Symmetry-Preserving Finite Element Methods: Preliminary Results

Francis Valiquette

Joint work with
Alexander Bihlo (Memorial University)

BIRS

June 12, 2017

Statement of the Problem

Symmetry

Let G be a Lie group acting on $\mathbb{R}^{p+q}=\{(x, u)\}$:

$$
\begin{aligned}
& x=\text { independent variable(s) } \\
& u=\text { dependent variables(s) }
\end{aligned}
$$

Example: $G=S E(2, \mathbb{R})$ acts on \mathbb{R}^{2} via

$$
\begin{aligned}
& X=x \cos \theta-u \sin \theta+a \\
& U=x \sin \theta+u \cos \theta+b
\end{aligned}
$$

Definition: G is a symmetry group of the differential equation

if it maps solutions to solutions:

Symmetry

Let G be a Lie group acting on $\mathbb{R}^{p+q}=\{(x, u)\}$:

$$
\begin{aligned}
& x=\text { independent variable(s) } \\
& u=\text { dependent variables(s) }
\end{aligned}
$$

Example: $G=S E(2, \mathbb{R})$ acts on \mathbb{R}^{2} via

$$
\begin{aligned}
X & =x \cos \theta-u \sin \theta+a \\
U & =x \sin \theta+u \cos \theta+b
\end{aligned} \quad a, b, \theta \in \mathbb{R}
$$

Definition: G is a symmetry group of the differential equation

if it maps solutions to solutions:

Symmetry

Let G be a Lie group acting on $\mathbb{R}^{p+q}=\{(x, u)\}$:

$$
\begin{aligned}
& x=\text { independent variable(s) } \\
& u=\text { dependent variables(s) }
\end{aligned}
$$

Example: $G=S E(2, \mathbb{R})$ acts on \mathbb{R}^{2} via

$$
\begin{aligned}
X & =x \cos \theta-u \sin \theta+a \\
U & =x \sin \theta+u \cos \theta+b
\end{aligned} \quad a, b, \theta \in \mathbb{R}
$$

Definition: G is a symmetry group of the differential equation

$$
\Delta\left(x, u^{(n)}\right)=0
$$

if it maps solutions to solutions:

$$
\Delta\left(g \cdot\left(x, u^{(n)}\right)\right)=0 \quad \text { whenever } \quad \Delta\left(x, u^{(n)}\right)=0
$$

Examples

- $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{u^{3}+x^{2} u-x-u}{x^{3}+x u^{2}-x+u}$ is invariant under the rotation group

$$
\begin{aligned}
X & =x \cos \theta-u \sin \theta \\
U & =x \sin \theta+u \cos \theta
\end{aligned}
$$

- Burgers' equation
$u_{t}+u u_{x}=\nu u_{x x}$,
admits the (non-maximal) symmetry group $a, b, v \in \mathbb{R}, \lambda \in \mathbb{R}^{+}$

Examples

- $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{u^{3}+x^{2} u-x-u}{x^{3}+x u^{2}-x+u}$ is invariant under the rotation group

$$
\begin{aligned}
X & =x \cos \theta-u \sin \theta \\
U & =x \sin \theta+u \cos \theta
\end{aligned}
$$

- Burgers' equation

$$
u_{t}+u u_{x}=\nu u_{x x}, \quad \nu>0
$$

admits the (non-maximal) symmetry group

$$
\begin{aligned}
& \quad X=\lambda(x+v t)+a, \quad T=\lambda^{2} t+b, \quad U=\lambda^{-1}(u+v), \\
& a, b, v \in \mathbb{R}, \lambda \in \mathbb{R}^{+}
\end{aligned}
$$

Statement of the Problem

Given

$$
\Delta\left(x, u^{(n)}\right)=0
$$

with symmetry group G, construct a numerical scheme that preserves G

Motivation:

- Can annly symmetry group techniques to find exact solutions
- Can provide better numerical schemes: Particularly for solutions exhibiting
- sharp variations
- singularities

Statement of the Problem

Given

$$
\Delta\left(x, u^{(n)}\right)=0
$$

with symmetry group G, construct a numerical scheme that preserves G

Motivation:

- Can apply symmetry group techniques to find exact solutions
- Can provide better numerical schemes: Particularly for solutions exhibiting
- sharp variations
- singularities

Overview

Most efforts have focused on finite difference equations

- Began with Dorodnitsyn in 1989

Overview

Most efforts have focused on finite difference equations

- Began with Dorodnitsyn in 1989
- Using Lie's infinitesimal approach, the focus was originally on the theoretical construction of symmetry-preserving schemes (Budd, Levi, Winternitz, ...)
- Particularly fruitful for ODE
- Mainly applied to time evolution PDE
- In 2001 Olver introduced the method of equivariant moving frames to construct finite difference symmetry-preserving schemes
- In recent years Bihlo, Nave et al have focused on the numerical implementation:
- evolution-projection techniques
- equi-distribution principles

Overview

Most efforts have focused on finite difference equations

- Began with Dorodnitsyn in 1989
- Using Lie's infinitesimal approach, the focus was originally on the theoretical construction of symmetry-preserving schemes (Budd, Levi, Winternitz, ...)
- Particularly fruitful for ODE
- Mainly applied to time evolution PDE
- In 2001 Olver introduced the method of equivariant moving frames to construct finite difference symmetry-preserving schemes
- In recent years Bihlo, Nave et al. have focused on the numerical implementation:
- evolution-projection techniques
- equi-distribution principles

Overview

Most efforts have focused on finite difference equations

- Began with Dorodnitsyn in 1989
- Using Lie's infinitesimal approach, the focus was originally on the theoretical construction of symmetry-preserving schemes (Budd, Levi, Winternitz, ...)
- Particularly fruitful for ODE
- Mainly applied to time evolution PDE
- In 2001 Olver introduced the method of equivariant moving frames to construct finite difference symmetry-preserving schemes
- In recent years Bihlo, Nave et al. have focused on the numerical implementation:
- evolution-projection techniques
- equi-distribution principles
- . . .

Other numerical methods

- Finite element
- Finite volume
- Spectral method
- ...

We now consider
and

Disclaimer

- Preliminary investigation
- Comments/suggestions are welcome!

Other numerical methods

- Finite element
- Finite volume
- Spectral method

We now consider
symmetries and finite elements

Disclaimer

- Preliminary investigation
- Comments/suggestions are welcome!

Other numerical methods

- Finite element
- Finite volume
- Spectral method

We now consider
symmetries and finite elements
Disclaimer

- Preliminary investigation
- Comments/suggestions are welcome!

Finite Elements and Symmetries

Approximation

Subdivide \mathbb{R} :

$$
x_{k-1} \quad x_{k} \quad x_{k+1} \quad x_{k+2}
$$

We consider the hat functions

and approximate

Approximation

Subdivide \mathbb{R} :

$$
x_{k-1} \quad x_{k} \quad x_{k+1} \quad x_{k+2}
$$

We consider the hat functions

and approximate

$$
u(x) \approx u_{h}(x)=\sum_{i=-\infty}^{\infty} u_{i} \phi_{i}(x) \quad u_{i}=u\left(x_{i}\right)
$$

Preserving the Decomposition

Let G be a Lie group acting on $\mathbb{R}^{2}=\{(x, u)\}$

$$
X=g \cdot x \quad U=g \cdot u
$$

We require

\Rightarrow projectable action

Preserving the Decomposition

Let G be a Lie group acting on $\mathbb{R}^{2}=\{(x, u)\}$

$$
X=g \cdot x \quad U=g \cdot u
$$

Acting on $u_{h}(x)=\sum_{i=-\infty}^{\infty} u_{i} \phi_{i}(x)$:

$$
g \cdot u_{h}:=\sum_{i=-\infty}^{\infty} U_{i}\left(g \cdot \phi_{i}(x)\right) \quad U_{i}=g \cdot u_{i}
$$

