A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto Girondo

 Gabino González-DiezUniversidad Autónoma de Madrid
Madrid, Spain
BIRS, September 2017.

Definition of dessin d'enfant (Grothendieck, 80's)

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action

Action of

Definition of dessin d'enfant

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem

A dessin d'enfant, or simply a dessin, is a pair (X, \mathcal{D}) where X is an oriented compact topological surface, and $\mathcal{D} \subset X$ is a finite graph such that:
$1 \mathcal{D}$ is connected.
$2 \mathcal{D}$ is bicoloured, i.e. the vertices have been given either white or black colour and vertices connected by an edge have different colours.
$3 X \backslash \mathcal{D}$ is the union of finitely many topological discs, which we call faces of \mathcal{D}.
The genus of (X, \mathcal{D}) is simply the genus of X.

We consider two dessins $\left(X_{1}, \mathcal{D}_{1}\right)$ and $\left(X_{2}, \mathcal{D}_{2}\right)$ equivalent when there exists an orientation-preserving homeomorphism from X_{1} to X_{2} whose restriction to \mathcal{D}_{1} induces an isomorphism between the coloured graphs \mathcal{D}_{1} and \mathcal{D}_{2}.

Warning: A dessin is not an abstract graph

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins
PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of $\operatorname{Gal}(\mathbb{Q})$ on triangle curves

These bicoulored graphs are equal as abstract graphs but they are different as dessins: they even have different genus!

Permutation representation pair of $\mathcal{D}:\left(\sigma_{0}, \sigma_{1}\right)$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins

PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of $\operatorname{Gal}(\mathbb{Q})$ on triangle curves

Cycles of $\sigma_{0} \leftrightarrow$ white vertices of \mathcal{D}, (length of each cycle $=$ degree of the corresponding vertex).
Cycles of $\sigma_{1} \leftrightarrow$ black vertices, etc.
Cycles of $\sigma_{1} \sigma_{0} \leftrightarrow(1 / 2$ of the edges of) faces of \mathcal{D}
Connectedness of $\mathcal{D} \Rightarrow<\sigma_{0}, \sigma_{1}>$ is a transitive subgroup.

Eg: $\sigma_{0}=(1,5,4)(2,6,3), \quad \sigma_{1}=(1,2)(3,4)(5,6)$

A quick
introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins
PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of Gal(©) on triangle curves

$$
\sigma_{1} \sigma_{0}=(1,6,4,2,5,3)
$$

$2-2 g=\left(\#\left\{\right.\right.$ cycles of $\left.\sigma_{0}\right\}+\#\left\{\right.$ cycles of $\left.\left.\sigma_{1}\right\}\right)-\#\{$ edges $\}$ $+\#\left\{\right.$ cycles of $\left.\sigma_{1} \sigma_{0}\right\}=2+3-6+1=0$
Of course this is nothing but the Euler-Poincaré characteristic of X corresponding to the polygonal decomposition induced by the dessin.

Main theorem of Grothendieck's theory of dessins

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of Gal(©) on triangle curves

There is a correspondence between dessins d'enfants and algebraic curves defined over number fields, i.e. curves $C: F(x, y)=0$ with $F(X, Y) \in \overline{\mathbb{Q}}[X, Y]$. E.G.:

$$
\begin{aligned}
& \sigma_{0}=(1,7,5,3) \\
& \sigma_{1}=(1,2,3,4,5,6,7)
\end{aligned}
$$

$$
\tilde{\sigma}_{0}=(4,6,8,2)
$$

$$
\tilde{\sigma}_{1}=(1,2,3,4,6,7)
$$

represent the algebraic curves

$$
y^{2}=x(x-1)(x+\sqrt{2}) \quad \text { and } \quad y^{2}=x(x-1)(x-\sqrt{2})
$$

Sketch of the proof of the main result

A quick
introduction
to dessins
d'enfants,
Belyi's
theorem and
Galois action
Ernesto
Girondo
Gabino

PART I: To any dessin one can associate a compact Riemann surface ($=$ an algebraic curve) together with a (Belyi) function on it.

PART II: The curves so obtained account for all algebraic curves defined over number fields.

Then we will discuss the action of the absolute Galois group on dessins with special attention to the case of regular ones.

