y
∣∣ yp = 1〉 so that G is a quotient of Γ, where r and `

are the images of x and y , respectively.

Lemma

For each n ≥ 2, the factor Γn/Γn+1 of the lower central series of Γ
is a finite elementary abelian p-group.

Lemma

For m ≥ 2 and 1 ≤ h ≤ p− 1, the factor Γm/Γm+h has exponent p.
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Lemma

[xpm , y ] ∈ Γm(p−1)+2 for all m ≥ 1.

Lemma

(xy)p
m ∈ xpmΓm(p−1)+1 for all m ≥ 1.
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The proof for above lemmas depends on Philip Hall’s collection
process and some related results.

1. M. Hall, JR., Combinatorial Theory, Macmilan, New York, 1967.

2. R.R.Struik, On the nilpotent products of cyclic groups, Canad J
of Math., 12(1960), 447-462.
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Definition

(Hall) Let G = 〈a1, a2, · · · , at〉 be a group. Then the basic
commutators of G are elements of G , defined and ordered as
follows:

1) The basic commutators of weight 1 are the generators
a1 < a2 < · · · < at (in order);

2) Inductively, the basic commutators of weight w > 1 are the
elements [x , y ] where ω(x) + ω(y) = ω([x , y ]), such that
x > y and if x = [u, v ] for basic commutators u and v, then
y ≥ v;

3) Commutators are ordered so that x > y if ω(x) > ω(y) and
for commutators of any fixed weight, let [x1, y1] < [x2, y2] if
either y1 < y2 or y1 = y2 and x1 < x2.
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Proposition

(Hall) Let x1, x2, · · · , xs be elements of a group. Let c1, c2, · · · be
the basic commutators on x1, x2, · · · , xs of weight at least 2 in
order. Then

(x1 · · · xs)n = xn
1 xn

2 · · · xn
s c

f1(n)
1 · · · c fi (n)

i d1d2 · · · dt ,

where for 1 ≤ j ≤ i , and

fj(n) = a1

(
n

1

)
+ a2

(
n

2

)
+ · · ·+ aωj

(
n

ωj

)
,

for a′s are rational integers not depending on n but only on cj and
aωj = 0 for ωj > n; and d ′s are uncollected basic commutators.
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Proposition

(Struik) Let x , y be elements of a group. Let u1, u2, · · · be the
sequence of basic commutators of weight at least 2 on x and [x , y ]
in order. Then

[xn, y ] = [x , y ]nu
f1(n)
1 · · · ufi (n)

i d1d2 · · · dt ,

where fi , a′s and d ′s have the same meaning as in last proposition.
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Proposition

(Struik) Let α be a fixed integer and G a group such that Gn = 1.
Then if bj ∈ G and m < n,

[b1, · · · , bi−1, b
α
i , bi+1, · · · , bm] = [b1, · · · , bm]αv

f1(α)
1 v

f2(α)
2 · · · v ft(α)

t

where every vk is a (not necessarily basic) commutator on
b1, · · · , bm of weight > m, every bj , 1 ≤ j ≤ m appears in each
commutator vk , and every fh is of form with ωh = ω(vh)− (m− 1)
where ω(vh) is the weight of vh on b1, · · · , bm.
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Properties of Zpm o Zp

Lemma

Let p be an odd prime and k = (m − 1)(p − 1) + 1 + i , where
1 ≤ i ≤ p − 2 and m ≥ 1. Let W = Zpm o Zp = 〈a〉 o 〈b〉 and
W = W /Wk+1. Then we have

(i) c(W ) = m(p − 1) + 1;

(ii) CoreW (〈a1〉) = 1.

(iii) |[a1, tb−1]| = |[a1, tb]| = pm−s , where
s(p − 1) + 1 ≤ t < (s + 1)(p − 1) + 1 for 0 ≤ s ≤ m;

(iv) |a1b| = pm+1;

(v) c(W ) = k;

(vi) |a1| = pm, |b̄| = p and |a1b| = pm;

(vii) CoreW (〈a1〉) = 1.
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Proposition

(Liebeck) Suppose that W = A o B, where A and B are two finite
p-groups. Take a ∈ A for |a| = pn+1 and b ∈ B for |b| = ph, where
n ≥ 0 and h ≥ 1. For any integer t, set ct = [a−11 , tb], where a1 is
a copy of the element a which is labeled by the identity of B.
Then we have

(i) ct = 1 for t ≥ ph + n(p − 1)ph−1;

(ii) |ct | = pl where l ≤ n and

ph + (n − l)(p − 1)ph−1 ≤ t < ph + (n − l + 1)(p − 1)ph−1;

(iii) |ct | = pn+1 for 0 < t < ph.
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Proposition

(Liebeck) If A is an Abelian p-group of exponent pn and
B = 〈b1〉 × · · · × 〈bm〉 is a direct product of m cyclic groups,
whose orders are pβ1 , · · · , pβm , respectively, where
β1 ≥ β2 ≥ · · · ≥ βm, then W = A o B has nilpotency class

c =
m∑
i=1

(pβi − 1) + (n − 1)(p − 1)pβ1−1 + 1.
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Lemma

For given p and n ≥ 2, let m be such that
(m − 1)(p − 1) + 1 < n ≤ m(p − 1) + 1. Then the subgroup of
H(n) = Γ/Γn+1 generated by the image of xpm is normal, but the
subgroup generated by the image of xpm−1

is not normal.
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The rank of the abelian p-group Γn/Γn+1 for n ≥ 1 has been
determined by Gaglione:

A. M. Gaglione, Factor groups the lower certral series for special
free products, J. Alge., 37(1975), 172-185

By µ(k) we denote the Möbius function. Given a prime p, for a
positive integer n, let ρ(n) be the largest integer such that
n − ρ(n)(p − 1) > 1

Set αk = − 1
k!

dk

dxk
(ln 1−2x+xp+1

(1−x)2 )
∣∣
x=0

.