We require

Preserving the Decomposition

Let G be a Lie group acting on $\mathbb{R}^{2}=\{(x, u)\}$

$$
X=g \cdot x \quad U=g \cdot u
$$

Acting on $u_{h}(x)=\sum_{i=-\infty}^{\infty} u_{i} \phi_{i}(x)$:

$$
g \cdot u_{h}:=\sum_{i=-\infty}^{\infty} U_{i}\left(g \cdot \phi_{i}(x)\right) \quad U_{i}=g \cdot u_{i}
$$

We require

$$
g \cdot \phi_{i}(x)=\Phi_{i}(x) \quad \Rightarrow \quad \text { projectable action } \quad \Rightarrow \quad g \cdot x=X(x)
$$

There's a restriction on

$$
g \cdot x=X(x)
$$

Theorem (Lie): The largest Lie subgroup of $\mathcal{D}(\mathbb{R})$ is $S L(2, \mathbb{R})$:

$$
X=g \cdot x=\frac{\alpha x+\beta}{\gamma x+\delta} \quad \alpha \delta-\beta \gamma=1
$$

The hat function ϕ_{k} transform according to

$$
\Phi_{k}=g \cdot \phi_{k}=\left(\frac{\gamma x_{k}+\delta}{\gamma x+\delta}\right) \phi_{k}
$$

and its derivative

$$
\Phi_{k}^{\prime}=g \cdot \phi_{k}^{\prime}=\left(\gamma x_{k}+\delta\right)\left[(\gamma x+\delta) \phi_{k}^{\prime}(x)-\gamma \phi_{k}(x)\right]
$$

$S L(2, \mathbb{R})$

There's a restriction on

$$
g \cdot x=X(x)
$$

Theorem (Lie): The largest Lie subgroup of $\mathcal{D}(\mathbb{R})$ is $S L(2, \mathbb{R})$:

$$
X=g \cdot x=\frac{\alpha x+\beta}{\gamma x+\delta} \quad \alpha \delta-\beta \gamma=1
$$

The hat function ϕ_{k} transform according to

and its derivative

$S L(2, \mathbb{R})$

There's a restriction on

$$
g \cdot x=X(x)
$$

Theorem (Lie): The largest Lie subgroup of $\mathcal{D}(\mathbb{R})$ is $S L(2, \mathbb{R})$:

$$
X=g \cdot x=\frac{\alpha x+\beta}{\gamma x+\delta} \quad \alpha \delta-\beta \gamma=1
$$

The hat function ϕ_{k} transform according to

$$
\Phi_{k}=g \cdot \phi_{k}=\left(\frac{\gamma x_{k}+\delta}{\gamma x+\delta}\right) \phi_{k}
$$

and its derivative

$$
\Phi_{k}^{\prime}=g \cdot \phi_{k}^{\prime}=\left(\gamma x_{k}+\delta\right)\left[(\gamma x+\delta) \phi_{k}^{\prime}(x)-\gamma \phi_{k}(x)\right]
$$

Simple example

Consider

$$
u^{\prime}(x)=A^{\prime}(x) u+B^{\prime}(x) e^{A(x)}
$$

The solution is

$$
u(x)=(B(x)+C) e^{A(x)}
$$

The ODE admits the symmetry

sending solutions to solutions:

A weak form is given by

$$
\left[u(x) e^{-A(x)}+B(x)\right] \phi^{\prime}(x) \mathrm{d} x=0
$$

Simple example

Consider

$$
u^{\prime}(x)=A^{\prime}(x) u+B^{\prime}(x) e^{A(x)}
$$

The solution is

$$
u(x)=(B(x)+C) e^{A(x)}
$$

sending solutions to solutions:

A weak form is given by

Simple example

Consider

$$
u^{\prime}(x)=A^{\prime}(x) u+B^{\prime}(x) e^{A(x)}
$$

The solution is

$$
u(x)=(B(x)+C) e^{A(x)}
$$

The ODE admits the symmetry

$$
X=x \quad U=u+\epsilon e^{A(x)} \quad \epsilon \in \mathbb{R}
$$

sending solutions to solutions:

