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What is a dessin d’enfants:

• A combinatorial map M with its vertices colored in black and

white in a bipartite way

• A compact Rieamann surface X whose genus is that of M

• A meromorphic function f : X → C, called Belyi function,

such that M is a preimage of the segment [0,1] and each face

contains a single pole of f

0 1

In this case both X and f are defined over the field Q of algebraic

numbers.

Acting simultaneously on X and f by an automorphism of Q we

get, in general, another dessin. This is a Galois action on dessins.
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There are many combinatorial and group-theoretic invariants of

the Galois action on dessins d’enfants:

• Passport: the triple of partitions of the degree n of f

representing the degrees of the black and white vertices and of

the faces

• Symmetry (that is, the automorphism group of M)

• Self-duality

• Composition (long to explain. . . )

• Monodromy group: the permutation group generated by the

rotations of the edges around vertices

• Refined passport: the triple of conjugacy classes of black,

white and face permutations in the monodromy group (when

these conjugacy classes are not Galois conjugate)

• etc.
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An example in which several invariants are involved
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Dessins with 10 edges and with the passport (8112,2412,8112).
16 dessins split into four Galois orbits, of sizes 1, 2, 5 and 8.
Invariants: size 1: monodromy group PGL2(9);
size 2: symmetry; size 5: self-dual; size 8: not self-dual.
The monodromy group of the latter 5 + 8 = 13 dessins is S10.
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Not once, I have heard the following request (or, if you like, a

dream):

It would be nice to find a complete set of such invariants.

Here complete means that two dessins belong to distinct

Galois orbits IF AND ONLY IF certain of their combina-

torial or group theoretic invariants are distinct.

The IF part is obvious, the ONLY IF part is far from being

obvious.

The goal of this talk is to show that such a set of invariants cannot

exist.

We will see that this is not an entirely bad news: there are also

some positive moments in it.
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Let us consider the following dessins with 3m edges: passport

π = [m3,5113m−5, (3m− 2)112], m ≥ 3

m

m
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m

m

We have:

– either a single orbit defined over a real quadratic field

Q(
√
∆), ∆ > 0,

– or two orbits, both defined over Q.
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Combinatorial invariants provide us with no hint. . .

As for the group-theoretic ones:

Theorem (C. Jordan, 1870): A primitive permutation group of

degree n having a cycle of a prime length p < n − 2 is either Sn

or An.

Here we have a cycle of length 5 corresponding to the central white

vertex, while n = 3m ≥ 9 (since m ≥ 3).

Therefore, whatever is m ≥ 3, the monodromy group for both

maps is the same.
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The computation of the Belyi function is an easy exercise:

– put the center of the outer face to x = ∞;

– put the white vertex of degree 5 to x = 0;

– let the sum of the positions of the centers of the two small faces

be equal to 1.

Then the Belyi function takes the following form:

f = K · (x
3 + ax2 + bx+ c)m

x2 − x+ d
. (1)

Computing f ′ we get

f ′ = K · (x
3 + ax2 + bx+ c)m−1 · q(x)

(x2 − x+ d)2
, (2)

where q(x) is a polynomial of degree 4.

What remains is to make q(x) proportional to x4, that is, to equate

all the coefficients of q(x) except the leading one, to zero. This

gives us four equations for the unknowns a, b, c, d. The factor K is

then determined by the condition f(0) = 1.
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As for the field of definition, we get indeed a real quadratic field

Q(
√
∆), where

∆ = 3(2m− 1) (3m− 2). (3)

Main question: Can ∆ be a perfect square?

When this is the case, our quadratic orbit splits into two orbits,

both defined over Q.
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Two remarks are in order. First, the numbers 2m−1 and 3m−2 are

coprime. Indeed, a direct application of Euclid’s algorithm gives

3m− 2 = 1 · (2m− 1) + (m− 1),
2m− 1 = 2 · (m− 1) + 1.

Second, 3m − 2 cannot be a multiple of 3; only 2m − 1 can. We

conclude that, in order to get ∆ a perfect square, its two factors

3 (2m − 1) = 6m − 3 and 3m − 2 should both be made perfect

squares.

Then, writing down

6m− 3 = a2, 3m− 2 = b2, (4)

we observe that

a
2
− 2b

2
= 1. (5)

We have got the classical

Pell equation!

Remark: a must be a multiple of 3.
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Euler attributed Pell’s name to this equation by error. . .

• Pythagoras (VI before J. C.): the equation a2 − 2b2 = 0 does

not have integral solutions; then what about a2 − 2b2 = 1 ?

• A letter by Archimedes to Eratosthenes (III before J. C.): a

problem about bulls of Helios

• Brahmagupta (VII)

• Bhaskara II (XII)

• Narayana Pandit (XIV)

• Brouncker (XVII)

• Fermat, Euler, Lagrange, Abel, . . . (XVII–XIX)

• Dirichlet (XIX)

• etc.

