Construction of bounded cochain projections and their role in the FE exterior calculus

Richard S. Falk
Dept. of Mathematics
Rutgers University

June 15, 2017

Joint work with:
Douglas N. Arnold (Univ. of Minnesota)
Ragnar Winther (Univ. of Oslo)

Outline Of Talk

- I. Motivation
- II. Review of Finite Element Exterior Calculus
- III. Canonical projection operators
- IV. Nonlocal bounded cochain projections
- V. Local bounded cochain projections
- VI. A double complex

Motivation

Elliptic equation, $-\operatorname{div}(\operatorname{agrad} u)=f$ in $\Omega, u=0$ on $\partial \Omega$.

Mixed formulation: Find $(\sigma, u) \in H(\operatorname{div} ; \Omega) \times L^{2}(\Omega)$, $\sigma=\operatorname{agrad} u$, such that

$$
\begin{array}{ll}
\left\langle a^{-1} \sigma, \tau\right\rangle+\langle u, \operatorname{div} \tau\rangle & =0, \quad \tau \in H(\operatorname{div} ; \Omega), \\
\langle\operatorname{div} \sigma, v\rangle & =\langle f, v\rangle, \quad v \in L^{2}(\Omega) .
\end{array}
$$

$H(\operatorname{div} ; \Omega)=\left\{\tau \in L^{2}(\Omega): \operatorname{div} \tau \in L^{2}(\Omega)\right\}$.

Mixed finite element approximation

Choose finite dimensional spaces $\Sigma_{h} \times V_{h} \subset H(\operatorname{div} ; \Omega) \times L^{2}(\Omega)$.
Find $\left(\sigma_{h}, u_{h}\right) \in \Sigma_{h} \times V_{h}$ such that

$$
\begin{array}{ll}
\left\langle a^{-1} \sigma_{h}, \tau\right\rangle+\left\langle u_{h}, \operatorname{div} \tau\right\rangle & =0, \quad \tau \in \Sigma_{h}, \\
\left\langle\operatorname{div} \sigma_{h}, v\right\rangle & =\langle f, v\rangle, \quad v \in V_{h} .
\end{array}
$$

If $\operatorname{div} \Sigma_{h} \subset V_{h}$, stability follows from

$$
\sup _{\tau \in \Sigma_{h}} \frac{\langle v, \operatorname{div} \tau\rangle}{\|\tau\|_{H(\operatorname{div})} \geq \alpha\|v\|_{L^{2}}, \quad v \in V_{h} ~ . ~}
$$

Stability and Fortin operators

To satisfy sup condition, let $\tau=\operatorname{grad} \phi$, where ϕ satisfies

$$
\Delta \phi=v, \text { in } \Omega, \quad \phi=0 \text { on } \partial \Omega .
$$

Then $\operatorname{div} \tau=\Delta \phi=v$ and $\|\tau\|_{H(\text { div })} \leq C\|v\|_{L^{2}}$.
In fact, $\exists W \subset H($ div $)$ such that $\|\tau\|_{W} \leq C\|v\|_{L^{2}}$.
For example, if Ω is a convex polygon, $W=H^{1}(\Omega)$.
Assume there exists a (Fortin) operator $\pi_{h}: W \rightarrow \Sigma_{h}$ such that

$$
\left\langle v, \operatorname{div} \pi_{h} \tau\right\rangle=\langle v, \operatorname{div} \tau\rangle, \quad v \in V_{h}, \quad\left\|\pi_{h} \tau\right\|_{H(\text { div })} \leq C^{\prime}\|\tau\|_{w}
$$

Then for $v \in V_{h}$,

$$
\begin{aligned}
& \sup _{\tau \in \Sigma_{h}} \frac{\langle v, \operatorname{div} \tau\rangle}{\|\tau\|_{H(\text { div })}} \geq \frac{\left\langle v, \operatorname{div} \pi_{h} \tau\right\rangle}{\left\|\pi_{h} \tau\right\|_{H(\text { div })}} \geq \frac{\langle v, \operatorname{div} \tau\rangle}{C^{\prime}\|\tau\| W} \\
& \geq \frac{\|v\|_{L^{2}}^{2}}{C^{\prime} C\|v\|_{L^{2}}} \geq \alpha\|v\|_{L^{2}}
\end{aligned}
$$

Commuting diagram

Alternatively, if $P_{h}\left(L^{2}\right.$ projection into $\left.V_{h}\right)$ and π_{h} satisfy commuting diagram:

$$
\begin{array}{lll}
W \xrightarrow{\text { div }} & L^{2}(\Omega) \\
\downarrow_{h} & & P_{h}, \\
\Sigma_{h} \xrightarrow{\text { div }} & V_{h}
\end{array}
$$

then for $\tau \in W$ and $v \in V_{h}$,

$$
\langle v, \operatorname{div} \tau\rangle=\left\langle v, P_{h} \operatorname{div} \tau\right\rangle=\left\langle v, \operatorname{div} \pi_{h} \tau\right\rangle .
$$

Commuting projections have been a standard tool of stability analysis for FEM for a long time.

The de Rham complex

In finite element exterior calculus, instead of studying discretizations of structure

$$
H(\operatorname{div} ; \Omega) \xrightarrow{\text { div }} L^{2}(\Omega)
$$

gain more insight by studying discretizations of complete de Rham complex

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl } ; \Omega) \xrightarrow{\text { curl }} H(\operatorname{div} ; \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0,
$$

where

$$
\begin{aligned}
H(\operatorname{curl} ; \Omega) & =\left\{u: \Omega \rightarrow \mathbb{R}^{3} \mid u \in L^{2}, \text { curl } u \in L^{2}\right\} \\
H(\operatorname{div} ; \Omega) & =\left\{u: \Omega \rightarrow \mathbb{R}^{3} \mid u \in L^{2}, \operatorname{div} u \in L^{2}\right\}
\end{aligned}
$$

2-D de Rham sequences:

$$
\begin{aligned}
& H^{1}(\Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega), \\
& H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { rot }, \Omega) \xrightarrow{\text { rot }} L^{2}(\Omega) .
\end{aligned}
$$

de Rham complex (continued)

3-D de Rham complex

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl } ; \Omega) \xrightarrow{\text { curl }} H(\operatorname{div} ; \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

is special case of general L^{2} de Rham complex.

