On convergence of discrete exterior calculus

Tsogtgerel Gantumur (McGill University)

Joint work with $Erick \ Schultz$ (McGill University)

 $\label{eq:connections} \begin{array}{c} \mbox{Connections in geometric numerical integration and structure-preserving discretization} \\ \mbox{Banff International Research Station} \end{array}$

Monday June 12, 2017

Background:

- Discrete exterior calculus
- Previous work on the convergence problem

Our results to date on

- Consistency
- Convergence in H^1 , and in L^2

Main idea: DEC is a framework for constructing discrete versions of exterior differential objects (Desbrun, Hirani, Leok, and Marsden 2005/2003; Hirani 2003).

- General relativity (Frauendiener 2006)
- Electrodynamics (Stern, Tong, Desbrun, Marsden 2007)
- Linear elasticity (Yavari 2008)
- Computational modeling (Desbrun, Kanso, Tong 2008)
- Port-Hamiltonian systems (Seslija, Schaft, Scherpen 2012)
- Digital geometry processing (Crane, de Goes, Desbrun, Schröder 2013)
- Darcy flow (Hirani, Nakshatrala, Chaudhry 2015)
- Navier-Stokes equations (Mohamed, Hirani, Samtaney 2016)

Codifferential

We define the coderivative $\delta: \Omega^k \to \Omega^{k-1}$ as the L^2 -adjoint of d.

 $\langle \delta \alpha, \beta \rangle = \langle \alpha, d\beta \rangle$

Note $\delta \delta = 0$ and $\{0\} \rightleftharpoons \Omega^0 \stackrel{d}{\underset{\delta}{\leftrightarrow}} \Omega^1 \rightleftharpoons \ldots \rightleftharpoons \Omega^n \rightleftharpoons \{0\}$. For *k*-forms, we have

$$\delta = (-1)^{n(k-1)+1} \star \mathbf{d} \star = (-1)^k \star^{-1} \mathbf{d} \star$$

$\delta = -\text{div}$	for 1-forms in 3D
$\delta = \operatorname{curl}$	for 2-forms in 3D
$\delta = -\text{grad}$	for 3-forms in 3D
$\delta = -\text{div}$	for 1-forms in 2D
$\delta = \operatorname{grad}^{\perp} = -J \circ \operatorname{grad}$	for 2-forms in 2D

The Hodge-Laplace operator is $\Delta = \delta d + d\delta$.

$\Delta = -\text{div}\text{grad}$	for 0-forms
$\Delta = \operatorname{curl}\operatorname{curl} - \operatorname{grad}\operatorname{div}$	for 1-forms in 3D
$\Delta = -\operatorname{grad}\operatorname{div} + \operatorname{curl}\operatorname{curl}$	for 2-forms in 3D
$\Delta = -\text{div}\text{grad}$	for 3-forms in 3D
$\Delta = \operatorname{grad}^{\perp} \operatorname{rot} - \operatorname{grad} \operatorname{div}$	for 1-forms in 2D
$\Delta = -\text{div}\text{grad}$	for 2-forms in 2D

Consider the problem

 $\Delta u \equiv (\delta \mathbf{d} + \mathbf{d}\delta) u = f$

to find $u \in \Omega^k(M)$, where

- $M \subset \mathbb{R}^n$ is bdd, polyhedral domain
- $f \in \Omega^k(M)$ is given
- Some boundary condition is needed

Discrete domain

- A k-simplex in ℝⁿ is the k-dimensional convex span σ = [v₀,..., v_k] of (k+1) affinely independent vertices. A simplicial n-complex K is a collection of n-simplices such that:
 - i Every face of a simplex in K is in K;
 - ii The intersection of any two simplices of *K* is either empty or a face of both.

