spatial modelling for ecological surveys contributions from and to point process modelling

Janine Illian
CREEM
Centre for Research into Ecological and Environmental Modelling, University of St Andrews, Scotland, UK

December 7, 2017

joint work with: David Borchers, Fabian Bachl, Yuan Yuan, Håvard Rue, Finn Lindgren, Daniel Simpson, Laura Williamson and others
an example:
Oenocarpus mapoura observed in a 50-ha study plot on Barro Colorado Island, Panama

ecological data

some more examples:

Locations of harbour porpoise sightings off the East Coast of Scotland.
ecological data
some more examples:

Locations of reported sightings of the Loch Ness Monster, Loch Ness, Scotland.

ecological data

some more examples:

Locations of reported sightings of the Loch Ness Monster, Loch Ness, Scotland.

spatial point processes in ecology

ecology - main interest:

- interactions among individual organisms and environment
- individuals exist - and interact - in space and time
- spatially explicit data increasingly available

spatial point processes in ecology

ecology - main interest:

- interactions among individual organisms and environment
- individuals exist - and interact - in space and time
- spatially explicit data increasingly available
\Rightarrow data: spatial (spatio-temporal) point patterns

spatial point processes in ecology

ecology - main interest:

- interactions among individual organisms and environment
- individuals exist - and interact - in space and time
- spatially explicit data increasingly available
\Rightarrow data: spatial (spatio-temporal) point patterns
\Rightarrow spatial point process methodology should be highly relevant!
however...
- few ecologists aware of spatial point process methodology
- e.g. models rarely used in practice
\Rightarrow not part of the standard statistical toolbox
spatial point processes in ecology

WHY?

WHY?

In the end it's just a bunch of dots, isn't it?

with log Gaussian Cox processes and INLA+SPDE we can

- flexibly account for remaining autocorrelation
with log Gaussian Cox processes and INLA+SPDE we can
- flexibly account for remaining autocorrelation
- jointly model individuals' properties (marks) and spatial covariates with spatial pattern
with log Gaussian Cox processes and INLA+SPDE we can
- flexibly account for remaining autocorrelation
- jointly model individuals' properties (marks) and spatial covariates with spatial pattern
- have point pattern reflect observation process:
with log Gaussian Cox processes and INLA+SPDE we can
- flexibly account for remaining autocorrelation
- jointly model individuals' properties (marks) and spatial covariates with spatial pattern
- have point pattern reflect observation process: preferential sampling

but we have all these cool models.

with log Gaussian Cox processes and INLA+SPDE we can

- flexibly account for remaining autocorrelation
- jointly model individuals' properties (marks) and spatial covariates with spatial pattern
- have point pattern reflect observation process: preferential sampling
- modelling on complex domains
- the sphere $=$ the earth
- observation areas with barriers (islands, archipelagos...)

Area of interest is too big to sample entirely. thinned point process
detection probability $\mathrm{p}=1$

Area of interest is too big to sample entirely.
detection probability $\mathrm{p}=1$

Area of interest is too big to sample entirely.

Area of interest is too big to sample entirely.
detection probability $p=1$

Area of interest is too big to sample entirely.
detection probability $\mathrm{p}=1$

detection probability $p<1$

Examples... recall...

Examples... recall...

harbour porpoise study-video survey

video survey data

- conducted in August and September 2010 and 2014
- 5762 km survey effort
- 303 porpoises sighted

harbour porpoise study-video survey

video survey data

- conducted in August and September 2010 and 2014
- 5762 km survey effort
- 303 porpoises sighted

Area of interest is too big to sample entirely.
detection probability $\mathrm{p}=1$

detection probability $p<1$

distance sampling data

Scottish windfarm survey

distance sampling data

Scottish windfarm survey

[example data set in inlabru-more about this later...]

this talk

- spatial point process modelling and observation processes - in ecology
- inlabru
- spatial point process modelling and observation processes - in ecology
- inlabru
- Scottish drinks

observation processes...

ecological research - interested in individuals (in space and time)
ecological research - interested in individuals (in space and time) in practice:

- need to gain information on individuals - given practical limitations
ecological research - interested in individuals (in space and time) in practice:
- need to gain information on individuals - given practical limitations
\Rightarrow specific observation process
ecological research - interested in individuals (in space and time) in practice:
- need to gain information on individuals - given practical limitations
\Rightarrow specific observation process
\Rightarrow specific data structure

observation processes..

ecological research - interested in individuals (in space and time) in practice:

- need to gain information on individuals - given practical limitations
\Rightarrow specific observation process
\Rightarrow specific data structure
\Rightarrow specific statistical methodology

observation processes..

ecological research - interested in individuals (in space and time) in practice:

- need to gain information on individuals - given practical limitations
\Rightarrow specific observation process
\Rightarrow specific data structure
\Rightarrow specific statistical methodology

here:

- "think" in terms of the underlying structure, the point process
- observation process is operation on the underlying data structure
\Rightarrow more general methodology and software

distance sampling data

distance sampling data

thinned point process!

distance sampling...

thinned point process

distance sampling...

thinned point process

1	1	1	1	40	50
0	10	20	30		

distance sampling...

thinned point process

distance sampling...

distance sampling...