$$
0 \rightarrow H \Lambda^{0}(\Omega) \xrightarrow{d_{0}} H \Lambda^{1}(\Omega) \xrightarrow{d_{1}} \cdots \xrightarrow{d_{n-1}} H \Lambda^{n}(\Omega) \rightarrow 0,
$$

$$
\text { where } \quad H \Lambda^{k}(\Omega)=\left\{\omega \in L^{2} \Lambda^{k}(\Omega): d \omega \in L^{2} \Lambda^{k+1}(\Omega)\right\}
$$

and $d_{k}: H \wedge^{k}(\Omega) \rightarrow H \wedge^{k+1}(\Omega)$ is exterior derivative.
Structure is called a complex since $d_{k+1} \circ d_{k}=0$.
Complex called exact if range $\left(d_{k}\right)=\operatorname{ker}\left(d_{k+1}\right)$.
For 3-D de Rham complex, $d^{0}=\operatorname{grad}, d^{1}=$ curl, $d^{2}=\operatorname{div}$.

The Hodge Laplacian

Connected to this complex is operator $L=d d^{*}+d^{*} d$, called Hodge Laplacian, where d^{*} is adjoint of d. So

$$
\langle d u, v\rangle=\left\langle u, d^{*} v\right\rangle, u \in V^{k} \equiv H \Lambda^{k}(\Omega), v \in V_{k+1}^{*} \equiv \AA^{*} \Lambda^{k+1}(\Omega)
$$

Domain of L is: $D_{L}=\left\{u \in V^{k} \cap V_{k}^{*}\right\}$. If u solves $L u=f$, then

$$
\langle d u, d v\rangle+\left\langle d^{*} u, d^{*} v\right\rangle=\langle f, v\rangle, \quad v \in D_{L} .
$$

Not a good formulation for FEM approximation: hard to construct useful subspaces of D_{L}.
In general: Harmonic forms $\mathfrak{H}^{k}=\left\{v \in D_{L}: d v=0, d^{*} v=0\right\}$. Ignore for simplicity.

Mixed formulation of Hodge Laplacian

For $f \in L^{2} \Lambda^{k}(\Omega)$ given, find $(\sigma, u) \in H \Lambda^{k-1}(\Omega) \times H \Lambda^{k}(\Omega)$ satisfying

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle d \tau, u\rangle & =0, & & \tau \in H \wedge^{k-1}(\Omega), \\
\langle d \sigma, v\rangle+\langle d u, d v\rangle & =\langle f, v\rangle, & & v \in H \wedge^{k}(\Omega)
\end{aligned}
$$

First equation: u belongs to domain of d^{*} and $d^{*} u=\sigma$.
Second equation: $d u$ belongs to domain of d^{*} and $d^{*} d u=f-d \sigma$. Hence, $u \in D_{L}$ of L and solves Hodge Laplacian equation $L u=f$.

Applications of the Hodge Laplacian

Let $\Omega \subset \mathbb{R}^{3}$. Mixed formulation gives:
$k=0$: Neumann problem for Poisson's equation

$$
-\operatorname{div} \operatorname{grad} u=f \text { in } \Omega, \quad \int_{\Omega} u d x=0, \quad \operatorname{grad} u \cdot n=0 \text { on } \partial \Omega
$$

$k=1:$ BVP for vector Laplacian

$$
\begin{gathered}
\sigma=-\operatorname{div} u, \quad \operatorname{grad} \sigma+\operatorname{curl} \operatorname{curl} u=f \quad \text { in } \Omega, \\
u \cdot n=0, \\
\text { curl } u \times n=0 \quad \text { on } \partial \Omega . \\
f=\operatorname{grad} F: \quad-\operatorname{div} u=F, \quad \operatorname{curl} u=0 . \\
\operatorname{div} f=0: \quad \text { curl curl } u=f, \quad \operatorname{div} u=0 .
\end{gathered}
$$

More applications of the Hodge Laplacian

$k=2$: Another BVP for vector Laplacian

$$
\begin{aligned}
& \sigma=\operatorname{curl} u, \quad \operatorname{curl} \sigma-\operatorname{grad} \operatorname{div} u=f \quad \text { in } \Omega, \\
& \quad u \times n=0, \operatorname{div} u=0 \quad \text { on } \partial \Omega . \\
& f=\operatorname{curl} F: \quad \operatorname{curl} u=F, \quad \operatorname{div} u=0 . \\
& f=\operatorname{grad} F: \quad \operatorname{div} u=F, \quad \operatorname{curl} u=0 .
\end{aligned}
$$

$k=3$: Dirichlet problem for Poisson's equation

$$
\sigma=-\operatorname{grad} u, \operatorname{div} \sigma=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Well-posedness of Mixed BVP for Hodge Laplacian

Let

$$
\begin{gathered}
\mathfrak{B}^{k}=d H \wedge^{k-1}(\Omega), \quad \mathfrak{Z}^{k}=\left\{w \in H \wedge^{k}(\Omega): d \omega=0\right\}, \\
\mathfrak{Z}^{k \perp}=\text { orthogonal complement of } \mathfrak{Z}^{k} \text { in } H \wedge^{k}(\Omega) .
\end{gathered}
$$

Proof of well-posedness uses:
(i) Hodge decomposition of $u \in H \Lambda^{k}(\Omega)$:

$$
u=P_{\mathfrak{B}^{k}} u \oplus P_{\mathfrak{Z}^{k \perp}} u
$$

(ii) Poincaré inequality:

$$
\|v\|_{L^{2} \Lambda^{k}} \leq c_{P}\|d v\|_{L^{2} \Lambda^{k+1}}, \quad v \in \mathfrak{Z}^{k \perp}
$$

to verify inf-sup condition (technical condition guaranteeing well-posedness).