A weak form is given by

Simple example

Consider

$$
u^{\prime}(x)=A^{\prime}(x) u+B^{\prime}(x) e^{A(x)}
$$

The solution is

$$
u(x)=(B(x)+C) e^{A(x)}
$$

The ODE admits the symmetry

$$
X=x \quad U=u+\epsilon e^{A(x)} \quad \epsilon \in \mathbb{R}
$$

sending solutions to solutions:

$$
C \rightarrow C+\epsilon
$$

A weak form is given by
$\left[u(x) e^{-A(x)}+B(x)\right] \phi^{\prime}(x) \mathrm{d} x=0$

Simple example

Consider

$$
u^{\prime}(x)=A^{\prime}(x) u+B^{\prime}(x) e^{A(x)}
$$

The solution is

$$
u(x)=(B(x)+C) e^{A(x)}
$$

The ODE admits the symmetry

$$
X=x \quad U=u+\epsilon e^{A(x)} \quad \epsilon \in \mathbb{R}
$$

sending solutions to solutions:

$$
C \rightarrow C+\epsilon
$$

A weak form is given by

$$
\int_{-\infty}^{\infty}\left[u(x) e^{-A(x)}+B(x)\right] \phi^{\prime}(x) \mathrm{d} x=0
$$

The weak form

$$
\int_{-\infty}^{\infty}\left[u(x) e^{-A(x)}+B(x)\right] \phi^{\prime}(x) \mathrm{d} x=0
$$

is invariant under

$$
X=x \quad U=u+\epsilon e^{A(x)} \quad \epsilon \in \mathbb{R}
$$

The weak form

$$
\int_{-\infty}^{\infty}\left[u(x) e^{-A(x)}+B(x)\right] \phi^{\prime}(x) \mathrm{d} x=0
$$

is invariant under

$$
X=x \quad U=u+\epsilon e^{A(x)} \quad \epsilon \in \mathbb{R}
$$

Check:

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty}\left[U(X) e^{-A(X)}+B(X)\right] \phi^{\prime}(X) \mathrm{d} X \\
& =\int_{-\infty}^{\infty}\left[u(x) e^{-A(x)}+B(x)\right] \phi^{\prime}(x) \mathrm{d} x+\epsilon \underbrace{\int_{-\infty}^{\infty} \phi^{\prime}(x) \mathrm{d} x}_{=0} \\
& =\int_{-\infty}^{\infty}\left[u(x) e^{-A(x)}+B(x)\right] \phi^{\prime}(x) \mathrm{d} x
\end{aligned}
$$

At the discrete level,

$$
0=\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty} u_{i} \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x
$$

the weak form is not invariant under

Indeed

At the discrete level,

$$
0=\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty} u_{i} \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x
$$

the weak form is not invariant under

$$
X=x \quad U_{i}=u_{i}+e^{A_{i}} \quad A_{i}=A\left(x_{i}\right)
$$

Indeed

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty}\left(u_{i}+\epsilon e^{A_{i}}\right) \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x \\
& =\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty} u_{i} \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x+\epsilon \underbrace{\int_{-\infty}^{\infty} \sum_{i=-\infty}^{\infty} e^{A_{i}-A(x)} \phi_{i} \phi_{k}^{\prime} \mathrm{d} x}_{\neq 0}
\end{aligned}
$$

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

```
Definition: Let G be a Lie group acting on a space M parametrized by
A (right) moving frame is a map
```

satisfying the G-equivariance

$$
\rho(g \cdot z)=\rho(z) g^{-1}
$$

- A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in M, \rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

$$
\rho(z) \cdot z \in \mathcal{K}
$$

Requires the action to be free and regular

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z. A (right) moving frame is a map

$$
\rho: M \rightarrow G
$$

satisfying the G-equivariance

$$
\rho(g \cdot z)=\rho(z) g^{-1}
$$

- A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in \bar{M}, \rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z. A (right) moving frame is a map

$$
\rho: M \rightarrow G
$$

satisfying the G-equivariance

$$
\rho(g \cdot z)=\rho(z) g^{-1}
$$

- A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in M, \rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z. A (right) moving frame is a map

$$
\rho: M \rightarrow G
$$

satisfying the G-equivariance

$$
\rho(g \cdot z)=\rho(z) g^{-1}
$$

- A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in M, \rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