The triangle decomposition $\mathcal{T}(\mathcal{D})$ associated to \mathcal{D}

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From
dessins to Belyi pairs

Examples
PART II:

Belyi's

theorem

Galois action

Action of

The topological covering of \mathbb{S}^{2} associated to $\mathcal{T}(\mathcal{D})$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of

The Riemann surface structure associated to \mathcal{D}

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's theorem

$$
\text { Let } X^{*}=X \backslash\{\circ, \bullet, \times\} .
$$

By construction the map $f_{\mathcal{D}}^{*}: X^{*} \rightarrow \widehat{\mathbb{C}}$ is a local homeo; in fact, a topological cover of $\widehat{\mathbb{C}} \backslash\{0,1, \infty\}$. Therefore X^{*} inherits the Riemann surface structure of $\widehat{\mathbb{C}}$; charts being defined by restriction of $f_{\mathcal{D}}^{*}$ to small neighborhoods.
By definition, $f_{\mathcal{D}}^{*}: X_{\mathcal{D}}^{*} \rightarrow \widehat{\mathbb{C}} \backslash\{0,1, \infty\}$ is a holomorphic map.
Moreover, by standard extension arguments this complex structure extends to a complex structure on the compact surface $X_{\mathcal{D}}$ and the function $f_{\mathcal{D}}^{*}$ to a meromorphic function $f_{\mathcal{D}}: X_{\mathcal{D}} \rightarrow \mathbb{C}$ (i.e. a holomorphic map $\left.f_{\mathcal{D}}: X_{\mathcal{D}} \rightarrow \widehat{\mathbb{C}}\right)$.
Observation/Definition: $f_{\mathcal{D}}: X_{\mathcal{D}} \rightarrow \widehat{\mathbb{C}}$ is a Belyi function meaning that it has ≤ 3 branching values, say $0,1, \infty$.

1) Dessins $\mathcal{D} \longmapsto$ Belyi pairs $\left(X_{\mathcal{D}}, f_{\mathcal{D}}\right) \equiv\left(C_{\mathcal{D}}, R_{\mathcal{D}}\right)$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem

Due to the correspondence between meromorphic functions of compact Riemann surfaces and rational functions of algebraic curves we will sometimes denote ($X_{\mathcal{D}}, f_{\mathcal{D}}$) by $\left(C_{\mathcal{D}}, R_{\mathcal{D}}\right)$ to emphasize the algebraic nature of the Belyi pair.

1) Dessins $\mathcal{D} \longmapsto$ Belyi pairs $\left(X_{\mathcal{D}}, f_{\mathcal{D}}\right) \equiv\left(C_{\mathcal{D}}, R_{\mathcal{D}}\right)$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Due to the correspondence between meromorphic functions of compact Riemann surfaces and rational functions of algebraic curves we will sometimes denote $\left(X_{\mathcal{D}}, f_{\mathcal{D}}\right)$ by $\left(C_{\mathcal{D}}, R_{\mathcal{D}}\right)$ to emphasize the algebraic nature of the Belyi pair.
This classical correspondence can be established as follows: If (h, g) is a pair of generating functions there is an irreducible polynomial $F(X, Y) \in \mathbb{C}[X, Y]$ satisfying $F(h, g) \equiv 0$ and then $X_{\mathcal{D}}$ can be identified to the curve

$$
C_{\mathcal{D}}: F(x, y)=0
$$

via the map

$$
\begin{aligned}
& \phi: X_{\mathcal{D}} \longrightarrow C_{\mathcal{D}} \\
& P \longmapsto(h(P), g(P))
\end{aligned}
$$

Under ϕ the pair (h, g) is identified to the coordinate functions (x, y) and the Belyi function $f_{\mathcal{D}}=R(h, g)$, for some $R(X, Y)$ $\in \mathbb{C}(X, Y)$, with the rational function $R(x, y)$ on C.