Approximation of de Rham complexes

To approximate Hodge Laplacian, begin with approximation of de Rham complex.
Seek spaces $\Lambda_{h}^{k} \subset H \Lambda^{k}(\Omega)$ with $d \Lambda_{h}^{k} \subset \Lambda_{h}^{k+1}$, so that $\left(\Lambda_{h}, d\right)$ is a subcomplex of $(H \wedge, d)$.
Differential for subcomplex is restriction of d, but $d_{h}^{*}: \Lambda_{h}^{k+1} \rightarrow \Lambda_{h}^{k}$, defined by

$$
\left\langle d_{h}^{*} u, v\right\rangle=\langle u, d v\rangle, \quad u \in \Lambda_{h}^{k+1}, v \in \Lambda_{h}^{k},
$$

not restriction of d^{*}. (Major technical difficulty.)
Then have discrete Hodge decomposition

$$
\Lambda_{h}^{k}=\mathfrak{B}_{h}^{k} \oplus \mathfrak{Z}_{h}^{k \perp}
$$

Approximation of de Rham complex (continued)

Assume $\inf _{v \in \Lambda_{h}^{\kappa}}\|u-v\|_{H \Lambda} \rightarrow 0$ as $h \rightarrow 0$ for some (or all) $u \in H \wedge^{k}(\Omega)$,
where $\quad\|v\|_{H \Lambda}^{2}=\|v\|_{L^{2}}^{2}+\|d v\|_{L^{2}}^{2}$.
Further assume: there exist bounded cochain projections
$\pi_{h}^{k}: H \wedge^{k}(\Omega) \mapsto \Lambda_{h}^{k}$, i.e., π_{h}^{k} leaves subspace invariant and satisfies

$$
d^{k} \pi_{h}^{k}=\pi_{h}^{k+1} d^{k}, \quad\left\|\pi_{h}^{k} v\right\|_{H \Lambda} \leq c\left\|_{v}\right\|_{H \Lambda}, \quad v \in H \wedge^{k}(\Omega) .
$$

Have following commuting diagram relating complex $(H \wedge(\Omega), d)$ to subcomplex $\left(\Lambda_{h}, d\right)$:

$$
\begin{aligned}
& 0 \rightarrow H \Lambda^{0}(\Omega) \xrightarrow{d} H \Lambda^{1}(\Omega) \xrightarrow{d} \cdots \xrightarrow{d} H \Lambda^{n}(\Omega) \rightarrow 0 \\
& \downarrow \pi_{h} \quad \downarrow \pi_{h} \quad \downarrow \pi_{h} \\
& 0 \rightarrow \Lambda_{h}^{0} \xrightarrow{d} \Lambda_{h}^{1} \xrightarrow{d} \cdots \xrightarrow{d} \Lambda_{h}^{n} \quad \rightarrow 0 .
\end{aligned}
$$

Galerkin approximation of Mixed Hodge Laplacian

Find $\sigma_{h} \in \Lambda_{h}^{k-1}, u_{h} \in \Lambda_{h}^{k}$, such that

$$
\begin{aligned}
\left\langle\sigma_{h}, \tau\right\rangle-\left\langle d \tau, u_{h}\right\rangle & =0, & & \tau \in \Lambda_{h}^{k-1}, \\
\left\langle d \sigma_{h}, v\right\rangle+\left\langle d u_{h}, d v\right\rangle & =\langle f, v\rangle, & & v \in \Lambda_{h}^{k} .
\end{aligned}
$$

Under previous assumptions, (π_{h}^{k} a bounded cochain projection), get discrete Poincaré inequality

$$
\|v\|_{L^{2} \Lambda^{k}} \leq c_{P}\left\|\pi_{h}^{k}\right\|_{\mathcal{L}(H \wedge, H \Lambda)}\|d v\|_{L^{2} \Lambda^{k}}, \quad v \in \mathcal{Z}_{h}^{k \perp}
$$

Use to satisfy discrete version of inf-sup condition, so get stability with constant depending only on c_{P} and $\left\|\pi_{h}^{k}\right\|_{\mathcal{L}\left(V^{k}, V^{k}\right)}$. Also get quasi-optimal error estimate ($V^{k}=H \wedge^{k}(\Omega)$):

$$
\begin{aligned}
\left\|\sigma-\sigma_{h}\right\|_{V^{k-1}}+ & \left\|u-u_{h}\right\|_{V^{k}} \\
& \leq C\left(\inf _{\tau \in \Lambda_{h}^{k-1}}\|\sigma-\tau\|_{V^{k-1}}+\inf _{v \in \Lambda_{h}^{k}}\|u-v\|_{V^{k}}\right) .
\end{aligned}
$$

Finite element approximation of de Rham complex

To apply abstract approximation results for Hodge Laplacian, construct finite dimensional subspaces Λ_{h}^{k} of $H \Lambda^{k}(\Omega)$ satisfying:
(i) $d \Lambda_{h}^{k} \subset \Lambda_{h}^{k+1}$ so they form subcomplex $\left(\Lambda_{h}, d\right)$ of de Rham complex.
(ii) There exist uniformly bounded cochain projections π_{h} from $H \Lambda^{k}$ to Λ_{h}^{k}.
(iii) Λ_{h}^{k} have good approximation properties.

Get two families of spaces of finite element differential forms.

$$
\begin{aligned}
\mathcal{P}_{r} \Lambda^{k}\left(\mathcal{T}_{h}\right) & =\left\{\omega \in H \Lambda^{k}(\Omega):\left.\omega\right|_{T} \in \mathcal{P}_{r} \Lambda^{k}(T), \forall T \in \mathcal{T}_{h}\right\} \\
\mathcal{P}_{r}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right) & =\left\{\omega \in H \Lambda^{k}(\Omega):\left.\omega\right|_{T} \in \mathcal{P}_{r}^{-} \Lambda^{k}(T), \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Generalize Raviart-Thomas and Brezzi-Douglas-Marini H (div) elements in 2-D and Nédélec 1st and 2nd kind H (div) and H (curl) elements in 3-D.

Simplest approximation of de Rham complex in 3-D

$$
\begin{aligned}
& 0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl } ; \Omega) \xrightarrow{\text { curl }} H(\text { div; } \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0 \\
& \downarrow \pi_{h} \quad \pi_{h} \quad \pi_{h} \quad \pi_{h} \\
& 0 \rightarrow H_{h}^{1} \xrightarrow{\text { grad }} H_{h}(\text { curl }) \xrightarrow{\text { curl }} H_{h}(\text { div }) \xrightarrow{\text { div }} L_{h}^{2} \rightarrow 0 .
\end{aligned}
$$

Simplest choice of finite element spaces:

- $H_{h}^{1}=$ piecewise linear scalar fields
- $H_{h}($ curl $)=$ Nédélec edge element
- $H_{h}($ div $)=$ Nédélec face element (or 3d Raviart-Thomas)
- $L_{h}^{2}=$ piecewise constants
all with respect to same simplicial mesh \mathcal{T}_{h}.