$$
\rho(z) \cdot z \in \mathcal{K}
$$

Requires the action to be free and regular

Invariantization

Definition: Let $\rho(z)$ be a moving frame. The invariantization of a function $F: M \rightarrow \mathbb{R}$ is the invariant

$$
\iota(F)(z)=F(\rho(z) \cdot z)
$$

$\iota(F)(g \cdot z)=F(\rho(g \cdot z) \cdot g \cdot z)$

Also possible to invariantize

- differential forms
- differential operators
- functionals,

Invariantization

Definition: Let $\rho(z)$ be a moving frame. The invariantization of a function $F: M \rightarrow \mathbb{R}$ is the invariant

$$
\iota(F)(z)=F(\rho(z) \cdot z)
$$

Check:
$\iota(F)(g \cdot z)=F(\rho(g \cdot z) \cdot g \cdot z)$

$$
=F\left(\rho(z) \cdot g^{-1} \cdot g \cdot z\right)=F(\rho(z) \cdot z)=\iota(F)(z)
$$

Also possible to invariantize

- differential forms
- differential operators
- functionals,

Invariantization

Definition: Let $\rho(z)$ be a moving frame. The invariantization of a function $F: M \rightarrow \mathbb{R}$ is the invariant

$$
\iota(F)(z)=F(\rho(z) \cdot z)
$$

Check:

$$
\begin{aligned}
\iota(F)(g \cdot z)=F(\rho(g \cdot z) & \cdot g \cdot z) \\
& =F\left(\rho(z) \cdot g^{-1} \cdot g \cdot z\right)=F(\rho(z) \cdot z)=\iota(F)(z)
\end{aligned}
$$

Also possible to invariantize

- differential forms
- differential operators
- functionals, ...

Example (Continuation)

Returning to the group action

$$
X=x_{i} \quad U_{i}=u_{i}+\epsilon e^{A_{i}} \quad i \in \mathbb{Z}
$$

we choose the cross-section

$$
\mathcal{K}=\left\{u_{k}=0\right\}
$$

Solving the normalization equation

Example (Continuation)

Returning to the group action

$$
X=x_{i} \quad U_{i}=u_{i}+\epsilon e^{A_{i}} \quad i \in \mathbb{Z}
$$

we choose the cross-section

$$
\mathcal{K}=\left\{u_{k}=0\right\}
$$

Solving the normalization equation

Invariantizing $0=\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty} u_{i} \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x$:

Example (Continuation)

Returning to the group action

$$
X=x_{i} \quad U_{i}=u_{i}+\epsilon e^{A_{i}} \quad i \in \mathbb{Z}
$$

we choose the cross-section

$$
\mathcal{K}=\left\{u_{k}=0\right\}
$$

Solving the normalization equation

$$
0=U_{k}=u_{k}+\epsilon e^{A_{k}}
$$

Invariantizing $0=$

Example (Continuation)

Returning to the group action

$$
X=x_{i} \quad U_{i}=u_{i}+\epsilon e^{A_{i}} \quad i \in \mathbb{Z}
$$

we choose the cross-section

$$
\mathcal{K}=\left\{u_{k}=0\right\}
$$

Solving the normalization equation

$$
0=U_{k}=u_{k}+\epsilon e^{A_{k}} \quad \Rightarrow \quad \epsilon=-u_{k} e^{-A_{k}}
$$

Invariantizing $0=$

Example (Continuation)

Returning to the group action

$$
X=x_{i} \quad U_{i}=u_{i}+\epsilon e^{A_{i}} \quad i \in \mathbb{Z}
$$

we choose the cross-section

$$
\mathcal{K}=\left\{u_{k}=0\right\}
$$

Solving the normalization equation

$$
0=U_{k}=u_{k}+\epsilon e^{A_{k}} \quad \Rightarrow \quad \epsilon=-u_{k} e^{-A_{k}}
$$

