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Plan of the talk

Background:
Discrete exterior calculus
Previous work on the convergence problem

Our results to date on
Consistency
Convergence in H 1, and in L2



What is DEC?

Main idea: DEC is a framework for constructing discrete versions of
exterior differential objects (Desbrun, Hirani, Leok, and Marsden
2005/2003; Hirani 2003).
- General relativity (Frauendiener 2006)
- Electrodynamics (Stern, Tong, Desbrun, Marsden 2007)
- Linear elasticity (Yavari 2008)
- Computational modeling (Desbrun, Kanso, Tong 2008)
- Port-Hamiltonian systems (Seslija, Schaft, Scherpen 2012)
- Digital geometry processing (Crane, de Goes, Desbrun, Schröder 2013)
- Darcy flow (Hirani, Nakshatrala, Chaudhry 2015)
- Navier-Stokes equations (Mohamed, Hirani, Samtaney 2016)



Codifferential

We define the coderivative δ : Ωk →Ωk−1 as the L2-adjoint of d.

〈δα,β〉 = 〈α,dβ〉

Note δδ= 0 and {0}⇄Ω0
d
⇄
δ
Ω1 ⇄ . . .⇄Ωn ⇄ {0}.

For k-forms, we have

δ= (−1)n(k−1)+1 ⋆d⋆= (−1)k ⋆−1 d⋆

δ=−div for 1-forms in 3D

δ= curl for 2-forms in 3D

δ=−grad for 3-forms in 3D

δ=−div for 1-forms in 2D

δ= grad⊥ =−J ◦grad for 2-forms in 2D



The Hodge-Laplace operator

The Hodge-Laplace operator is ∆= δd+dδ.

∆=−divgrad for 0-forms

∆= curlcurl−graddiv for 1-forms in 3D

∆=−graddiv+curlcurl for 2-forms in 3D

∆=−divgrad for 3-forms in 3D

∆= grad⊥rot−graddiv for 1-forms in 2D

∆=−divgrad for 2-forms in 2D



The Hodge-Laplacian Poisson problem

Consider the problem

∆u ≡ (δd+dδ)u = f

to find u ∈Ωk (M), where
M ⊂Rn is bdd, polyhedral domain
f ∈Ωk (M) is given
Some boundary condition is needed

M



Discrete domain

A k-simplex in Rn is the k-dimensional convex span σ= [v0, ..., vk ] of
(k +1) affinely independent vertices. A simplicial n-complex K is a
collection of n-simplices such that:

i Every face of a simplex in K is in K ;
ii The intersection of any two simplices of K is either empty or a face

of both.

A triangulation of a domain in Rn

is a simplicial complex Kh of the
same dimension satisfying∪

σ∈∆n (Kh )
σ= M



Chains and cochains

A k-chain ∈Ck (Kh) is a finite formal sum

γ= A1σ1 + A2σ2 + . . . Amσm

of k-simplices, where Ai are real coefficients.
A discrete k-form is a k-cochain ∈C k (Kh) =Hom(Ck (Kh),R).

Given a basis {σi } for Ck (Kh),

σ∗
i (σ j ) = δi j

defines a dual basis {σ∗
i }for C k (Kh), i.e. given ωh =∑

Biσ
∗
i ,∑

B jσ
∗
j (γ) =∑

Bi Ai =ωT
h γ.



Discrete calculus on primal mesh

Differential k-forms are naturally
integrated over k-chains:

〈Rhω,γ〉 =
∫
γ
ω

where Rh : Λk −→C k defines the
operator called the deRham map.
The boundary ∂σ of a k-chain is a
(k −1)-chain.

∂σσ

The discrete exterior derivative dh : C k (Kh) −→C k+1(Kh) is defined
through

〈dhωh ,σ〉 = 〈ωh ,∂σ〉
which guarantes DEC compatibility with Stokes theorem. It is easy
to show that

Rhd = dhRh



Comparison with other discretizations

Given an inner product 〈·, ·〉h on C k , we can define the discrete
coderivative δh : C k →C k−1 by enforcing

〈δhα,β〉h = 〈α,dhβ〉h .

In mimetic finite differences and in (some interpretation of) finite
elements, 〈·, ·〉h is naturally induced by a reconstruction operator

Wh : C k → L1Λk

In other words, cochains are considered as sitting inside a space of
continuous forms.
This is NOT the approach we follow in DEC. The codifferential is
built piece by piece (in fact through discretizing the Hodge map).



Circumcentricity and dual cells

We assume the primal mesh to be completely circumcentric.
To each σ ∈Ck is assigned an (n −k)-cell ∗σ, inducing a dual cell
complex ∗Kh .
The circumcentric dual ∗Kh is defined on the circumcenters.