Degrees of freedom and canonical projections

For these spaces, commuting projections \mathcal{I}_{h} can be constructed from degrees of freedom as follows:

- $H_{h}^{1}=$ piecewise linears, $\mathcal{I}_{h}^{1} u(x)=u(x)$ at each vertex
- $H_{h}($ curl $)=$ edge element, $\int_{e} \mathcal{I}_{h}^{c} u \cdot t=\int_{e} u \cdot t$ at each edge
- $H_{h}($ div $)=$ face element, $\int_{f} \mathcal{I}_{h}^{d} u \cdot n=\int_{f} u \cdot n$ for each face
- $L_{h}^{2}=$ piecewise constants, $\int_{T} \mathcal{I}_{h}^{0} u=\int_{T} u$ for each tetrahedron

These projections commute with differential operators:

$$
\operatorname{grad} \circ \mathcal{I}_{h}^{1}=\mathcal{I}_{h}^{c} \circ \operatorname{grad}, \quad \operatorname{curl} \circ \mathcal{I}_{h}^{c}=\mathcal{I}_{h}^{d} \text { curl, } \quad \operatorname{div} \circ \mathcal{I}_{h}^{d}=\mathcal{I}_{h}^{0} \circ \operatorname{div} .
$$

However, $\mathcal{I}_{h}^{1}, \mathcal{I}_{h}^{c}, \mathcal{I}_{h}^{d}$ are not bounded on spaces $H^{1}, H($ curl $)$ and H (div), respectively.
Example: $u(x, y)=\log \log (2 / r), r^{2}=x^{2}+y^{2} \in H^{1}(\Omega), \Omega=$ unit disk, but is unbounded at origin, so \mathcal{I}_{h}^{1} not defined if origin is a vertex of triangulation.

Examples of DOF

C^{0} piecewise P_{1} on triangulation \mathcal{T}_{h} of $\Omega \in \mathbb{R}^{2}$. Shape fcns are P_{1} on each $T \in \mathcal{T}_{h}$. DOF are $\omega \mapsto \omega\left(v_{i}\right), v_{i}$ vertices of \mathcal{T}_{h}.

Shape fcns for $\mathcal{P}_{1}^{-} \Lambda^{1}(T)=\binom{a-b y}{c+b x}$. DOF: $\omega \mapsto \int_{e} \omega \cdot t_{e}$.

$\mathcal{P}_{1}^{-} \Lambda^{1}(T)$

$\mathcal{P}_{1} \Lambda^{1}(T)$

$\mathcal{P}_{2}^{-} \Lambda^{1}(T)$

DOF and canonical projections for more general subspaces

For a d-dimensional subsimplex f of T, DOF have form

$$
\begin{aligned}
& \mathcal{P}_{r} \Lambda^{k}(T): \quad \omega \mapsto \int_{f} \operatorname{tr}_{T, f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d}^{-} \Lambda^{d-k}(f) \\
& \mathcal{P}_{r}^{-} \Lambda^{k}(T): \quad \omega \mapsto \int_{f} \operatorname{tr}_{T, f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d-1} \Lambda^{d-k}(f) .
\end{aligned}
$$

Key idea: if subsimplex shared by more than one simplex in triangulation, DOF associated with subsimplex are single-valued.

Determines interelement continuity of finite element space resulting finite element spaces are subspaces of $H \Lambda^{k}(\Omega)$. Implicitly defines canonical projections: not bounded in $H \Lambda^{k}(\Omega)$,

$$
\int_{f} \operatorname{tr}_{T, f} \mathcal{I}_{h} \omega \wedge \eta=\int_{f} \operatorname{tr}_{T, f} \omega \wedge \eta, \quad \eta \text { as above }
$$

since all traces not defined for $\omega \in H \Lambda^{k}(\Omega)$.

Construction of bounded cochain projections

Consider operators of form

$$
Q_{\epsilon, h}^{k}=\mathcal{I}_{h}^{k} \circ R_{\epsilon, h}^{k}
$$

where $R_{h}^{k}=R_{\epsilon, h}^{k}$ is a smoothing operator which commutes with exterior derivative d and \mathcal{I}_{h}^{k} are canonical projections.
Operator of form Q_{h}^{k} can be made bounded on $L^{2} \Lambda^{k}(\Omega)$ and will commute with d. However, in general it is not a projection onto finite element space Λ_{h}^{k}.

So called smoothed projections are of form:

$$
\pi_{h}^{k}=\left(Q_{\epsilon, h}^{k} \mid \Lambda_{h}\right)^{-1} \circ Q_{\epsilon, h}^{k},
$$

for ϵ sufficiently small, but not too small. (cf. Schöberl 2007, Christiansen 2007, A-F-W 2006).

This construction gives bounded, but nonlocal cochain projections.

Why do we care about having local projections?

A posteriori error estimation and adaptive FEM.
Goal: Estimate local errors using only quantities known from the computation and use this information to modify mesh to introduce smaller elements where local error is big.

Need: localized a posteriori error estimates
L. Chen and Y. Wu, Convergence of adaptive mixed finite element methods for Hodge Laplacian equation: without harmonic forms
A. Demlow, Convergence and quasi-optimality of adaptive finite element methods for harmonic forms

Macroelements and the Clément interpolant

Problem of defining interpolants on non-smooth functions (only in $L^{2}(\Omega)$) solved by Clément.
Consider subspaces $\mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)$ of H^{1}. To define Clément interpolant for each $f \in \Delta\left(\mathcal{T}_{h}\right)$, introduce associated macroelement Ω_{f} by

$$
\Omega_{f}=\bigcup\left\{T \mid T \in \mathcal{T}_{h}, f \in \Delta(T)\right\}
$$

Vertex macroelement, $n=2$.

Edge macroelement, $n=2$.

The Clément interpolant

Let $\mu_{i}: C(\bar{\Omega}) \rightarrow \mathbb{R}$ be usual DOfs for space $\mathcal{P}^{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)$ and ϕ_{i} corresponding basis functions. Example: $P^{3}(T)$.