Set f1 = 0 and fn =
∑n

i=2 Ri for n ≥ 2, where

Rn =

ρ(n)−1∑
i=0

∑
k
∣∣ (n − i(p − 1))

k > 1

µ(
n − i(p − 1)

k
)

k

n − i(p − 1)
αk .
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Proposition

(Gaglione) The rank of the factor group Γn/Γn+1 is Rn, for all
n ≥ 2, while the rank of Γ/Γ2 is 2.

Set f1 = 0 and fn =
∑n

i=2 Ri for n ≥ 2, Immediately, we have

Corollary

The order of the quotient Γ2/Γn+1 is pfn , for all n ≥ 2.

For p = 3, 5, the first 2 ≤ n ≤ 18 terms of these two sequences
{Rn} and {fn} are given below (with help of MATLAB):

p = 3 Rn : 1, 2, 3, 6, 8, 16, 23, 42, 65, 116, 186, 328, 543, 948, 1607, 2804, 4816
fn : 1, 3, 6, 12, 20, 36, 59, 101, 166, 282, 468, 796, 1339, 2287, 3894, 6698, 11514

p = 5 Rn : 1, 2, 3, 6, 9, 18, 29, 54, 92, 172, 301, 558, 1004, 1858, 3399, 6316, 11668
fn : 1, 3, 6, 12, 21, 39, 68, 122, 214, 386, 687, 1245, 2249, 4107, 7506, 13822, 25490
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Lemma

〈x〉 ∩ Γ2 = 1 and 〈y〉 ∩ Γ2 = 1.
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For a quotient of Γ to be the automorphism group of a PNp
hypermap, we need the stabilizer of a hyperface to be core-free. It
follows that the largest nilpotent quotient of class c that is
admissible is the quotient U(c) = H(c)/K , where K is the core of
the subgroup generated by the image of x in H(c) = Γ/Γc+1.

Lemma

For any c ≥ 1, take m such that
(m − 1)(p − 1) + 1 < c ≤ m(p − 1) + 1. Then the group
U(c) = H(c)/K has order pm+1+fc . The corresponding PNp
hypermap Hc has type either (p, pm+1, pm) for c = m(p − 1) + 1
or (p, pm, pm) for (m − 1)(p − 1) + 1 < c < m(p − 1) + 1.

Shaofei Du Regular Maps



Lemma

For any integer, c ≥ 1, there exists a unique PNp hypermap Hc of
class c, having p1+fc hyperfaces and type either (p, pm+1, pm) for
c = m(p − 1) + 1 or (p, pm, pm) for
(m − 1)(p − 1) + 1 < c < m(p − 1) + 1. Furthermore, every PNp
hypermap of class at most c is a quotient of Hc .

The main theorem is proved !
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PNp hypermaps of small class

Table 1: PNp hypermaps of class 1, 2, 3
p Defining relators for G |G | c (r , `) type g

x , yp, [y , x ] p 1 (x , y) (p,p,1) 0

p = 2 xp, yp, [y , x , x ], [y , x , y ] p3 2 (x , y) (2, 4, 2) 0

p ≥ 3 (p, p, p) 1 + p2(p−3)
2

2 x2, y 2, [y , x , x , y ], [y , x , x , x ], 16 3 (x , y) (2,8,2) 0
[y , x , y , x ], [y , x , y , y ]
x4, y 2, [x2, y ][y , x , x ]−1, [y , x , x , y ], 32 3 (x , y) (2,4,4) 1
[y , x , x , x ], [y , x , y , x ], [y , x , y , y ]
x4, y 2, [x2, y ][y , x , y ]−1, [y , x , x , y ], 32 3 (x , y) (2,8,4) 3
[y , x , x , x ], [y , x , y , x ], [y , x , y , y ]
x4, y 2, [y , x , x , y ], [y , x , x , x ], 64 3 (x , y) (2,8,4) 5
[y , x , y , x ], [y , x , y , y ]
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p Defining relators for G |G | c (r , `) type g

3 x3, y 3, [y , x , x ], [y , x , y , x ], 81 3 (x , y), (y , x) (3,9,3) 10
[y , x , y , y ]
x3, y 3, [y , x , x ]−1[y , x , x ]2, 81 3 (x , y) (3,9,3) 10
[y , x , y , x ], [y , x , y , y ]

(x , y 2) (3,3,3) 1
x3, y 3, [y , x , y , x ], [y , x , y , y ], 243 3 (x , y) (3,9,3) 28
[y , x , x , x ], [y , x , x , y ]

≥ 5 xp, yp, [x , y , x ], p4 3 (y , x), (xy i , y) (p, p, p) 1 + p3(p−3)
2

[x , y , y , x ], [x , y , y , y ] 1 ≤ i ≤ p

xp, yp, [x , y , x , x ], [x , y , x , y ], p5 3 (x , y) (p, p, p) 1 + p4(p−3)
2

[x , y , y , x ], [x , y , y , y ]
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Thank you very much !
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