 A triangulation of a domain in ℝⁿ is a simplicial complex K_h of the same dimension satisfying

$$\bigcup_{\sigma\in\Delta_n(K_h)}\sigma=M$$

Chains and cochains

• A k-chain $\in C_k(K_h)$ is a finite formal sum

$$\gamma = A_1 \sigma_1 + A_2 \sigma_2 + \dots A_m \sigma_m$$

of k-simplices, where A_i are real coefficients.

• A discrete k-form is a k-cochain $\in C^k(K_h) = \text{Hom}(C_k(K_h), \mathbb{R}).$

Given a basis $\{\sigma_i\}$ for $C_k(K_h)$,

$$\sigma_i^*(\sigma_j) = \delta_{ij}$$

defines a dual basis $\{\sigma_i^*\}$ for $C^k(K_h)$, i.e. given $\omega_h = \sum B_i \sigma_i^*$,

$$\sum B_j \sigma_j^*(\gamma) = \sum B_i A_i = \omega_h^T \gamma.$$

Discrete calculus on primal mesh

• Differential *k*-forms are naturally integrated over *k*-chains:

$$\langle R_h \omega, \gamma \rangle = \int_{\gamma} \omega$$

where $R_h : \Lambda^k \longrightarrow C^k$ defines the operator called the deRham map.

• The boundary $\partial \sigma$ of a k-chain is a (k-1)-chain.

• The discrete exterior derivative $d_h : C^k(K_h) \longrightarrow C^{k+1}(K_h)$ is defined through

$$\langle \mathbf{d}_h \boldsymbol{\omega}_h, \boldsymbol{\sigma} \rangle = \langle \boldsymbol{\omega}_h, \partial \boldsymbol{\sigma} \rangle$$

which guarantes DEC compatibility with Stokes theorem. It is easy to show that

$$R_h \mathbf{d} = \mathbf{d}_h R_h$$

Comparison with other discretizations

• Given an inner product $\langle \cdot, \cdot \rangle_h$ on C^k , we can define the discrete coderivative $\delta_h : C^k \to C^{k-1}$ by enforcing

$$\langle \delta_h \alpha, \beta \rangle_h = \langle \alpha, \mathbf{d}_h \beta \rangle_h.$$

 In mimetic finite differences and in (some interpretation of) finite elements, ⟨·,·⟩_h is naturally induced by a reconstruction operator

$$W_h: C^k \to L^1 \Lambda^k$$

In other words, cochains are considered as sitting inside a space of continuous forms.

• This is NOT the approach we follow in DEC. The codifferential is built piece by piece (in fact through discretizing the Hodge map).

Circumcentricity and dual cells

- We assume the primal mesh to be completely circumcentric.
- To each σ ∈ C_k is assigned an (n − k)-cell *σ, inducing a dual cell complex *K_h.
- The circumcentric dual $*K_h$ is defined on the circumcenters.

Dual mesh and the codifferential

• Define discrete Hodge star $\star_h : C^k(K_h) \to C^{n-k}(*K_h)$ by

$$\langle \star_h \omega_h, \ast \sigma \rangle = \frac{|\ast \sigma|}{|\sigma|} \langle \omega_h, \sigma \rangle.$$

• Discrete codifferential is defined as

$$\delta_h = (-1)^{n(k-1)+1} \star_h \mathbf{d}_h \star_h.$$

• The boundary operator is extended to $*K_h$ by

$$\partial * \tau = (-1)^{k+1} \sum_{\eta > \tau} * \eta,$$

where $\eta \in C_{k+1}(K_h)$ is appropriately oriented.