Standard interpolant is $\mathcal{I}_{h} u=\sum_{i} \mu_{i}(u) \phi_{i}$.
Let S_{i} denote support of ϕ_{i}, i.e., macroelement where $\phi_{i} \neq 0$. Let $P_{i}: L^{2}\left(S_{i}\right) \rightarrow \mathcal{P}^{r}\left(S_{i}\right)$ be L^{2} projection on S_{i}.
Clément operator $\tilde{\mathcal{I}}_{h}: L^{2} \rightarrow \mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)$ defined by

$$
\tilde{\mathcal{I}}_{h} u=\sum_{i} \mu_{i}\left(P_{i} u\right) \phi_{i} .
$$

$\tilde{\mathcal{I}}_{h} u$ bounded in L^{2}, but not a projection.

Degrees of freedom and geometric decompositions

Consequence of DOF that space $\mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)$ admits decomposition of form

$$
P_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)=\bigoplus_{f \in \Delta\left(\mathcal{T}_{h}\right)} E_{f}\left(\grave{\mathcal{P}}_{r}(f)\right)
$$

where E_{f} is local extension operator mapping $\mathcal{P}_{r} \Lambda^{0}(f)$ into subspace of $\mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)$ with support in Ω_{f}.
Choose E_{f} to be discrete harmonic extension given by $\operatorname{tr}_{f} E_{f} \phi=\phi$,

$$
\int_{\Omega_{f}} \operatorname{grad} E_{f} \phi \cdot \operatorname{grad} v=0
$$

for all $v \in \mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)$, supp $v \subset \Omega_{f}$, and $\operatorname{tr}_{f} v=0$.

Geometric decomposition example: $p=3$

Write $u \in \mathcal{P}_{3} \Lambda^{0}\left(\mathcal{T}_{h}\right)=u_{2}$, where

$$
\begin{gathered}
u_{0}=\sum_{f_{0} \in \Delta_{0}\left(\mathcal{T}_{h}\right)} E_{f_{0}} \operatorname{tr}_{f_{0}} u \\
u_{m}=u_{m-1}+\sum_{f_{m} \in \Delta_{m}\left(\mathcal{T}_{h}\right)} E_{f_{m}} \operatorname{tr}_{f_{m}}\left(u-u_{m-1}\right), \quad m=1,2 .
\end{gathered}
$$

Show u and u_{2} agree at degrees of freedom. Then $u=u_{2}$.
Since $\operatorname{tr}_{g_{i} \in \Delta_{i}} E_{f_{i}} \operatorname{tr}_{f_{i}}=0$ unless $g_{i}=f_{i}, \operatorname{tr}_{g_{0}} u_{0}=\operatorname{tr}_{g_{0}} u$ and $\operatorname{tr}_{g_{1} \in \Delta_{1}} u_{1}=\operatorname{tr}_{g_{1}} u_{0}+\operatorname{tr}_{g_{1}}\left(u-u_{0}\right)=\operatorname{tr}_{g_{1}} u$. Similarly, $\operatorname{tr}_{g_{2} \in \Delta_{2}} u_{2}=\operatorname{tr}_{g_{2} \in \Delta_{2}} u$.
Since for $j<i, \operatorname{tr}_{g_{j} \in \Delta_{j}} E_{f_{i}} \operatorname{tr}_{f_{i}}=0$ if $g_{j} \notin f_{i}$
and $=\operatorname{tr}_{g_{j} \in \Delta_{j}}$ otherwise, also get:
$\operatorname{tr}_{g_{0} \in \Delta_{0}} u_{2}=\operatorname{tr}_{g_{0}} u_{1}=\operatorname{tr}_{g_{0}} u_{0}=\operatorname{tr}_{g_{0}} u$,
$\operatorname{tr}_{g_{1} \in \Delta_{1}} u_{2}=\operatorname{tr}_{g_{1}} u_{1}=\operatorname{tr}_{g_{1}} u$.

The modified Clement operator π^{0} onto $\mathcal{P}_{r} \wedge^{0}\left(\mathcal{T}_{h}\right)$

Projection operator π^{0} constructed by recursion wrt dimension of subsimplices $f \in \mathcal{T}_{h}$. Define $\mathcal{T}_{f, h}=$ restriction of \mathcal{T}_{h} to Ω_{f}.
If $\operatorname{dim} f=0$, i.e., f a vertex, first define $P_{f}^{0} u \in \mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{f, h}\right)$ as H^{1} projection of u, i.e., $P_{f}^{0} u$ satisfies: $\int_{\Omega_{f}} P_{f}^{0} u=\int_{\Omega_{f}} u$ and

$$
\int_{\Omega_{f}} \operatorname{grad} P_{f}^{0} u \cdot \operatorname{grad} v=\int_{\Omega_{f}} \operatorname{grad} u \cdot \operatorname{grad} v, \quad v \in \mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{f, h}\right)
$$

Define $\quad \pi_{0}^{0} u=\sum_{f \in \Delta_{0}\left(\mathcal{T}_{h}\right)} \mathcal{E}_{f}^{0}\left(\operatorname{tr}_{f} P_{f}^{0} u\right)$,
where $\mathcal{E}_{f}^{0}(z)=$ piecewise linear function with value z at vertex f and zero at all other vertices.

The modified Clement operator π^{0} continued

Use recursive approach based on geometric decomposition:
For $1 \leq m \leq n$, define π_{m}^{0} by

$$
\pi_{m}^{0} u=\pi_{m-1}^{0} u+\sum_{f \in \Delta_{m}\left(\mathcal{T}_{h}\right)} E_{f}^{0} \operatorname{tr}_{f} P_{f}^{0}\left(u-\pi_{m-1}^{0} u\right)
$$

For $\operatorname{dim} f \geq 1$, operators P_{f} are local H^{1} projections onto space:

$$
\breve{\mathcal{P}}_{r} \Lambda^{0}\left(\mathcal{T}_{f, h}\right)=\left\{u \in \mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{f, h}\right) \mid \operatorname{tr}_{f} u \in \grave{\mathcal{P}}_{r}(f)\right\} .
$$

Gives local projection $\pi^{0}=\pi_{n}^{0}$, bounded in H^{1}.