Observations are from a thinned Poisson process with intensity $\lambda(s) p(s)$

example...

- large scale line-transect cetacean survey in the eastern tropical Pacific Ocean (ETP) between 1986 and 2007
- area of 21.353 million square kilometers ($>$ twice the size of Europe!) was surveyed (transects)
- blue whale sightings

example...

- large scale line-transect cetacean survey in the eastern tropical Pacific Ocean (ETP) between 1986 and 2007
- area of 21.353 million square kilometers ($>$ twice the size of Europe!) was surveyed (transects)
- blue whale sightings
linear predictor depends on:
- (hazard rate) detection function
- (SPDE-based) model for animal intensity
- integration scheme accounts for observation process

distance sampling... nice...

- spatio-temporal point process model

distance sampling... nice...

- spatio-temporal point process model
- preserving sighting locations

distance sampling... nice...

- spatio-temporal point process model
- preserving sighting locations
- models the effect of covariates continuously in space
- models spatial structure that cannot be explained by covariates

distance sampling... nice...

- spatio-temporal point process model
- preserving sighting locations
- models the effect of covariates continuously in space
- models spatial structure that cannot be explained by covariates
- elegant, integrated approach
- implemented in inlabru

software...

inlabru

inlabru

- takes observation process into account

inlabru

- takes observation process into account
- makes INLA more accessible

inlabru

- takes observation process into account
- makes INLA more accessible
- wrapper around R-INLA + extra functionality

inlabru - what can it do?

inlabru - what can it do?

fit \log Gaussian Cox processes using INLA

inlabru - what can it do?

fit log Gaussian Cox processes using INLA - conveniently

inlabru - what can it do?

fit log Gaussian Cox processes using INLA - conveniently
\Rightarrow continuous space

inlabru - what can it do?

fit log Gaussian Cox processes using INLA - conveniently
\Rightarrow continuous space

elevation
-2000
$-\quad 1800$
1600
1400
1200

inlabru - what can it do?

harbour porpoise study

results

- fine scale clustering apparent
- suggests animals occur in groups

harbour porpoise study-c-pods

harbour porpoise study II passive acoustic monitoring

- hydrophone detects cetacean vocalisation (place and time)
- harbour porpoise vocalise continuously - clicks and buzzes
- long time series data

(> 4 months)
- not point pattern data!

harbour porpoise study-c-pods

harbour porpoise study II passive acoustic monitoring

- hydrophone detects
cetacean vocalisation (place and time)
- harbour porpoise vocalise continuously - clicks and
 buzzes
- long time series data
(> 4 months)
- not point pattern data!

harbour porpoise study-c-pods

harbour porpoise study II passive acoustic monitoring

- hydrophone detects
cetacean vocalisation (place and time)
- harbour porpoise vocalise continuously - clicks and
\qquad (ccear
 buzzes
- long time series data
(> 4 months)
- not point pattern data!

harbour porpoise study-c-pods

harbour porpoise study II

 passive acoustic monitoring- hydrophone detects cetacean vocalisation (place and time)
- harbour porpoise vocalise continuously - clicks and buzzes
- long time series data
(> 4 months)
- not point pattern data!

harbour porpoise study-c-pods

results

- detection positive hours seasonal trends
\Rightarrow changes in food availability/competition
- proportion of clicks that are buzzes
\Rightarrow overall distribution different than that of foraging buzzes

\Rightarrow changes in behaviour between different habitats

harbour porpoise study-c-pods

results

- detection positive hours seasonal trends
\Rightarrow changes in food availability/competition
- proportion of clicks that are buzzes
\Rightarrow overall distribution different than that of foraging buzzes
\Rightarrow changes in behaviour between different habitats

harbour porpoise study-c-pods

results

- detection positive hours seasonal trends
\Rightarrow changes in food availability/competition
- proportion of clicks that are buzzes
\Rightarrow overall distribution different than that of foraging buzzes
\Rightarrow changes in behaviour between different habitats
\Rightarrow implications for Marine Protected Areas

distance sampling revisited...

Or: what I didn't tell you...

distance sampling revisited...

