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Plan of the talk

Background:
@ Discrete exterior calculus

@ Previous work on the convergence problem

Our results to date on
@ Consistency
e Convergence in H!, and in L2



What is DEC?

Main idea: DEC is a framework for constructing discrete versions of
exterior differential objects (Desbrun, Hirani, Leok, and Marsden
2005/2003; Hirani 2003).

General relativity (Frauendiener 2006)

Electrodynamics (Stern, Tong, Desbrun, Marsden 2007)

Linear elasticity (Yavari 2008)

Computational modeling (Desbrun, Kanso, Tong 2008)
Port-Hamiltonian systems (Seslija, Schaft, Scherpen 2012)

Digital geometry processing (Crane, de Goes, Desbrun, Schréder 2013)
Darcy flow (Hirani, Nakshatrala, Chaudhry 2015)

Navier-Stokes equations (Mohamed, Hirani, Samtaney 2016)



Codifferential

We define the coderivative & : QX — Q*1 as the L?-adjoint of d.

Oa, By ={a,dp)

Note 66 =0 and {0} =2 Q%= Ql =L 2Qh o).
1)
For k-forms, we have

6= (DD o qu = (D) Tdx

6 = —div for 1-forms in 3D
6 =curl for 2-forms in 3D
6 = —grad for 3-forms in 3D
6 =—div for 1-forms in 2D

6 =gradt = —Jograd for 2-forms in 2D



The Hodge-Laplace operator

The Hodge-Laplace operator is A=6d+dé.

A = —divgrad for 0-forms

A = curlcurl - grad div for 1-forms in 3D
A = —grad div + curlcurl for 2-forms in 3D
A = —divgrad for 3-forms in 3D
A = grad*rot — grad div for 1-forms in 2D

A = —divgrad for 2-forms in 2D



The Hodge-Laplacian Poisson problem

Consider the problem
Au=(6d+do)u=f
to find u e Q¥(M), where
@ McR"is bdd, polyhedral domain A
° fe Qk(M) is given

@ Some boundary condition is needed




Discrete domain

@ A k-simplex in R" is the k-dimensional convex span ¢ = [vy, ..., Ux] of
(k+1) affinely independent vertices. A simplicial n-complex K is a
collection of n-simplices such that:

i Every face of a simplex in K is in K;
ii The intersection of any two simplices of K is either empty or a face
of both.

@ A triangulation of a domain in R"
is a simplicial complex Kj, of the
same dimension satisfying

o=M
oA, (Kp)




Chains and cochains

@ A k-chain € Cr(Kp) is a finite formal sum
)/=A101+A20’2+...Am(7m

of k-simplices, where A; are real coefficients.
e A discrete k-form is a k-cochain € C¥(K},) = Hom(Ci(Kp), R).

Given a basis {g;} for Ci(Kp),
0;(0))=8i;
defines a dual basis {0 }for Ck(Kp), i.e. given wy, =Y Bjo},

Y Bjogi (=) BiAi=wy.



Discrete calculus on prlmal mesh

o Differential k-forms are naturally
integrated over k-chains:

(Rpw,y) = f
Y

where Ry, : A¥ — CF defines the
operator called the deRham map.

@ The boundary do of a k-chain is a
(k —1)-chain.

@ The discrete exterior derivative dy, : Ck(Kh) — Ck“(Kh) is defined
through
(dpwp,0) = (wp,00)

which guarantes DEC compatibility with Stokes theorem. It is easy
to show that
Ryd=dyRy,



Comparison with other discretizations

@ Given an inner product {-,-);, on C*, we can define the discrete
coderivative &y, : Ck — C*¥~1 by enforcing

Ona, By ={a,dp B .

@ In mimetic finite differences and in (some interpretation of) finite
elements, (:,-); is naturally induced by a reconstruction operator

Wy, :Ck— LA

In other words, cochains are considered as sitting inside a space of
continuous forms.