Properties of the Belyi pair $\left(X_{\mathcal{D}}, f_{\mathcal{D}}\right)$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of

$1 \operatorname{deg}\left(f_{\mathcal{D}}\right)=\operatorname{card}\left(f_{\mathcal{D}}^{-1}(1 / 2)\right)=$ number of edges of \mathcal{D}.
2 Poles $\leftrightarrow\{\times$'s \equiv Faces $\} ;$ Zeros $\leftrightarrow\{0$'s $\} ;$ 1's $\leftrightarrow\{\bullet$'s $\}$
3 The order of a pole \times agrees with half the number of edges of the face of which \times is a center (suitably counted).
4 The multiplicity of $f_{\mathcal{D}}$ at a vertex $v=\bullet, \circ$ of \mathcal{D} coincides with the degree of the vertex.
2) dessins $\mathcal{D}_{f} \leftarrow$ Belyi pairs (S, f)

A quick
introduction
to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino
González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of

Proposition

Let $f: S \rightarrow \widehat{\mathbb{C}}$ be a Belyi function and set $\mathcal{D}_{f}=f^{-1}([0,1])$. Consider \mathcal{D}_{f} as a bicoloured graph embedded in S whose set of white (resp. black) vertices is $f^{-1}(0)$ (resp. $f^{-1}(1)$). Then

- \mathcal{D}_{f} is a dessin d'enfant and $\mathcal{D}_{f_{\mathcal{D}}}=\mathcal{D}$.

2) dessins $\mathcal{D}_{f} \leftarrow$ Belyi pairs (S, f)

A quick
introduction
to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins

PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem

Proposition

Let $f: S \rightarrow \widehat{\mathbb{C}}$ be a Belyi function and set $\mathcal{D}_{f}=f^{-1}([0,1])$. Consider \mathcal{D}_{f} as a bicoloured graph embedded in S whose set of white (resp. black) vertices is $f^{-1}(0)$ (resp. $\left.f^{-1}(1)\right)$. Then

- \mathcal{D}_{f} is a dessin d'enfant and $\mathcal{D}_{f_{\mathcal{D}}}=\mathcal{D}$.

2) dessins $\mathcal{D}_{f} \leftarrow$ Belyi pairs (S, f)

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of

Proposition

Let $f: S \rightarrow \widehat{\mathbb{C}}$ be a Belyi function and set $\mathcal{D}_{f}=f^{-1}([0,1])$. Consider \mathcal{D}_{f} as a bicoloured graph embedded in S whose set of white (resp. black) vertices is $f^{-1}(0)$ (resp. $\left.f^{-1}(1)\right)$. Then

- \mathcal{D}_{f} is a dessin d'enfant and $\mathcal{D}_{f_{\mathcal{D}}}=\mathcal{D}$.

$$
\downarrow f_{\mathcal{D}}
$$

Dessins \longleftrightarrow Belyi pairs

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of Gal(®) on triangle curves

Theorem

The correspondences
\{Equiv. classes of dessins\} \longrightarrow \{Equiv. classes of Belyi pairs $\}$

$$
\begin{aligned}
& (X, \mathcal{D}) \longmapsto\left(X_{\mathcal{D}}, f_{\mathcal{D}}\right)=\left(C_{\mathcal{D}}, R_{\mathcal{D}}\right) \\
& \left(S, \mathcal{D}_{f}\right) \longleftrightarrow(S, f)
\end{aligned}
$$

are mutually inverse.

Equivalent ways to describe dessins

A quick
introduction
to dessins
d'enfants,
Belyi's
theorem and
Galois action
Ernesto
Girondo
Gabino

1) Dessins \mathcal{D} of degree n.
2) Belyi pairs (C, R) with $\operatorname{deg}(R)=n$.
3) Pairs of permutations $\left(\sigma_{0}, \sigma_{1}\right)$ generating a transitive subgroup of S_{n}.
4) Finite index subgroups of $\Gamma(2)=\Delta(\infty, \infty, \infty)$.
5) Finite index subgroups of $\Delta(l, m, d)$

The link between 4) (or 5)) and 3) is established as follows:

Suppose that l, m, d are the orders of $\sigma_{0}, \sigma_{1}, \sigma_{0} \sigma_{1}$ and consider the homomorphism

$$
\rho: \Delta(l, m, d) \rightarrow S_{n}
$$

determined by $\quad x, y, z \rightarrow \sigma_{0}, \sigma_{1},\left(\sigma_{0} \sigma_{1}\right)^{-1}$
then, the subgroup of $\Delta(l, m, d)$ in question is the preimage of the inertia subgroup of $<\sigma_{0}, \sigma_{1}>$.