Invariantizing $0=\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty} u_{i} \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x$:

$$
\begin{aligned}
0 & =\left.\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty}\left(u_{i}+\epsilon e^{A_{i}}\right) \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x\right|_{\epsilon=-u_{k} e^{-A_{k}}} \\
& =\int_{-\infty}^{\infty}\left[\sum_{i=-\infty}^{\infty}\left(u_{i}-u_{k} e^{A_{i}-A_{k}}\right) \phi_{i} e^{-A(x)}-B(x)\right] \phi_{k}^{\prime} \mathrm{d} x
\end{aligned}
$$

Introducing

$$
a_{k}=\left[\int e^{-A(x)} \mathrm{d} x\right]_{x=x_{k}} \quad\langle f\rangle_{I_{k}}=\frac{1}{x_{k+1}-x_{k}} \int_{x_{k}}^{x_{k+1}} f(x) \mathrm{d} x
$$

the corresponding invariant scheme is

$$
\begin{aligned}
\frac{u_{k+1} e^{A_{k}}-i_{k} e^{A_{k+1}}}{x_{k+1}-x_{k}} & \left(a_{k+1}-\langle a\rangle_{I_{k}}\right)-e^{A_{k}}\langle B\rangle_{I_{k}} \\
= & \frac{u_{k} e^{A_{k-1}}-u_{k-1} e^{A_{k}}}{x_{k}-x_{k-1}}\left(a_{k-1}-\langle a\rangle_{I_{k-1}}\right)-e^{A_{k}}\langle B\rangle_{I_{k-1}}
\end{aligned}
$$

Introducing

$$
a_{k}=\left[\int e^{-A(x)} \mathrm{d} x\right]_{x=x_{k}} \quad\langle f\rangle_{I_{k}}=\frac{1}{x_{k+1}-x_{k}} \int_{x_{k}}^{x_{k+1}} f(x) \mathrm{d} x
$$

the corresponding invariant scheme is

$$
\begin{aligned}
\frac{u_{k+1} e^{A_{k}}-i_{k} e^{A_{k+1}}}{x_{k+1}-x_{k}} & \left(a_{k+1}-\langle a\rangle_{I_{k}}\right)-e^{A_{k}}\langle B\rangle_{I_{k}} \\
= & \frac{u_{k} e^{A_{k-1}}-u_{k-1} e^{A_{k}}}{x_{k}-x_{k-1}}\left(a_{k-1}-\langle a\rangle_{I_{k-1}}\right)-e^{A_{k}}\langle B\rangle_{I_{k-1}}
\end{aligned}
$$

Note: When $B(x)=0$, the solution is

$$
u_{k}=C e^{A_{k}}=C e^{A\left(x_{k}\right)}
$$

Final Remarks

The previous considerations extend to

- higher order ODE (Done several examples involving $2^{\text {nd }}$ order ODE)
- evolutive PDE in $1+1$ variables using the method of lines (Considered Burgers' equation - Requires an adaptive mesh to preserve the symmetries)

Still needs to be done

- Consider other basis functions - higher order Lagrangian polynomials
- consider boundary terms
- consider non-projectable group actions
- extend to PDE in 2 or more spatial dimension
- run numerical tests

Comments and Suggestions are Welcome!!!

Final Remarks

The previous considerations extend to

- higher order ODE (Done several examples involving $2^{\text {nd }}$ order ODE)
- evolutive PDE in $1+1$ variables using the method of lines (Considered Burgers' equation - Requires an adaptive mesh to preserve the symmetries)

Still needs to be done

- Consider other basis functions
- higher order Lagrangian polynomials
- splines
- consider boundary terms
- consider non-projectable group actions
- extend to PDE in 2 or more spatial dimension
- run numerical tests

Final Remarks

The previous considerations extend to

- higher order ODE (Done several examples involving $2^{\text {nd }}$ order ODE)
- evolutive PDE in $1+1$ variables using the method of lines (Considered Burgers' equation - Requires an adaptive mesh to preserve the symmetries)

Still needs to be done

- Consider other basis functions
- higher order Lagrangian polynomials
- splines
- consider boundary terms
- consider non-projectable group actions
- extend to PDE in 2 or more spatial dimension
- run numerical tests

Comments and Suggestions are Welcome!!!