The spaces $C^k(K_h)$ and $C^k(*K_h)$ are finite dimensional Hilbert spaces when respectively equipped with the discrete inner products

$$\left(\alpha_{h},\beta_{h}\right)_{h} = \sum_{\tau \in \Delta_{k}(K_{h})} \frac{|\ast\tau|}{|\tau|} \langle \alpha_{h},\tau \rangle \langle \beta_{h},\tau \rangle = \sum_{\tau \in \Delta_{k}(K_{h})} \langle \alpha_{h},\tau \rangle \langle \star_{h}\beta_{h},\ast\tau \rangle$$

and

$$(\star \alpha_h, \star \beta_h)_h = (\alpha_h, \beta_h)_h$$

The DEC Hodge-Laplacian is finally obtained as

$$\Delta_h: C^k(K_h) \longrightarrow C^k(K_h),$$

$$\Delta_h = \delta_h \mathbf{d}_h + \mathbf{d}_h \delta_h = \pm \star_h \mathbf{d}_h \star_h \mathbf{d}_h \pm \mathbf{d}_h \star_h \mathbf{d}_h \star_h$$

We consider the Poisson problem of finding ω_h

$$\begin{cases} \Delta_h \omega_h = R_h f & \text{in } K_h, \\ \omega_h = R_h g & \text{on } \partial K_h, \end{cases}$$

where f and g are differential forms, and R_h is the deRham operator.

Previous convergence results

• For *p* fixed in a shrinking *n*-gon. Numerical experiments by Xu (2004) revealed

$$(\Delta_h u)(p) - \Delta u(p) \not\rightarrow 0 \quad \text{as} \quad h \rightarrow 0$$

in general, but

$$(\Delta_h u)(p) - \Delta u(p) = O(h^2)$$

under a very special symmetry assumption.

- On the other hand, Nong (2004) observed that $\|\omega \omega_h\| = O(h^2)$.
- For n = 2 and k = 0, the matrix d_h ★_h d_h is identical to a FEM stiffness matrix (Hildebrandt, Polthier, and Wardetzky 2006).

Numerical experiments 2D

- Model of exact solutions
- Initial primal mesh
- Example of mesh refinement

i	$e_i^\infty = \ e_{C\cdot 2^{-i}}\ _\infty$	$\log \left(e_i^\infty / e_{i-1}^\infty \right)$	$e^{H_d^1} = \ \mathbf{d} e_{C \cdot 2^{-i}} \ _{C \cdot 2^{-i}}$	$\log\left(e_i^{H_d^1}/e_{i-1}^{H_d^1}\right)$	$e^{L_d^2} = \ e_{C\cdot 2^{-i}}\ _{C\cdot 2^{-i}}$	$\log\left(e_i^{L_d^2}/e_{i-1}^{L_d^2}\right)$
0	0	-	0	-	0	-
1	3.402738e-02	-	8.467970e-02	-	2.346479e-02	-
2	3.194032e-02	9.131748e-02	6.533106e-02	3.742472e-01	1.353817e-02	7.934654e-01
3	2.346298e-02	4.449927e-01	4.496497e-02	5.389676e-01	6.570546e-03	1.042947e+00
4	1.595752e-02	5.561491e-01	2.983035e-02	5.920204e-01	2.970932e-03	1.145097e+00
5	1.054876e-02	5.971636e-01	1.952228e-02	6.116590e-01	1.299255e-03	1.193231e+00
6	6.894829e-03	6.134867e-01	1.270715e-02	6.194814e-01	5.584503e-04	1.218184e+00
7	4.485666e-03	6.201927e-01	8.252738e-03	6.226958e-01	2.377754e-04	1.231830e+00
8	2.912660e-03	6.229847e-01	5.354822e-03	6.240341e-01	1.007013e-04	1.239517e+00

Table: Experiment with $\omega(r,\theta) = r^{\mu} \sin(\mu\theta)$, $\mu = \pi/(2\pi - \beta) = \pi/\alpha = 5/8$.