genus of \mathcal{D} equals $0 \Rightarrow\left(C_{\mathcal{D}}, f_{\mathcal{D}}\right) \equiv(\widehat{\mathbb{C}}, R(z))$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ on triangle curves

$$
\begin{gathered}
\sigma_{0}=(1,2,3,4) \\
\sigma_{1}=(1)(2)(3)(4)
\end{gathered}
$$

1) \mathcal{D} has only one face $\Rightarrow R \equiv f_{\mathcal{D}}$ is a polynomial.
2) \mathcal{D} has 4 edges $\Rightarrow \operatorname{deg}(R)=4$
3) \mathcal{D} has a white vertex of degree 4 at $z=0 \Rightarrow R(z)=c z^{4}$
4) 1 is a black vertex $\Rightarrow R(1)=1 \Rightarrow \quad R(z)=z^{4}$

$$
R(z)=z^{4}
$$

The modular function $j(\lambda)=\frac{4}{27} \frac{\left(1-\lambda+\lambda^{2}\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem

It is easy to check that this is a Belyi function and that its corresponding dessin is

- The 3 faces (of degree 4) correspond to the 3 poles $0,1, \infty$ (of degree 4/2=2).
- The 2 white vertices (of degree 3) stand for the 2 roots of $\left(1-\lambda+\lambda^{2}\right)^{3}=0$ (of degree 3).
- The 3 black vertices (of order 2) correspond to the remaining three branch points (of degree 2) one encounters by computing the derivative, namely

$$
j^{\prime}(\lambda)=\frac{\left(\lambda^{2}-\lambda+1\right)^{2}}{\lambda^{3}(\lambda-1)^{3}}(2 \lambda-1)\left(\lambda^{2}-\lambda-2\right)=0
$$

A genus one example

A quick introduction to dessins d＇enfants， Belyi＇s theorem and Galois action

Ernesto
Girondo
Gabino

González－Diez

Dessins
PART I：From dessins to

Belyi pairs

Examples
PART II：

Belyi＇s

theorem
Galois action
Action of

A genus one example

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins
PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of Gal(©ㅡ) on triangle curves

From here one can see that the corresponding Belyi pair is

$$
\left(\mathbb{C Z} \oplus \mathbb{Z} e^{2 \pi i / 3}, \wp^{3}\right) \cong\left(y^{2}=x^{3}-1, x^{3}\right)
$$

($\wp=$ Weierstrass function)

Belyi's theorem

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

We now deal with the second part. We wanted to show that there is a correspondence
$\{$ Dessins $\} \leftrightarrow\{$ Curves defined over $\overline{\mathbb{Q}}$ (plus a Belyi function) $\}$
We already established the correspondence
\{Equiv. classes of dessins $\} \leftrightarrow\{$ Equiv. classes of Belyi pairs $\}$
so it remains to show that Belyi curves are defined over $\overline{\mathbb{Q}}$.

Theorem (Belyi, 1979)

Let S be a compact Riemann surface. The following statements are equivalent:
(a) S is defined over $\overline{\mathbb{Q}}$ (or, equivalently, over a number field).
(b) S admits a morphism $f: S \longrightarrow \mathbb{P}^{1}$ with at most three branching values, i.e. a Belyi function.

$$
(\text { Proof of } \Rightarrow) \quad P(z)=\frac{(m+n)^{m+n}}{m^{m} n^{n}} z^{m}(1-z)^{n}
$$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From dessins to

Belyi pairs

Examples
PART II: Belyi's
theorem

Galois action

Action of Gal(⿹্Q) on triangle curves

$$
\left\{y^{2}=x(x-1)\left(x-\sqrt{\frac{m+n}{m}}\right)\right\} \cup\{\infty\}
$$

$\left\{\infty, 1, \frac{m}{m+n}, 0\right\}$

Proof of \Leftarrow)

A quick
introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:

A complex number α lies in $\overline{\mathbb{Q}} \Leftrightarrow$ the set of complex numbers

$$
G_{\mathbb{C}}(\alpha)=\left\{\alpha^{\sigma}:=\sigma(\alpha) \text { such that } \sigma \in G_{\mathbb{C}}:=\operatorname{Gal}(\mathbb{C})\right\}
$$ is finite.