Generalization to $\pi^{k}: H \Lambda^{k}(\Omega) \rightarrow \mathcal{P} \Lambda^{k}\left(\mathcal{T}_{h}\right)$

Construction of π^{0} based on local projections P_{f}^{0} defined with respect to associated macroelement Ω_{f}.
Let $f=\left[x_{0}, x_{1}\right]$. To get commuting projections $\left(\pi^{1} d u=d \pi^{0} u\right)$, need

$$
\begin{aligned}
& \int_{f} \operatorname{tr}_{f} \pi^{1} d u=\int_{f} \operatorname{tr}_{f} d \pi^{0} u=\int_{f} \operatorname{grad} \pi^{0} u \cdot t_{f} d s \\
&=\int_{x_{0}}^{x_{1}} \frac{d}{d s} \pi^{0} u d s=\left(\pi^{0} u\right)\left(x_{1}\right)-\left(\pi^{0} u\right)\left(x_{0}\right)
\end{aligned}
$$

But RHS depends on u restricted to union of macroelements associated to vertices x_{0} and x_{1}. So can't just take local projections on macroelement Ω_{f} to define π^{1}.

Extended macroelements

$$
\Omega_{f}^{e}=\bigcup_{g \in \Delta_{0}(f)} \Omega_{g}, \quad f \in \Delta\left(\mathcal{T}_{h}\right)
$$

If $g \in \Delta(f)$ then $\Omega_{f} \subset \Omega_{g}$ and $\Omega_{f}^{e} \supset \Omega_{g}^{e}$.

Extended macroelement Ω_{f}^{e} corresponding to union of two macroelements $\Omega_{g_{0}}$ (outlined by thick lines) and $\Omega_{g_{1}}, n=2$.

Construction of π^{1} in simplest case

Consider (modified) Clement projection onto piecewise linear space $\mathcal{P}_{1} \wedge^{0}\left(\mathcal{T}_{h}\right)$. Operator π^{0} has form:

$$
\left(\pi^{0} u\right)(x)=\sum_{f \in \Delta_{0}\left(\mathcal{T}_{h}\right)}\left(P_{f}^{0} u\right)(f) \lambda_{f}(x)
$$

Projections P_{f} are local H^{1} projections wrt to macroelement Ω_{f} and $\lambda_{f}(x)$ is barycentric coordinate associated to vertex f.
Define vol $\Omega_{\Omega_{f}}$ to be volume form on Ω_{f}, scaled so that $\int_{\Omega_{f}}$ vol $_{\Omega_{f}}=1$. Rewrite $P_{f} u$ in form:

$$
P_{f} u=\int_{\Omega} u \cdot \operatorname{vol}_{\Omega_{f}} d x+Q_{f} u
$$

where $Q_{f} u \in \mathcal{P}_{1} \wedge^{0}\left(\mathcal{T}_{f, h}\right)$ has mean value zero on Ω_{f}, and satisfies

$$
\int_{\Omega_{f}} \operatorname{grad} Q_{f} u \cdot \operatorname{grad} v=\int_{\Omega_{f}} \operatorname{grad} u \cdot \operatorname{grad} v
$$

for all $v \in \mathcal{P}_{1} \Lambda^{0}\left(\mathcal{T}_{f, h}\right)$ with mean value zero.

Commuting projections

To obtain commuting projections, need to define π_{h}^{1} into space $\mathcal{P}_{1}^{-} \Lambda^{1}\left(\mathcal{T}_{h}\right)$ such that

$$
\operatorname{grad} \pi^{0} u=\pi^{1} \operatorname{grad} u
$$

In particular, have to express

$$
\operatorname{grad} \pi^{0} u=\operatorname{grad}\left[\sum_{f \in \Delta_{0}\left(\mathcal{T}_{h}\right)}\left(\int_{\Omega} u \cdot \operatorname{vol}_{\Omega_{f}} d x+\left(Q_{f} u\right)(f)\right) \lambda_{f}\right]
$$

in terms of grad u.
Since $Q_{f} u$ only depends on grad u, need to express:

$$
\operatorname{grad} M_{h}^{0} u \equiv \sum_{f \in \Delta_{0}\left(\mathcal{T}_{h}\right)}\left[\int_{\Omega} u \cdot \operatorname{vol}_{\Omega_{f}} d x\right] \operatorname{grad} \lambda_{f}
$$

in terms of grad u.

The δ operator

If $f=\left[x_{0}, \ldots, x_{m+1}\right] \in \Delta_{m+1}\left(\mathcal{T}_{h}\right)$, define

$$
(\delta u)_{f}=\sum_{j=0}^{m+1}(-1)^{j} u_{f_{j}}
$$

where $f_{j}=\left[x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m+1}\right]$. So if $f=\left[x_{0}, x_{1}\right]$, $f_{0}=x_{1}, f_{1}=x_{0}$ and

$$
(\delta u)_{f}=u_{f_{0}}-u_{f_{1}}=u_{x_{1}}-u_{x_{0}}
$$

Key properties:

$$
d \circ \delta=\delta \circ d, \quad \delta \circ \delta=0
$$

If we let $z_{f}^{0} \in \mathcal{P}_{0} \Lambda^{n}\left(\mathcal{T}_{f, h}\right)$ be defined by $z_{f}^{0}=\operatorname{vol}_{\Omega_{f}}$, then

$$
\left(\delta z_{f}^{0}\right)_{f}=\operatorname{vol}_{\Omega_{x_{1}}}-\operatorname{vol}_{\Omega_{x_{0}}} .
$$

The M_{h}^{0} operator

As above, if $M_{h}^{0}: L^{2}(\Omega) \rightarrow$ continuous, piecewise linear functions given by: (replaced f by g in sum)

$$
\left(M_{h}^{0} u\right)(x)=\sum_{g \in \Delta_{0}\left(\mathcal{T}_{h}\right)}\left(\int_{\Omega} u \cdot \operatorname{vol}_{\Omega_{g}} d x\right) \lambda_{g}(x)
$$

need to express grad $M_{h}^{0} u$ in terms of $\operatorname{grad} u$.
If $f=\left[x_{0}, x_{1}\right]$, $\operatorname{grad} \lambda_{g} \cdot\left(x_{1}-x_{0}\right)=\left[\lambda_{g}\left(x_{1}\right)-\lambda_{g}\left(x_{0}\right)\right]$. Then

$$
\begin{aligned}
& \operatorname{tr}_{f} \operatorname{grad} M_{h}^{0}(u) \cdot\left(x_{1}-x_{0}\right)=\int_{\Omega} u\left(\operatorname{vol}_{\Omega_{x_{1}}}-\operatorname{vol}_{\Omega_{x_{0}}}\right) d x \\
& \quad=\int_{\Omega} u\left(\delta z_{f}^{0}\right)_{f} d x=-\int_{\Omega} u\left(\operatorname{div} z_{f}^{1}\right) d x=\int_{\Omega} \operatorname{grad} u \cdot z_{f}^{1} d x
\end{aligned}
$$

where $z_{f}^{1} \in \mathcal{P}_{1}^{-} \Lambda^{n-1}\left(\mathcal{T}_{f, h}^{e}\right)$ satisfies $\operatorname{div} z_{f}^{1}=-\left(\delta z^{0}\right)_{f}$ and has zero normal components on the boundary of Ω_{f}^{e}. Note:
$\int_{\Omega}\left(\operatorname{vol}_{\Omega_{x_{1}}}-\operatorname{vol}_{\Omega_{x_{0}}}\right) d x=0$.

