Homomorphisms between mapping class groups of surfaces

Becca Winarski

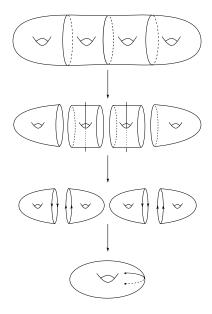
University of Wisconsin-Milwaukee

September 26, 2017

Mapping class group

S – closed surface possibly with punctures or marked points MCG(S) – isotopy classes of orientation preserving diffeomorphisms of S that preserve the set of marked points

Motivating Question



 $p: \widetilde{S} \to S$ – possibly branched covering space of surfaces.

Is there a natural relationship between $MCG(\tilde{S})$ and MCG(S)?

Birman-Hilden Property

 $SMCG(\tilde{S})$ – subgroup of $MCG(\tilde{S})$ of isotopy classes of diffeomorphisms of \tilde{S} that are fiber-preserving with respect to p.

Birman-Hilden Property

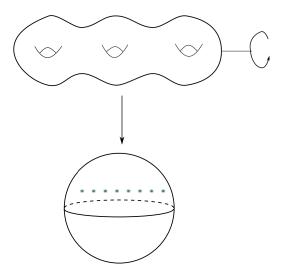
 $SMCG(\tilde{S})$ – subgroup of $MCG(\tilde{S})$ of isotopy classes of diffeomorphisms of \tilde{S} that are fiber-preserving with respect to p.

 $p: \widetilde{S} \to S$ has Birman–Hilden property if for all $f \in \text{SMCG}(\widetilde{S})$, the projections of any two representatives of f are isotopic in S.

Birman-Hilden Property

 $SMCG(\tilde{S})$ – subgroup of $MCG(\tilde{S})$ of isotopy classes of diffeomorphisms of \tilde{S} that are fiber-preserving with respect to p.

 $p: \widetilde{S} \to S$ has Birman–Hilden property if for all $f \in SMCG(\widetilde{S})$, the projections of any two representatives of f are isotopic in S. That is, isotopy \Rightarrow fiber-preserving isotopy.



Does the covering have Birman-Hilden property?

The Birman-Hilden Theorem

Theorem (Birman, Hilden)

Let \tilde{S} be a hyperbolic surface. Let G be a finite group of diffeomorphisms of \tilde{S} . Any finite connected (possibly branched) $p: \tilde{S} \to \tilde{S}/G$ has the Birman–Hilden Property.

Known Answers

	regular	irregular
unbranched	Yes-Birman–Hilden	
branched	Yes-Birman–Hilden	

□ > < E > < E >

æ

Curve Lifting Property

 $\widetilde{S} \to S$ branched covering space

Curve lifting property –The preimage of every essential, simple closed curve in S is an essential, simple closed multicurve in \tilde{S} .

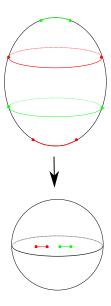
Proposition Let $p: \widetilde{S} \to S$ be a cover that has the Birman–Hilden Property. Then p has the curve lifting property.

Curve Lifting Property

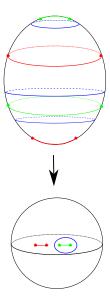
Theorem

There is an algorithm to check the curve lifting property.

Example without the Birman-Hilden Property



Example without the Birman-Hilden Property



Simple Covers

A simple *n*-fold cover – each branch point has n - 1 preimages

Theorem (Berstein–Edmonds, W)

Let $p: \widetilde{S} \to S$ be an n-fold simple connected cover that has at least two branch points and $n \ge 3$. Then p does not have the Birman–Hilden property.

Known Answers

	regular	irregular
unbranched	Yes-Birman–Hilden	
branched	Yes-Birman–Hilden	No/??

(4) 문 (4) R (4) R

æ

Unbranched covers

Proposition (Aramayona–Leininger–Souto) Let \widetilde{S} be a hyperbolic surface, and $p: \widetilde{S} \to S$ an unbranched cover. Then p has the Birman–Hilden Property.

Known Answers

	regular	irregular
unbranched	Yes-Birman–Hilden	Yes, Aramayona–Leininger–Souto
branched	Yes-Birman–Hilden	No/??

- 4 聞 と 4 注 と 4 注 と

æ

Known Answers

	regular	irregular
unbranched	Yes-Birman–Hilden	Yes, Aramayona–Leininger–Souto
branched	Yes-Birman–Hilden	Sometimes Yes (ALS)/No

□ > < E > < E >

æ

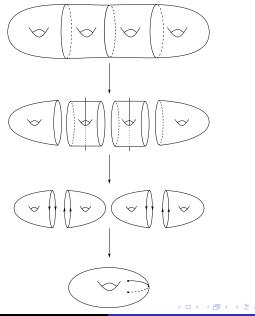
Sufficient Condition

Theorem (W)

Let $p: \widetilde{S} \to S$ be a cover such that no branch points have unramified preimages. Then p has the Birman–Hilden Property.

Corollary (Birman-Hilden, Aramayona-Leininger-Souto) Regular and unbranched covers have the Birman-Hilden property.

A new example



< E

э

Isotopy projection property

A cover $p: \tilde{S} \to S$ is said to have the isotopy projection property if all simple closed curves $\alpha, \beta \subset S$ are isotopic whenever $p^{-1}(\alpha)$ and $p^{-1}(\beta)$ are isotopic.

Isotopy projection property

A cover $p: \tilde{S} \to S$ is said to have the isotopy projection property if all simple closed curves $\alpha, \beta \subset S$ are isotopic whenever $p^{-1}(\alpha)$ and $p^{-1}(\beta)$ are isotopic.

Proposition

The isotopy projection property is equivalent to the Birman–Hilden property.

Future Work

Problem:

Checking the isotopy projection property requires checking infinite pairs of curves.

Future Work

Problem:

Checking the isotopy projection property requires checking infinite pairs of curves.

Goal:

Find a property that is equivalent to the Birman–Hilden property and can be checked algorithmically.