Examples:

- $G_{\mathbb{C}}(\alpha)=\{\alpha\} \Leftrightarrow \alpha \in \mathbb{Q}$
- $G_{\mathbb{C}}(\sqrt{2})=\{\sqrt{2},-\sqrt{2}\}$
- $G_{\mathbb{C}}(\pi)=\{$ transcendental numbers $\}$

If $\quad C: F(x, y)=\sum a_{i j} x^{i} y^{j}=0 \quad$ we define

$$
C^{\sigma}: F^{\sigma}(x, y)=\sum a_{i j}^{\sigma} x^{i} y^{j}=0, \quad G_{\mathbb{C}}(C)=\left\{C^{\sigma}: \sigma \in G_{\mathbb{C}}\right\}
$$

Then, again: C is defined over $\overline{\mathbb{Q}} \Leftrightarrow G_{\mathbb{C}}(C) /$ equiv. is finite. The analogous statement holds for coverings (C, R) of \mathbb{P}^{1}.

Proof of \Leftarrow)

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From
dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of

Consider the following commutative diagram

$$
\mathbb{P}^{1} \xrightarrow{\sigma} \mathbb{P}^{1}
$$

$$
\left(\sigma(a, b)=\left(a^{\sigma}, b^{\sigma}\right)\right)
$$

$$
\text { (i.e. } \left.R(a, b)^{\sigma}=R^{\sigma}\left(a^{\sigma}, b^{\sigma}\right)\right)
$$

It shows that σ sends Belyi pairs of degree n to Belyi pairs of same degree n, hence there is an action of $G_{\mathbb{C}}$ on dessins:

Because the degree and the branching is preserved, the set $G_{\mathbb{C}}(C, R)=\left\{\left(C^{\sigma}, R^{\sigma}\right): \sigma \in G_{\mathbb{C}}\right\} \leftrightarrow G_{\mathbb{C}}(\mathcal{D})=\left\{\mathcal{D}^{\sigma}: \sigma \in G_{\mathbb{C}}\right\}$
is finite $\Rightarrow C$ and R can be defined over a number field.

Grothendieck's action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ on dessins

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of Gal(Q) on triangle curves

Once we know that Belyi pairs are defined over $\overline{\mathbb{Q}}$ it makes sense to "restrict" the action of $\operatorname{Gal}(\mathbb{C})$ on dessins

to an action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ in the hope this action of the absolute Galois group on combinatorial objects might help to understand the nature of the group.

Let us look at a couple of examples

$\operatorname{Gal}(\overline{\mathbb{Q}})$-orbits of female and male symbols

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From
dessins to

Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ on triangle curves

$$
f(z)=\frac{z^{4}(z-1)^{2}}{(z-b)} \quad \text { where } \quad 36 b^{2}-44 b+9=0
$$

$$
m(z)=\frac{z^{3}(z-1)^{2}}{(z-b)} \quad \text { where } \quad 25 b^{2}-28 b+4=0
$$

$\operatorname{Gal}(\overline{\mathbb{Q}})$-action on the dessin corresponding to

$$
\left(y^{2}=x(x-1)(x+\sqrt{2}), f(x, y)=\frac{-4\left(x^{2}-1\right)}{\left(x^{2}-2\right)^{2}}\right)
$$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem

Galois action

It can be seen that the following two dessins form a complete orbit for the action of $\operatorname{Gal}(\overline{\mathbb{Q}})$.

$$
\left(y^{2}=x(x-1)(x+\sqrt{2}), f\right) \quad\left(y^{2}=x(x-1)(x-\sqrt{2}), f\right)
$$

They are conjugate by any σ satisfying the property

$$
\sigma(\sqrt{2})=-\sqrt{2}
$$

Dessin of $f:\left\{y^{2}=x(x-1)(x-\sqrt{2})\right\} \rightarrow \widehat{\mathbb{C}}$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino

González-Diez

Dessins

PART I: From dessins to

Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of
$\operatorname{Gal}(\overline{\mathbb{Q}})$ on
triangle curves

$$
f(x, y)=\frac{-4\left(x^{2}-1\right)}{\left(x^{2}-2\right)^{2}}
$$

Regular dessins

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino
González-Diez

Dessins

PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of
$\operatorname{Gal}(\overline{\mathbb{Q}})$ on
triangle curves
\mathcal{D} is said to be regular if $G=\operatorname{Aut}(\mathcal{D})$ acts transitively on its edges so that $\left(X_{\mathcal{D}}, f_{\mathcal{D}}\right)$ is a Galois cover with covering group G.

