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ecological data

an example:
Oenocarpus mapoura observed in a 50-ha study plot on Barro
Colorado Island, Panama
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some more examples:
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Locations of harbour porpoise sightings off the East Coast of
Scotland.
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Locations of reported sightings of the Loch Ness Monster, Loch
Ness, Scotland.
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spatial point processes in ecology

ecology — main interest:
@ interactions among individual organisms and environment
@ individuals exist — and interact — in space and time
@ spatially explicit data increasingly available
= data: spatial (spatio-temporal) point patterns
= spatial point process methodology should be highly
relevant!
however...
e few ecologists aware of spatial point process methodology
@ e.g. models rarely used in practice
= not part of the standard statistical toolbox
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spatial point processes in ecology

WHY?
In the end it's just a bunch of dots, isn't it?
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but we have all these cool models...

with log Gaussian Cox processes and INLA4+SPDE we can
@ flexibly account for remaining autocorrelation

@ jointly model individuals’ properties (marks) and spatial
covariates with spatial pattern

@ have point pattern reflect observation process:
preferential sampling
@ modelling on complex domains

e the sphere = the earth
e observation areas with barriers (islands, archipelagos...)

lllian et al., 2012 a+b, Simpson et al., 2016, Bakka et al., 2016, Ledo et al., 2016, Jones-Todd et al., 2017



ecological surveys...

Area of interest is too big to sample entirely.

thinned point process

entire pattern
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video survey data
@ conducted in August and September 2010 and 2014
@ 5762 km survey effort
@ 303 porpoises sighted
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Area of interest is too big to sample entirely.
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distance sampling data

Scottish windfarm survey
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distance sampling data

Scottish windfarm survey
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[example data set in inlabru—more about this later... ]
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this talk

@ spatial point process
modelling and observation
processes — in ecology

@ inlabru

@ Scottish drinks
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observation processes...

ecological research — interested in individuals (in space and time)

in practice:
@ need to gain information on individuals — given practical
limitations
= specific observation process
= specific data structure
= specific statistical methodology

here:
@ “think” in terms of the underlying structure, the point process
@ observation process is operation on the underlying data
structure
= more general methodology and software
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distance sampling data
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thinned point process
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Observations are from a thinned Poisson process with intensity A(s)p(s)



example...

@ large scale line-transect cetacean survey in the eastern tropical
Pacific Ocean (ETP) between 1986 and 2007

@ area of 21.353 million square kilometers (> twice the size of
Europe!) was surveyed (transects)

@ blue whale sightings



example...

@ large scale line-transect cetacean survey in the eastern tropical
Pacific Ocean (ETP) between 1986 and 2007

@ area of 21.353 million square kilometers (> twice the size of
Europe!) was surveyed (transects)

@ blue whale sightings

linear predictor depends on:
e (hazard rate) detection function
o (SPDE-based) model for animal intensity
@ integration scheme accounts for observation process

Yuan et al. 2016, Bachl et al. in preparation



distance sampling... nice...

@ spatio-temporal point process model



distance sampling... nice...

@ spatio-temporal point process model

@ preserving sighting locations



distance sampling... nice...

@ spatio-temporal point process model
@ preserving sighting locations
@ models the effect of covariates continuously in space

@ models spatial structure that cannot be explained by
covariates



distance sampling... nice...

spatio-temporal point process model
preserving sighting locations
models the effect of covariates continuously in space

models spatial structure that cannot be explained by
covariates

elegant, integrated approach

implemented in inlabru
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@ takes observation process into account

@ makes INLA more accessible

@ wrapper around R—-INLA + extra functionality
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fit log Gaussian Cox processes using INLA — conveniently

= continuous space
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fit log Gaussian Cox processes using INLA — conveniently

= continuous space
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inlabru — what can it do?

harbour porpoise study

6500~

Density
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lm
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results
@ fine scale clustering apparent

@ suggests animals occur in groups
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passive acoustic monitoring

@ hydrophone detects
cetacean vocalisation
(place and time)

@ harbour porpoise vocalise
continuously — clicks and
buzzes

@ long time series data
(> 4 months)

@ not point pattern data!

Acoustic
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C-POD Mooring System
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harbour porpoise study—c-pods

harbour porpoise study Il

passive acoustic monitoring

@ hydrophone detects
cetacean vocalisation
(place and time)

@ harbour porpoise vocalise
continuously — clicks and

buzzes
Depth (m) g0
@ long time series data  orm i I _
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(> 4 months) 5 o )

@ not point pattern datal
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harbour porpoise study—c-pods

results
@ detection positive hours —
seasonal trends
= changes in food
availability /competition

@ proportion of clicks that are
buzzes

= overall distribution different
than that of foraging buzzes

= changes in behaviour between
different habitats
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harbour porpoise study—c-pods

results

@ detection positive hours —
seasonal trends

= changes in food
availability /competition

@ proportion of clicks that are
buzzes

= overall distribution different
than that of foraging buzzes

= changes in behaviour between
different habitats

= implications for Marine Protected Areas
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distance sampling revisited...

Or: what | didn't tell you...
@ ETP study; other species

@ striped dolphins — group size strongly varies among groups;
size varies in space

= larger groups are more easily detected
@ also: we used a really boring (non-flexible) detection
function...

= assumption that log intensity has to be linear in all latent terms
no longer a good idea...
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distance sampling revisited...

group size:
@ detection function depends on group size (a “mark”, m):
p(s,m)
e distribution of group sizes as function of space, g(m|s)
@ joint point process intensity \(s)g(m|s)p(s,m)

@ approach: linearise non-linear terms through Taylor expansion
(iterative)

striped dolphins:

detection probability
7

distance
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distance sampling revisited...

striped dolphins: groups size varies in space
@ dolphin group intensity (top row)
@ expected group size (middle row)

@ single animal intensity (bottom row)

lat

lat

lat

left, middle and right column show the 2.5, 50 and 97.5 percent quantiles, respectively
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ok...

for distance sampling we can now
@ have flexible detection functions
@ make detection dependent on marks

BUT: what about if you are not interested in distance sampling...?
@ ecologists

@ general applied users

@ INLA users

@ point process people...
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spatial modellers

@ can fit general spatial models (no thinning) elegantly (see
next page)
@ dropping linearity assumption — applicable in many contexts

@ complex marked point processes

@ can interpret (univariate) function as one-dimensional LGCP

= use inlabru for function estimation (detection function, pdfs,
K-functions...)



inlabru, a friendlier INLA interface

R-INLA

A.data <- inla.spde.make.A(...)
A.pred <- inla.spde.make.A(...)

stack.data <- inla.stack(data=..., A=list(A.data, ...), effects=...
stack.pred <- inla.stack(data=..., A=list(A.pred, ...), effects=...

stack <- inla.stack(stack.data, stack.pred)

formula <- y ~ ... + f(field, model=spde)

result <- inla(...)

## Linear prediction:

prediction <- result$summary.fitted.values[some.indices, "mean"]

http://inlabru.org

components <- . + field(map=coordinates, model=spde)
formula <-y 7 ... + field
result <- bru(...)
result <- lgcp(...)
## Non-linear prediction (via direct posterior sampling)
prediction <- predict(..., cos(field))
## Extra: non-linear formulas and marked LGCP capabilities
formula <- y ~ fieldl * exp(field2)
formula <- coordinates + size ~ fieldl +

dnorm(size, field2, sd=exp(theta), log=TRUE)






that Scottish drink...
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that Scottish drink...
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