Dual mesh and the codifferential

Define discrete Hodge star
⋆h : C k (Kh) →C n−k (∗Kh) by

〈⋆hωh ,∗σ〉 = |∗σ|
|σ| 〈ωh ,σ〉.

Discrete codifferential is defined as

δh = (−1)n(k−1)+1 ⋆h dh ⋆h .

The boundary operator is extended to ∗Kh by

∂∗τ= (−1)k+1
∑
η≻τ

∗η,

where η ∈Ck+1(Kh) is appropriately oriented.



Hilbert space structure

The spaces C k (Kh) and C k (∗Kh) are finite dimensional Hilbert spaces
when respectively equipped with the discrete inner products

(
αh ,βh

)
h = ∑

τ∈∆k (Kh )

|∗τ|
|τ| 〈αh ,τ〉〈βh ,τ〉 = ∑

τ∈∆k (Kh )
〈αh ,τ〉〈⋆hβh ,∗τ〉

and (
⋆αh ,⋆βh

)
h = (

αh ,βh
)

h



The Laplace operator and the Poisson problem

The DEC Hodge-Laplacian is finally obtained as

∆h : C k (Kh) −→C k (Kh),

∆h = δhdh +dhδh =±⋆h dh ⋆h dh ±dh ⋆h dh⋆h

We consider the Poisson problem of finding ωh{
∆hωh = Rh f in Kh ,

ωh = Rh g on ∂Kh ,

where f and g are differential forms, and Rh is the deRham operator.



Previous convergence results

For p fixed in a shrinking n-gon. Numerical
experiments by Xu (2004) revealed

(∆hu)(p)−∆u(p) ̸→ 0 as h → 0

in general, but

(∆hu)(p)−∆u(p) =O(h2)

under a very special symmetry assumption.

On the other hand, Nong (2004) observed that ∥ω−ωh∥ =O(h2).
For n = 2 and k = 0, the matrix dh ⋆h dh is identical to a FEM
stiffness matrix (Hildebrandt, Polthier, and Wardetzky 2006).



Numerical experiments 2D
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i e∞i = ∥eC ·2−i ∥∞ log
(
e∞i /e∞i−1

)
eH 1

d = ∥deC ·2−i ∥C ·2−i log

(
e

H 1
d

i /e
H 1

d
i−1

)
eL2

d = ∥eC ·2−i ∥C ·2−i log

(
e

L2
d

i /e
L2

d
i−1

)
0 0 - 0 - 0 -
1 3.402738e-02 - 8.467970e-02 - 2.346479e-02 -
2 3.194032e-02 9.131748e-02 6.533106e-02 3.742472e-01 1.353817e-02 7.934654e-01
3 2.346298e-02 4.449927e-01 4.496497e-02 5.389676e-01 6.570546e-03 1.042947e+00
4 1.595752e-02 5.561491e-01 2.983035e-02 5.920204e-01 2.970932e-03 1.145097e+00
5 1.054876e-02 5.971636e-01 1.952228e-02 6.116590e-01 1.299255e-03 1.193231e+00
6 6.894829e-03 6.134867e-01 1.270715e-02 6.194814e-01 5.584503e-04 1.218184e+00
7 4.485666e-03 6.201927e-01 8.252738e-03 6.226958e-01 2.377754e-04 1.231830e+00
8 2.912660e-03 6.229847e-01 5.354822e-03 6.240341e-01 1.007013e-04 1.239517e+00

Table: Experiment with ω(r,θ) = rµ sin(µθ), µ=π/(2π−β) =π/α= 5/8.



Numerical experiments 3D

i e∞i = ∥eC ·2−i ∥∞ log
(
e∞i /e∞i−1

)
eH 1

d = ∥deC ·2−i ∥C ·2−i log

(
e

H 1
d

i /e
H 1

d
i−1

)
eL2

d = ∥eC ·2−i ∥C ·2−i log

(
e

L2
d

i /e
L2

d
i−1

)
0 8.586493e-04 - 1.487224e-03 - 3.035784e-04 -
1 2.666725e-04 1.687000e+00 6.216886e-04 1.258358e+00 1.156983e-04 1.391702e+00
2 7.122948e-05 1.904523e+00 1.774812e-04 1.808526e+00 3.166206e-05 1.869540e+00
3 1.835021e-05 1.956678e+00 4.594339e-05 1.949737e+00 8.083333e-06 1.969733e+00
4 4.621759e-06 1.989283e+00 1.158904e-05 1.987096e+00 2.031176e-06 1.992635e+00

Table: Experiment with ω(x, y) = x2 sin(y)+cos(z).



Variational crime?