@ This is NOT the approach we follow in DEC. The codifferential is
built piece by piece (in fact through discretizing the Hodge map).



Circumcentricity and dual cells

@ We assume the primal mesh to be completely circumcentric.

@ To each 0 € Cy. is assigned an (n— k)-cell *o, inducing a dual cell
complex *Kjp,.

@ The circumcentric dual %K}, is defined on the circumcenters.

- ~
- - ~




Dual mesh and the codifferential

@ Define discrete Hodge star "A"""
e CE(KGy) — C"F (K by "-‘-‘.

@ Discrete codifferential is defined as

8p ="k dyy k.

@ The boundary operator is extended to *Kj, by

ax7=(=D"Y 4,

n>T

where 1 € C41(Ky) is appropriately oriented.



Hilbert space structure

The spaces CF(K},) and C*(xKj,) are finite dimensional Hilbert spaces
when respectively equipped with the discrete inner products
| * 7]

(@nBn)y= Y, —@nPrtd= Y, (anT)*xpfp *T)

reanky) 17! 1eAR(Kp)

and
(xan, *Bn), = (an Br),



The Laplace operator and the Poisson problem

The DEC Hodge-Laplacian is finally obtained as
Ap: CF(Kp) — CH(Ky),

Ap=08pdy, +dpby =+ xpdy *pdy £dy *pdpxy,

We consider the Poisson problem of finding wy,

Apwp =Rpf in Ky,
wnp=Rpg on 0Ky,

where f and g are differential forms, and Ry, is the deRham operator.



Previous convergence results

@ For p fixed in a shrinking n-gon. Numerical
experiments by Xu (2004) revealed

Apu)(p)—Au(p) ~0 as h—0
in general, but
(AW (p) — Au(p) = O(h?)
under a very special symmetry assumption.

@ On the other hand, Nong (2004) observed that [|w —wyll = O(h?).

@ For n=2 and k=0, the matrix dj x5 d, is identical to a FEM
stiffness matrix (Hildebrandt, Polthier, and Wardetzky 2006).



Numerical experiments 2D

@ Model of exact solutions
@ Initial primal mesh

@ Example of mesh refinement




co 00 ] g0 HY Hy Mo L% _ L5 La
e =lleco-illo | log(e®re®)) | ea=ldeco-illco-i | logle, /e, | | e"d=lleco-illco-i | log|e /e

0 - 0 - 0 -

3.402738e-02 - 8.467970e-02 - 2.346479e-02 -

3.194032e-02 | 9.131748e-02 6.533106e-02 3.742472¢-01 1.353817e-02 7.934654e-01

2.346298e-02 | 4.449927e-01 4.496497e-02 5.389676e-01 6.570546e-03 1.042947e+00

1.595752e-02 | 5.561491e-01 2.983035e-02 5.920204e-01 2.970932e-03 1.145097e+00

1.054876e-02 | 5.971636e-01 1.952228e-02 6.116590e-01 1.299255e-03 1.193231e+00

6.894829e-03 | 6.134867e-01 1.270715e-02 6.194814e-01 5.584503e-04 1.218184e+00

4.485666e-03 | 6.201927e-01 8.252738e-03 6.226958e-01 2.377754e-04 1.231830e+00

[ RNIR ARG IIENFRIFNIE FeY

2.912660e-03 | 6.229847¢-01 5.354822e-03 6.240341e-01 1.007013e-04 1.239517e+00

Table: Experiment with w(r,0) = rHsin(u), u=n/Q2n—B)=n/a=>5/8.

DEC solution Error function




Numerical experiments 3D

&° = llecilloo

log(el@/e‘fl)

o
el = deg.p-ill i

HY  H)
log (ei ‘e )

2
evd =llecy-illco-i

T2
log (efd /ef.'f])

8.586493e-04

1.487224e-03

3.035784e-04

2.666725e-04

1.687000e-+00

6.216886e-04

1.258358e+00

1.156983e-04

1.391702e+00

7.122948e-05

1.904523e+00

1.774812e-04

1.808526e+00

3.166206e-05

1.869540e+00

1.835021e-05

1.956678e+00

4.594339e-05

1.949737e4-00

8.083333e-06

1.969733e+00

ENENIENINESY

4.621759e-06

1.989283e+-00

1.158904e-05

1.987096e+-00

2.031176e-06

1.992635e+00

Table: Experiment with w(x,y) = x2 sin(y) + cos(z).