Dirichlet: Any solution of the above equation provides us with

two divisors of the unity in the ring Z(
√
2) = {a+ b

√
2 | a, b ∈ Z}:

(a+ b
√
2)(a−

√
2) = 1.
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Classical Pell equation:

a2 − 2b2 = 1.

General (or generalized) Pell equation:

a2 − d · b2 = 1,

where d is positive and without square factors; d is given, we look

for a and b. There are always infinitely many solutions.

An equation of Pell type:

a2 − d · b2 = k.

There are either infinitely many solutions or no solutions at all.

Example:

a2 − 7b2 = 3.

Consider this equation modulo 7: we get a2 = 3 mod 7, but 3 is

not a quadratic residue mod 7.
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For an equation of Pell type, there is no known algorithm to

distinguish between the two cases, no solution or infinitely many

solutions.

There are only several ad hoc methods for particular cases, like in

the example modulo 7 above. Sometimes there are known upper

bounds for the smallest solution; there also exists a criterion for

k = −1.

Remark: The set {(a, b) ∈ R2 | a, b ≥ 0, a2 − d · b2 = k} is a half of

a hyperbola on the plane of the coordinates (a, b). Therefore, all

the solutions, if they exist, may be ordered from left to right. The

smallest one not equal to (1,0) is called fundamental solution.
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Example: a2 − 991b2 = 1 (i. e., d = 991)

The fundamental solution is

a = 379516400906811930638014896080

b = 12055735790331359447442538767

Example: d = 410286423278424

The fundamental solution contains 206 545 decimal digits.

An algorithm for their search involves the continued fraction for

the
√
d.

In our case, d = 2 and the fundamental solution is (3,2):

32 − 2 · 22 = 1.
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The equation a2−2b2 = 1 has infinitely many solutions. The entire

set of them is obtained as follows: take (a0, b0) = (1,0); then
(

an
bn

)

=

(

3 4
2 3

)n

·
(

a0
b0

)

, n = 0,1,2, . . .

It turns out that for every other solution the parameter a is a

multiple of 3: we may just consider the same recurrence mod 3:

(1,0) → (0,2) → (1,0) → (0,2) → . . .

Recall that a2 = 6m−3, so that m =
a2 +3

6
where m is the degree

of the three black vertices.

First values of the parameter m are

1 634, 1 884 962, 2 175 243 842, . . .

Growth exponent: (3 + 2
√
2)4 = 1153.999 . . . ≈ 1154.
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I have a sample of other examples. . .

Intermediate conclusion (a good news to which I made an

allusion at the beginning of the talk):

The theory of Diophantine equations is a classical and

beautiful mathematical subject. It is exciting to find out

that dessins d’enfants are related to this theory.
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Further questions

Is it possible to model any equation of Pell type by dessins

d’enfants?

If yes, construct a series of orbits of degree 2 which never

split into separate orbits.

A much more ambitious program. . .

In 1970, Yuri Matiyasevich solved the 10th Hilbert’s

problem. Namely, he proved that there does not exist an

algorithm which, for any given Diophantine equation, would

say if this equation has a solution.

One of the proofs of this fact, due to Grigory Chudnovsky,

reduces the problem to a solution of a system of Pell

equations. How to model a system of Pell equations?

If we succeed then we will prove that certain aspects of the

theory of dessins d’enfants are algorithmically undecidable.
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Thank you!
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A more advanced example: rational points on an elliptic curve.

There are huge computations which I mainly omit, presenting only

the final results.

Passport: π = (m2k5,7112m+5k−7,2m+5k)
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Field of definition: a totally real field which is the splitting field

of the polynomial

15k3a3 − 45k2(m+3k)a2 +15k(m+3k)(m+4k)a− (m+3k)(m+4k)(m+5k).

Question: Can this polynomial have a rational root?
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15k3a3 − 45k2(m+3k)a2 +15k(m+3k)(m+4k)a− (m+3k)(m+4k)(m+5k).

We notice that the expression is homogeneous in m and k, of

degree 3. It is reasonable to divide it by k3 and introduce a new

variable b = m/k:

15a3 − 45a2(b+3)+ 15a(b+3)(b+4)− (b+3)(b+4)(b+5).

This is a plane cubic and therefore an elliptic curve (which is a

complex torus). After somewhat tedious computations it takes

the following form:

y2 = x3 − 2475x− 5850
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y2 = x3 − 2475x− 5850

We are interested in the parameter b = m/k since it is related to

the vertex degrees. Its expression as a function of x and y is as

follows:

b = 30 · 111x
2 − 6090x− 29385− 3xy + y

x3 − 1305x2 +63675x+299925
.

We also need

b > 0 and b 6= 1.

(There are no rational solutions for a when b = 1; thus, the

condition b 6= 1 is automatically satisfied.)
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Thank you!
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