The M_{h} operator (continued)

Let $f=\left[x_{0}, x_{1}\right], \lambda_{i}=\lambda_{x_{i}}$, and

$$
\phi_{f}=\lambda_{0}\left(\operatorname{grad} \lambda_{1}\right)-\lambda_{1}\left(\operatorname{grad} \lambda_{0}\right)
$$

Then $\operatorname{tr}_{f}\left[\phi_{f} \cdot\left(x_{1}-x_{0}\right)\right]=\operatorname{tr}_{f}\left[\lambda_{0}+\lambda_{1}\right]=1$. Can conclude:

$$
\operatorname{grad} M_{h}^{0} u=\sum_{f \in \Delta_{1}\left(\mathcal{T}_{h}\right)}\left(\int_{\Omega} \operatorname{grad} u \cdot z_{f}^{1} d x\right) \phi_{f}
$$

Combining results, get

$$
\begin{gathered}
\operatorname{grad} \pi^{0} u=\operatorname{grad} \sum_{f \in \Delta_{0}\left(\mathcal{T}_{h}\right)}\left(\int_{\Omega} u \cdot \operatorname{vol}_{\Omega_{f}} d x+\left(Q_{f} u\right)(f)\right) \lambda_{f} \\
=\operatorname{grad} M_{h}^{0} u+\sum_{f \in \Delta_{0}\left(\mathcal{T}_{h}\right)}\left(Q_{f} u\right)(f) \operatorname{grad} \lambda_{f} \\
=\sum_{f \in \Delta_{1}\left(\mathcal{T}_{h}\right)}\left(\int_{\Omega} \operatorname{grad} u \cdot z_{f}^{1} d x\right) \phi_{f}+\sum_{f \in \Delta_{0}\left(\mathcal{T}_{h}\right)}\left(Q_{f} u\right)(f) \operatorname{grad} \lambda_{f} .
\end{gathered}
$$

The general case: First define z_{f}^{k}

For each $f \in \Delta_{0}\left(\mathcal{T}_{h}\right), z_{f}^{0} \in \dot{\mathcal{P}} \wedge^{n}\left(\Omega_{f}^{e}\right)$ defined by $z_{f}^{0}=\operatorname{vol}_{\Omega_{f}}$.
For $f \in \Delta_{k}\left(\mathcal{T}_{h}\right)$, define $z_{f}^{k} \in \stackrel{\circ}{\mathcal{P}}_{1}^{-} \Lambda^{n-k}\left(\mathcal{T}_{f}^{e}\right)$ inductively by

$$
\begin{gathered}
d z_{f}^{k}=(-1)^{k}\left(\delta z^{k-1}\right)_{f} \\
\int_{\Omega_{f}^{e}} z_{f}^{k} \wedge d \tau=0, \quad \tau \in \mathcal{P}_{1}^{-} \Lambda^{n-k-1}\left(\mathcal{T}_{f}^{e}\right)
\end{gathered}
$$

Construction justified (inductively) by

$$
d\left(\delta z_{f}^{k-1}\right)=\delta\left(d z_{f}^{k-1}\right)=(-1)^{k-1}(\delta \circ \delta) z_{f}^{k-2}=0
$$

The general case: Next define M_{h}^{K}

Let $\mathcal{P} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ denote family of spaces of form $\mathcal{P}_{r}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ or $\mathcal{P}_{r} \Lambda^{k}\left(\mathcal{T}_{h}\right)$, such that corresponding polynomial sequence $\left(\mathcal{P} \Lambda^{k}, d\right)$ is an exact complex.

Using functions $z_{f}^{k} \in \stackrel{\mathcal{P}}{1}_{-}^{-} \Lambda^{n-k}\left(\mathcal{T}_{f}^{e}\right)$, define $M_{h}^{k}: L^{2} \rightarrow \mathcal{P}_{1}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ by

$$
M_{h}^{k} u=\sum_{f \in \Delta_{k}\left(\mathcal{T}_{h}\right)}\left(\int_{\Omega_{f}^{e}} u \wedge z_{f}^{k}\right) k!\phi_{f}^{k}
$$

where ϕ_{f}^{k} is Whitney form associated to f, i.e,

$$
\phi_{f}^{k}=\sum_{i=0}^{k}(-1)^{i} \lambda_{i} d \lambda_{0} \wedge \cdots \wedge \widehat{d \lambda_{i}} \wedge \cdots \wedge d \lambda_{k}
$$

Key result: For any $v \in H \Lambda^{k-1}(\Omega), d M_{h}^{k-1} v=M^{k} d v$.