[Holst, Stern ’12] Let ih : C∗(Kh) → L2Ω(M) be a morphism of Hilbert
complexes, and let Vh = ihC∗(Kh). Then∥∥d(ω− ihωh)

∥∥
L2 ≲ dist(ω,Vh)+∥∥i∗h ih − id

∥∥
C∗(Kh )→C∗(Kh )⟨

(i∗h ih − id)uh , vh
⟩

h = 〈ihuh , ih vh〉−〈uh , vh〉h

Take ih =Wh , the Whitney map. Then we can write

〈ihuh , ih vh〉−〈uh , vh〉h = uT
h (Mh −⋆h)vh

where Mh is the mass matrix, and ⋆h is the Hodge matrix.
For k = n, we have Mh =⋆h .
For k = 0 and n = 1, we have Mh = tridiag(h/6,2h/3,h/6) and
⋆h = hI . So Mh −⋆h = tridiag(h/6,−h/3,h/6), and

∥i∗h ih − id∥ ̸→ 0.



Our strategy

Suppose ∆hωh = Rh f and ∆ω= f , and write eh =ωh −Rhω for the error.
We use a Lax-Richtmyer type of argument, i.e.

∥eh∥ ≤ ∥∆−1
h ∥∥∆h (ωh −Rhω)︸ ︷︷ ︸

discrete residual

∥

= ∥∆−1
h ∥∥∆hωh −Rh f +Rh∆ω−∆hRhω∥

= ∥∆−1
h ∥︸ ︷︷ ︸

stability

∥Rh∆ω−∆hRhω∥︸ ︷︷ ︸
consistency

but a naive application only gives an O(1) bound on the error.
To obtain convergence, we exploit a special structure of the error.



Reformulating the consistency problem

Lemma
Given ω ∈C 2Λk (M), we have

∆hRhω−Rh∆ω=⋆hdh(⋆hRh −Rh⋆)dω+ (⋆hRh −Rh⋆)d ⋆dω

+dh(⋆hRh −Rh⋆)d ⋆ω+dh ⋆h dh(⋆hRh −Rh⋆)ω.

Proof (case k = 0).
Since dhRh = Rhd, we have

⋆hdhRh −Rh ⋆d =⋆hRhd−Rh ⋆d = (⋆hRh −Rh⋆)d.

Therefore

⋆hdh ⋆hdhRh −Rh ⋆d⋆d =⋆hdhRh⋆d+⋆hdh(⋆hRh −Rh⋆)d−Rh⋆d⋆d

=⋆hdh(⋆hRh −Rh⋆)d+ (⋆hRh −Rh⋆)d⋆d.



Hodge star on 0-cochains

Example
Let π=∗p. For f ∈Λ0(R2) differentiable,

⋆ f = f dx ∧dy.

While 〈Rh f , p〉 = f (p), we have

p

π

x

y

〈Rh ⋆ f ,π〉 =
Ï

π
f dA

=
Ï

π
f (p)+ ((x, y)− (p1, p2))T D f (p)+O(h2)dA

= |π| f (p)+O(h3) (O(h4) if π is symmetric w.r.t. p).

We conclude that

〈Rh ⋆ f ,π〉−〈⋆hRh f ,π〉 = 〈Rh ⋆ f ,π〉− |π| f (p) =O(h3).



Hodge star on 1-cochains

For a 1-form ω= f dx + g dy , we have ⋆ω= f dy − g dx.
Let h = |σ| and ℓ= |∗σ|. Then

〈Rhω,σ〉 =
∫ h/2

−h/2
f dx = h f (0)+O(h3)

and

〈Rh ⋆ω,∗σ〉 =
∫ λ+ℓ

λ
f dy = ℓ f (0)+O(ℓ2).

We find that

〈Rh ⋆ω,∗σ〉 = ℓ

h
〈Rhω,σ〉︸ ︷︷ ︸

〈⋆h Rhω,∗σ〉

+O(ℓ2)+O(ℓh2).

x

y

?σ

σ

−h
2

h
2

λ

λ+ `

In n-dimensions, we have

⋆hRhω−Rh ⋆ω=
{

O(hn) in general

O(hn+1) if ∗σ is symmetric wrt σ
.



Consistency of the discrete Hodge star

Theorem
Let σ be a n-simplex, and suppose τ≺σ is k-dimensional. Then

〈⋆hRhω,∗τ〉 = 〈Rh ⋆ω,∗τ〉+O
(
hn+1/(γτ)k

)
, ω ∈C 1Λk (σ).

Corollary
For ω ∈C 1Λk (M), the estimates

∥⋆h Rhω−Rh ⋆ω∥∞ =O(hn−k+1)

and
∥⋆h Rhω−Rh ⋆ω∥h =O(h)

hold when Kh is regular.



Consistency of the discrete Laplacian

If Kh is regular, then

∆hRhω−Rh∆ω=⋆h

h−1︷︸︸︷
dh

h︷ ︸︸ ︷
(⋆hRh −Rh⋆)dω+ (⋆hRh −Rh⋆)d⋆dω

=O(1)+O(h),

for ω ∈C 2Λ0(M), in both the maximum and discrete L2-norm.