Or: what I didn't tell you...

- ETP study; other species

distance sampling revisited...

Or: what I didn't tell you...

- ETP study; other species
- striped dolphins - group size strongly varies among groups; size varies in space
\Rightarrow larger groups are more easily detected

distance sampling revisited...

Or: what I didn't tell you...

- ETP study; other species
- striped dolphins - group size strongly varies among groups; size varies in space
\Rightarrow larger groups are more easily detected
- also: we used a really boring (non-flexible) detection function...

distance sampling revisited...

Or: what I didn't tell you...

- ETP study; other species
- striped dolphins - group size strongly varies among groups; size varies in space
\Rightarrow larger groups are more easily detected
- also: we used a really boring (non-flexible) detection function...
\Rightarrow assumption that log intensity has to be linear in all latent terms no longer a good idea...

distance sampling revisited...

group size:

- detection function depends on group size (a "mark", m): $p(s, m)$
- distribution of group sizes as function of space, $g(m \mid s)$
- joint point process intensity $\lambda(s) g(m \mid s) p(s, m)$

distance sampling revisited...

group size:

- detection function depends on group size (a "mark", m): $p(\boldsymbol{s}, m)$
- distribution of group sizes as function of space, $g(m \mid s)$
- joint point process intensity $\lambda(s) g(m \mid s) p(s, m)$
- approach: linearise non-linear terms through Taylor expansion (iterative)

distance sampling revisited...

group size:

- detection function depends on group size (a "mark", m): $p(\boldsymbol{s}, m)$
- distribution of group sizes as function of space, $g(m \mid s)$
- joint point process intensity $\lambda(s) g(m \mid s) p(s, m)$
- approach: linearise non-linear terms through Taylor expansion (iterative)
striped dolphins:

distance sampling revisited...

striped dolphins: groups size varies in space

distance sampling revisited...

striped dolphins: groups size varies in space

- dolphin group intensity (top row)
- expected group size (middle row)
- single animal intensity (bottom row)

for distance sampling we can now
- have flexible detection functions
- make detection dependent on marks
for distance sampling we can now
- have flexible detection functions
- make detection dependent on marks

BUT: what about if you are not interested in distance sampling...?
for distance sampling we can now

- have flexible detection functions
- make detection dependent on marks

BUT: what about if you are not interested in distance sampling...?

- ecologists
- general applied users
for distance sampling we can now
- have flexible detection functions
- make detection dependent on marks

BUT: what about if you are not interested in distance sampling...?

- ecologists
- general applied users
- INLA users
- point process people...

applied users

- convenient integrated fitting of distance sampling models
- convenient integrated fitting of distance sampling models
- user-friendly software inlabru
- convenient integrated fitting of distance sampling models
- user-friendly software inlabru
- other observation processes may be seen as different types of "thinnings"
\Rightarrow unified approach, general software
- convenient integrated fitting of distance sampling models
- user-friendly software inlabru
- other observation processes may be seen as different types of "thinnings"
\Rightarrow unified approach, general software
- can fit general spatial models (no thinning) elegantly

spatial modellers

- can fit general spatial models (no thinning) elegantly (see next page)
- can fit general spatial models (no thinning) elegantly (see next page)
- dropping linearity assumption - applicable in many contexts
- complex marked point processes
- can fit general spatial models (no thinning) elegantly (see next page)
- dropping linearity assumption - applicable in many contexts
- complex marked point processes
- can interpret (univariate) function as one-dimensional LGCP
\Rightarrow use inlabru for function estimation (detection function, pdfs, K-functions...)

inlabru, a friendlier INLA interface

R-INLA

```
A.data <- inla.spde.make.A(...)
A.pred <- inla.spde.make.A(...)
stack.data <- inla.stack(data=..., A=list(A.data, ...), effects=...)
stack.pred <- inla.stack(data=..., A=list(A.pred, ...), effects=...)
stack <- inla.stack(stack.data, stack.pred)
formula <- y ~ ... + f(field, model=spde)
result <- inla(...)
## Linear prediction:
prediction <- result$summary.fitted.values[some.indices, "mean"]
```


http://inlabru.org

components <- ~ ... + field(map=coordinates, model=spde)
formula <- y ~ ... + field
result <- bru(...)
result <- lgcp(...)
\#\# Non-linear prediction (via direct posterior sampling)
prediction <- predict(..., cos(field))
\#\# Extra: non-linear formulas and marked LGCP capabilities
formula <- y ~ field1 * exp(field2)
formula <- coordinates + size ~ field1 +
dnorm(size, field2, sd=exp(theta), log=TRUE)
that Scottish drink...