Local bounded cochain projections

Projection $\pi^{k}=\pi_{n}^{k}$ defined by recursion

$$
\pi_{m}^{k} u=\pi_{m-1}^{k} u+\sum_{f \in \Delta_{m}\left(\mathcal{T}_{h}\right)} E_{f}^{k} \circ \operatorname{tr}_{f} \circ P_{f}^{k}\left(u-\pi_{m-1}^{k} u\right), \quad k \leq m \leq n
$$

where $P_{f}^{k}: H \Lambda^{k}\left(\Omega_{f}\right) \rightarrow \breve{\mathcal{P}} \Lambda^{k}\left(\mathcal{T}_{f, h}\right)$ defined by:

$$
\begin{aligned}
\left\langle P_{f}^{k} u, d \tau\right\rangle_{\Omega_{f}} & =\langle u, d \tau\rangle_{\Omega_{f}}, \quad \tau \in \breve{\mathcal{P}} \Lambda^{k-1}\left(\mathcal{T}_{f, h}\right) \\
\left\langle d P_{f}^{k} u, d v\right\rangle_{\Omega_{f}} & =\langle d u, d v\rangle_{\Omega_{f}}, \quad v \in \breve{\mathcal{P}} \Lambda^{k}\left(\mathcal{T}_{f, h}\right)
\end{aligned}
$$

Here

$$
\breve{\mathcal{P}} \Lambda^{k}\left(\mathcal{T}_{f, h}\right)=\left\{u \in \mathcal{P} \Lambda^{k}\left(\mathcal{T}_{f, h}\right): \operatorname{tr}_{f} \in \breve{\mathcal{P}} \Lambda^{k}(f)\right\}
$$

where $\breve{\mathcal{P}} \Lambda^{k}(f)=\check{\mathcal{P}} \Lambda^{k}(f)$ if $\operatorname{dim} f>k$, while if $\operatorname{dim} f=k$,

$$
\breve{\mathcal{P}} \Lambda^{k}(f)=\left\{u \in \mathcal{P} \Lambda^{k}(f): \int_{f} u=0\right\}
$$

Local bounded cochain projections (continued)

To start iteration:

$$
\begin{aligned}
& \pi_{m}^{k} u=\pi_{m-1}^{k} u+\sum_{f \in \Delta_{m}\left(\mathcal{T}_{h}\right)} E_{f}^{k} \circ \operatorname{tr}_{f} \circ P_{f}^{k}\left(u-\pi_{m-1}^{k} u\right), \quad k \leq m \leq n \\
& \text { need } \pi_{k-1}^{k}: H \Lambda^{k} \rightarrow \mathcal{P}_{1}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)
\end{aligned}
$$

Two requirements: operators π_{k-1}^{k} commute with d, and

$$
\int_{f} \operatorname{tr}_{f} \pi_{k-1}^{k} u=\int_{f} \operatorname{tr}_{f} u, \quad f \in \Delta_{k}\left(\mathcal{T}_{h}\right), u \in \mathcal{P} \Lambda^{k}\left(\mathcal{T}_{h}\right)
$$

Operators M_{h}^{k} essential for construction of π_{k-1}^{k}, but need further technical results, since M_{h}^{k} not a projection (not an identity on Whitney forms).

A double complex (A. Weil, 1952)

Let \mathcal{T}_{f}^{e} denote \mathcal{T}_{h} restricted to Ω_{f}^{e}. For $0 \leq m \leq n$, consider complexes

$$
\begin{aligned}
& \bigoplus_{f \in \Delta_{m}(\mathcal{T})} \mathcal{P}_{1}^{-} \Lambda^{0}\left(\mathcal{T}_{f}^{e}\right) \stackrel{d}{\rightarrow} \\
& \bigoplus_{f \in \Delta_{m}(\mathcal{T})} \mathcal{P}_{1}^{-} \Lambda^{1}\left(\mathcal{T}_{f}^{e}\right) \xrightarrow{d} \cdots \\
& \cdots \xrightarrow{d} \bigoplus_{f \in \Delta_{m}(\mathcal{T})} \check{\mathcal{P}}_{1}^{-} \Lambda^{n}\left(\mathcal{T}_{f}^{e}\right) \rightarrow \bigoplus_{f \in \Delta_{m}(\mathcal{T})} \mathcal{P}_{0}\left(\Omega_{f}^{e}\right)
\end{aligned}
$$

where $d=d_{k}$ is exterior derivative restricted to each Ω_{f}^{e}.
For $f=\left[x_{0}, x_{1}, \ldots x_{m+1}\right] \in \Delta_{m+1}\left(\mathcal{T}_{h}\right)$, let δ be defined by

$$
(\delta u)_{f}=\sum_{j=0}^{m+1}(-1)^{j} u_{f_{j}}
$$

where $f_{j}=\left[x_{0}, \ldots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \ldots x_{m+1}\right]$.

Commuting diagram:

Then

$$
\delta: \bigoplus_{f \in \Delta_{m}(\mathcal{T})} \dot{\mathcal{P}}_{1}^{-} \Lambda^{k}\left(\mathcal{T}_{f}^{e}\right) \rightarrow \bigoplus_{f \in \Delta_{m+1}(\mathcal{T})} \check{\mathcal{P}}_{1}^{-} \Lambda^{k}\left(\mathcal{T}_{f}^{e}\right)
$$

and satisfies $\delta \circ d=d \circ \delta$ and $\delta \circ \delta=0$.
Get

$$
\begin{aligned}
& \bigoplus_{f \in \Delta_{m}(\mathcal{T})} \stackrel{\circ}{\mathcal{P}}_{1}^{-} \Lambda^{k}\left(\mathcal{T}_{f}^{e}\right) \xrightarrow{d} \bigoplus_{f \in \Delta_{m}(\mathcal{T})} \stackrel{\bigoplus}{\mathcal{P}}_{1}^{-} \Lambda^{k+1}\left(\mathcal{T}_{f}^{e}\right) \\
& \downarrow^{\delta} \\
& \bigoplus_{\in \Delta_{m+1}(\mathcal{T})} \stackrel{\circ}{\mathcal{P}}_{1}^{-} \Lambda^{k}\left(\mathcal{T}_{f}^{e}\right) \xrightarrow{d} \stackrel{\downarrow}{ } \bigoplus_{f \in \Delta_{m+1}(\mathcal{T})} \stackrel{\circ}{\mathcal{P}}_{1}^{-} \Lambda^{k+1}\left(\mathcal{T}_{f}^{e}\right)
\end{aligned}
$$

Summary:

To construct local bounded cochain projections:

- I. Need to define for each k, operators π_{h}^{k} that are projections, i.e., are the identity on the subspace (so Clément interpolants don't work).
- II. Need to have π_{h}^{k} bounded on $H \Lambda^{k}$, so can't just use canonical degrees of freedom.
- III. Need to get π_{h}^{k} to commute with exterior derivative; i.e., $d \pi_{h}^{k}=\pi_{h}^{k+1} d$; not so easy.
- IV. Need to have π_{h}^{k} locally defined.

Key ideas: Use of geometric decompositions of finite element spaces and a double complex involving d and δ.