Integration by parts

Lemma
The discrete codifferential is adjoint to the discrete exteriror derivative,
i.e. if ωh ∈C k (Kh) and ηh ∈C k+1(Kh), then

(
dhωh ,ηh

)
h = (

ωh ,δhηh
)

h .

Proof.
On the one hand,(

dhτ
∗,ηh

)
h =∑

σ
〈τ∗,∂σ〉〈⋆hηh ,∗σ〉 = 〈τ∗,τ〉 ∑

σ≻τ
〈⋆ηh ,∗σ〉,

where σ is a (k +1)-simplex oriented so that it is consistent with the
induced orientation on τ. OTOH, from ⋆h⋆h = (−1)k(n−k) on C k follows
δh = (−1)k ⋆−1

h dh⋆h , so(
τ∗,δhηh

)
h = (−1)k+1〈τ∗,τ〉〈dh ⋆h ηh ,∗τ〉 = 〈τ∗,τ〉 ∑

σ≻τ
〈⋆ηh ,∗σ〉,

where σ is similarly oriented.



Variational formulation

We compute(
δhdhωh , p∗)

h − (
Rh f , p∗)

h = p∗(p)|∗p|(〈δhdhωh , p〉−〈Rh f , p〉) .

In other words,

∆hωh = Rh f ⇐⇒ (δhdhωh ,νh)h = (
Rh f ,νh

)
h

for all νh ∈C 0(Kh).

The homogeneous Poisson problem is thus equivalent to the one of
finding ωh ∈C 0(Kh) with ωh |∂Kh

≡ 0 such that

(dhωh ,dhνh)h = (
Rh f ,νh

)
h ∀νh ∈C 0 ∩ {νh |∂Kh

≡ 0}.



Existence and uniqueness

For uh ∈C 0 in general,

(dhuh ,dhuh)h = 0 ⇐⇒ uh = constant.

We conclude that ∆h = δhdh is invertible over {νh |∂Kh
≡ 0}, and deduce

the existence and uniqueness of discrete solutions.



Equivalence of norms

Linearly extending Whωh(τ) =∑
τωh(τ)ϕτ, where

ϕτ = k !
k∑

i=0
(−1)iλi dλ1 ∧ ...∧ d̂λi ∧ ...∧dλk ,

and λi is the piecewise linear hat function on the i th vertex of τ, defines
the Whitney map from the space of cochains to the Whitney forms.

Theorem
Let Kh be a family of regular triangulations. There exist two positive
constants c1 and c2, independent of h, satisfying

c1∥ωh∥h ≤ ∥Whωh∥L2Λk (Kh ) ≤ c2∥ωh∥h , ωh ∈C k (Kh).



Discrete Poincaré inequality on 0-cochains

Corollary
There exists a constant C , independent of h, such that the discrete
Poincare inequality

∥ωh∥h ≤C∥dhωh∥h

holds for all ωh ∈C 0(Kh) such that ωh = 0 on ∂Kh .

Proof.
Using the previous theorem and the Poincare inequality, we have

∥ωh∥h ≲ ∥Whωh∥L2Λk (Kh ) ≲ ∥dWhωh∥L2Λk (Kh ) = ∥Whdhωh∥L2Λk (Kh ) ≲ ∥dhωh∥h .



Stability

We have

(dhωh ,dhωh)h = (
Rh f ,ωh

)
h ≤ ∥Rh f ∥h∥ωh∥h ≤C∥Rh f ∥h∥dhωh∥h

Hence
∥ωh∥h ≤C∥Rh f ∥h i.e., ∥∆−1

h ∥ ≤C

Coupled with
∆hRhω−Rh∆ω=O(1)

this only gives

∥eh∥h ≤ ∥∆−1
h ∥ ·∥∆hRhω−Rh∆ω∥h =O(1)



Convergence in L2

Our consistency and stability estimates only yields ∥eh∥h =O(1).

However,

(dheh ,dheh)h = (∆heh ,eh)h

= (⋆hdh (⋆hRh −Rh⋆)dω,eh)h + ((⋆hRh −Rh⋆)d⋆dω,eh)h

= (
⋆−1

h (⋆hRh −Rh⋆)dω,dheh
)

h + ((⋆hRh −Rh⋆)d⋆dω,eh)h

≤C h∥dhe∥h +C h∥eh∥h .

Theorem
The discrete solutions ωh ∈C 0(Kh) of the Dirichlet Poisson problem for
0-forms over a regular triangulation Kh satisfy

∥eh∥h ≤C∥dheh∥h =O(h)



Open problems and references

Open problems
Higher degree forms
Duality argument?
Convergence in uniform norm
Numerical experiments
Eigenvalue problems
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