Regular dessins

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino
González-Diez

Dessins
PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of
\mathcal{D} is said to be regular if $G=\operatorname{Aut}(\mathcal{D})$ acts transitively on its edges so that $\left(X_{\mathcal{D}}, f_{\mathcal{D}}\right)$ is a Galois cover with covering group G.

We have already seen an example:

$$
\left(G=<z \rightarrow 1-z, z \rightarrow 1 /(1-z)>\cong S_{3}\right)
$$

Faithfulness of the action of $\operatorname{Gal}(\overline{\mathbb{Q}})$

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino
González-Diez

Dessins
PART I: From
dessins to
Belyi pairs
Examples
PART II
Belyi's
theorem
Galois action
Action of
Gal(©) on
triangle curves

A key point in Grothendieck's theory of dessins is that the action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ on them, or equivalently on Belyi pairs (C, f), is faithful.

Faithfulness of the action of $\operatorname{Gal}(\overline{\mathbb{Q}})$

A quick
introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem

Galois action

Action of

A key point in Grothendieck's theory of dessins is that the action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ on them, or equivalently on Belyi pairs (C, f), is faithful.

In fact, except for the case $g=0$, the action is already faithful on the set of Belyi curves C of any given genus (disregarding the Belyi function).
For instance if $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}})$ is non-trivial and $j(\lambda)^{\sigma} \neq j(\lambda)$ then the elliptic curves

$$
\begin{aligned}
& C: y^{2}=(x-1)(x-2)(x-\lambda) \quad \text { and } \\
& C^{\sigma}: y^{2}=(x-1)(x-2)\left(x-\lambda^{\sigma}\right)
\end{aligned}
$$

are non-isomorphic to each other.

Triangle curves

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From dessins to Belyi pairs

Examples
PART II:
Belyi's
theorem
Galois action
Action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ on triangle curves
Q. 1: Does $\operatorname{Gal}(\overline{\mathbb{Q}})$ act faithfully on regular dessins (C, f) ?

Curves arising in this way are called triangle (o quasiplatonic) curves i.e. C is a triangle curve if $C / \operatorname{Aut}(C) \equiv \mathbb{P}^{1}$ and the projection $f: C \rightarrow C / \operatorname{Aut}(C) \equiv \mathbb{P}^{1}$ ramifies over 3 values.
Q. 1': Is the action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ faithful on triangle curves? There are only finitely many triangle curves in each genus

List of triangle curves in low genus

■ Genus 2: $\quad y^{2}=x^{6}-x, \quad y^{2}=x^{6}-1, \quad y^{2}=x^{5}-x$
■ Genus 3: $\quad y^{2}=x^{8}-x, \quad y^{2}=x^{7}-x, \quad y^{2}=x^{8}-1$,

$$
\begin{aligned}
& y^{2}=x^{8}-14 x^{4}+1, \quad y^{3}=x\left(1-x^{3}\right), \\
& y^{4}=1-x^{3}, \quad y^{4}=1-x^{4}, \quad y^{7}=x(1-x)^{2}
\end{aligned}
$$

■ Genus 4: 11 curves all of them again defined over \mathbb{Q}.

Gal(()) acts faithfully on triangle curves

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino González-Diez

Dessins
PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ on triangle curves

In all previous examples of triangle curves the action of $\operatorname{Gal}(\overline{\mathbb{Q}})$ is trivial. However:

Theorem (-, A. Jaikin-Zapirain)
$\operatorname{Gal}(\overline{\mathbb{Q}})$ acts faithfully on triangle curves.

In fact on the subset of triangle curves which are Galois covers of a given one, e.g. Fremat's or Klein's curve, or any of the previous list.....

A quick introduction to dessins d'enfants, Belyi's theorem and Galois action

Ernesto
Girondo
Gabino
González-Diez

Dessins

PART I: From
dessins to
Belyi pairs
Examples
PART II:
Belyi's
theorem
Galois action
Action of
$\operatorname{Gal}(\overline{\mathbb{Q}})$ on
triangle curves

THANK YOU