Variational crime?

[Holst, Stern '12] Let i}, : C*(Kp,) — L2Q(M) be a morphism of Hilbert
complexes, and let V;, =i, C*(K}). Then

[d@ - ipwp)||;2 < distw, Vi) + ||if ip —id|

C* (Kp)—C* (Kp)
<(l;; ip—id)up, Uh>h = (ipup, ipvy) — (Up, Vh>h
Take i, = Wy, the Whitney map. Then we can write
(ipup, invp) —Up, Vpop = uZ(Mh —xp)Up

where My, is the mass matrix, and %, is the Hodge matrix.
@ For k=n, we have My, = xy,.
@ For k=0 and n=1, we have My, =tridiag(h/6,2h/3,h/6) and
*p =hl. So My, — %, = tridiag(h/6,—h/3, h/6), and

lij,in—idll /- 0.



Suppose Apwy, =Ry, f and Aw = f, and write ej, = wj;, — Rpw for the error.
@ We use a Lax-Richtmyer type of argument, i.e.

lenll < 185 11l Ap (@p — Rpo) |
discrete residual
= 1A, MA@, = Ry f + RyAw — ApRpo|
= 1A, I IRy Aw — Ay Ry

§ )
stability consistency

but a naive application only gives an O(1) bound on the error.

@ To obtain convergence, we exploit a special structure of the error.



Reformulating the consistency problem

Lemma
Given w € C2A*(M), we have

ApRpw — Ry Aw = *pdy, (xR, — Rpy%)dw + (%, Ry, — Ry x)d *x dw

+dp(kp Ry — Rpx)d % w +dy, *p, dp (%, R, — Rp*)w.

Proof (case k=0).
Since d, Ry, = R;d, we have

—Rh*dz *pRpd— Ry xd = (xR, — Rp*x)d.

Therefore

*hdh_ Ry *d*d=*pd,Rp*d+%p,dy (xR, — Rpy*)d—Rp*dxd

= xpdp(kp Ry — Rp*)d+ (%R, — Rp*x)d * d.

O



Hodge star on 0-cochains

Example
Let 7 = *p. For fe A°(R?) differentiable, @

*xf=fdxndy.
While (R, f, p) = f(p), we have

(Rh*f,ﬂ):ff fdA
- f f £+ () — (p1, p2) T DF(p) + O(hH)dA
=|7|f(p)+Oh®) (O(h*) if m is symmetric w.r.t. p).
We conclude that

(Rp* f,m) = (kR f,m) = (R % f,m) = |7l f (p) = O(h®).



Hodge star on 1-cochains

For a 1-form w = fdx + gdy, we have xw = fdy — gdx.
Let h=|o| and ¢ =|*0o|. Then

hi2
(Rpw,0) = fdx = hf(0)+ 0
hi2

and At/

A+¢ *0

(Rp * w, %0y = fdy=2£(0)+0(>).
A

s

We find that -

(Rp * w, *x0) = %(Rhw,a) +0(£%) + O(lh?).

[ —
(kpRpw,*0)

In n-dimensions, we have
o(h™) in general

*pRpw— Ry *w = A . A .
' O(h™1) if % o is symmetric wrt o



Consistency of the discrete Hodge star

Theorem
Let 0 be a n-simplex, and suppose T < ¢ is k-dimensional. Then

(k Ry, *T) = (R), % @, ¥T) + o(h”“/(y,)’“), we CLAK (o).

Corollary
For w € C*AF(M), the estimates

Il %, Ry — Ry * 0llop = O(R™FHY)

and
| *n Rpw — Ry *xwllp = O(h)

hold when Kj, is regular.



Consistency of the discrete Laplacian

If Ky, is regular, then

B! h
ApRpw— RyAw = %, dp, (*xpRy — Rp*)dw + (xR, — Rpx)d x dw
=0+ 0,

for we C2A%(M), in both the maximum and discrete L2-norm.



Integration by parts

Lemma
The discrete codifferential is adjoint to the discrete exteriror derivative,

i.e. if wy € CK(Kp) and ny € CXPL(Ky), then (dpwpn,nn), = (@h 8nmn) ,-

Proof.
On the one hand,

(drT™, 1), = 2 (T%,00) pnp, %0) = (T, 7) Y (*xnp, %0),

o>T

where ¢ is a (k+ 1)-simplex oriented so that it is consistent with the
induced orientation on 7. OTOH, from %%, = (=D*=5) on Ck follows
op = (—l)k*zl dj*y, so

(t*,80mn),, = (DT Ty *pnp, *T) = (T, T) Y (xR, x0),

o>T

where ¢ is similarly oriented. O



Variational formulation

We compute
(Gndnwn, p*), = (Rnf,p"), = p" (P * pl (Sndpwn, p) = (Rpf,p)).
In other words,
Apwp =Ry f <= Gpdpwn,vi)y = (Rnfovi),
for all v, € CO(Ky,).
The homogeneous Poisson problem is thus equivalent to the one of
finding wy, € C°(K}) with wplak, =0 such that

(dpwp,dpvi)y = (Ruf.vi), VYvhe Cc’n {vhlox, =0}



Existence and uniqueness

For uj € C° in general,
(dpup,dpup)y, =0 < uy = constant.

We conclude that Ay =6dy, is invertible over {v;lsg, =0}, and deduce
the existence and uniqueness of discrete solutions.



Equivalence of norms

Linearly extending Wywp (1) =Y ; 0, (1), where
k . —_—
dr =K (-D'A;dA Ao AdA AL AdA,
i=0

and A; is the piecewise linear hat function on the ith vertex of 1, defines
the Whitney map from the space of cochains to the Whitney forms.

Theorem
Let Ky, be a family of regular triangulations. There exist two positive
constants c; and ¢, independent of h, satisfying

k
cllopln < IWhopll 2 ak k) < C2l@pllp, @p € CT(Kp).



Discrete Poincaré inequality on 0-cochains

Corollary

There exists a constant C, independent of h, such that the discrete
Poincare inequality
loplly = Cldpwplly

holds for all wj, € C°(Ky,) such that wy, =0 on 0Kj,.
Proof.

Using the previous theorem and the Poincare inequality, we have
loplly STWhonll 2 pk k) S NAWhORI 27k (k) = IWhAn@nll 12 gk (k) S Idn@n i

O



We have

(dpwn, dpwn)y = (Rnfron), < IRuflpllopln < CIRL flpldpwn i

Hence
lwpln <CIRyfln  ie, lIA'=<C

Coupled with
ApRpw— RpAw = O(1)

this only gives

lenlln < 1AL - 1AL Ry = RyAw ;= O1)



Convergence in L,

Our consistency and stability estimates only yields [ley|l, = O(1).

However,

(dnen,dnen)n = (Apen, en)p
= (kpdy (kpRy — Rpx)dw, ep)y + (kR — Rpx)d x dw, ep)y,
= (%3," Gep Ry — Rp*) dw, dpey), + (< Ry — Rpx) d * do, e)y,
= Chldpellp+ Chlepl -

Theorem
The discrete solutions wy, € C°(Ky) of the Dirichlet Poisson problem for
0-forms over a regular triangulation Ky, satisfy

leplln < Clldpenlln = O(h)




Open problems and references

Open problems

Higher degree forms

Duality argument?
Convergence in uniform norm

Numerical experiments

Eigenvalue problems
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