Numerical experiments 3D

i	$e_i^\infty = \ e_{C\cdot 2^{-i}}\ _\infty$	$\log\bigl(e_i^\infty/e_{i-1}^\infty\bigr)$	$e^{H_d^1} = \ \mathbf{d} e_{C \cdot 2^{-i}} \ _{C \cdot 2^{-i}}$	$\log\left(e_i^{H_d^1}/e_{i-1}^{H_d^1}\right)$	$e^{L_d^2} = \ e_{C\cdot 2^{-i}}\ _{C\cdot 2^{-i}}$	$\log\left(e_i^{L_d^2}/e_{i-1}^{L_d^2}\right)$
0	8.586493e-04	-	1.487224e-03	-	3.035784e-04	-
1	2.666725e-04	1.687000e+00	6.216886e-04	1.258358e+00	1.156983e-04	1.391702e+00
2	7.122948e-05	1.904523e+00	1.774812e-04	1.808526e+00	3.166206e-05	1.869540e+00
3	1.835021e-05	1.956678e+00	4.594339e-05	1.949737e+00	8.083333e-06	1.969733e+00
4	4.621759e-06	1.989283e+00	1.158904e-05	1.987096e+00	2.031176e-06	1.992635e+00

Table: Experiment with $\omega(x, y) = x^2 \sin(y) + \cos(z)$.

Variational crime?

[Holst, Stern '12] Let $i_h : C^*(K_h) \to L^2\Omega(M)$ be a morphism of Hilbert complexes, and let $V_h = i_h C^*(K_h)$. Then

$$\left\| \mathsf{d}(\omega - i_h \omega_h) \right\|_{L^2} \lesssim \operatorname{dist}(\omega, V_h) + \left\| i_h^* i_h - \operatorname{id} \right\|_{C^*(K_h) \to C^*(K_h)}$$

$$\langle (i_h^* i_h - \mathrm{id}) u_h, v_h \rangle_h = \langle i_h u_h, i_h v_h \rangle - \langle u_h, v_h \rangle_h$$

Take $i_h = W_h$, the Whitney map. Then we can write

$$\langle i_h u_h, i_h v_h \rangle - \langle u_h, v_h \rangle_h = u_h^T (M_h - \star_h) v_h$$

where M_h is the mass matrix, and \star_h is the Hodge matrix.

- For k = n, we have $M_h = \star_h$.
- For k = 0 and n = 1, we have $M_h = \text{tridiag}(h/6, 2h/3, h/6)$ and $\star_h = hI$. So $M_h \star_h = \text{tridiag}(h/6, -h/3, h/6)$, and

$$||i_h^*i_h - \mathrm{id}|| \neq 0$$

Suppose $\Delta_h \omega_h = R_h f$ and $\Delta \omega = f$, and write $e_h = \omega_h - R_h \omega$ for the error.

• We use a Lax-Richtmyer type of argument, i.e.

$$\begin{split} \|e_{h}\| &\leq \|\Delta_{h}^{-1}\| \|\underbrace{\Delta_{h}\left(\omega_{h} - R_{h}\omega\right)}_{\text{discrete residual}} \| \\ &= \|\Delta_{h}^{-1}\| \|\underline{\Delta_{h}\omega_{h}} - R_{h}f + R_{h}\Delta\omega - \Delta_{h}R_{h}\omega \| \\ &= \underbrace{\|\Delta_{h}^{-1}\|}_{\text{stability}} \underbrace{\|R_{h}\Delta\omega - \Delta_{h}R_{h}\omega\|}_{\text{consistency}} \end{split}$$

but a naive application only gives an O(1) bound on the error.

• To obtain convergence, we exploit a special structure of the error.

Reformulating the consistency problem

Lemma Given $\omega \in C^2 \Lambda^k(M)$, we have

$$\Delta_h R_h \omega - R_h \Delta \omega = \star_h \mathbf{d}_h (\star_h R_h - R_h \star) \mathbf{d} \omega + (\star_h R_h - R_h \star) \mathbf{d} \star \mathbf{d} \omega + \mathbf{d}_h (\star_h R_h - R_h \star) \mathbf{d} \star \omega + \mathbf{d}_h \star_h \mathbf{d}_h (\star_h R_h - R_h \star) \omega.$$

Proof (case
$$k = 0$$
).
Since $d_h R_h = R_h d$, we have

$$\star_h \mathbf{d}_h R_h - R_h \star \mathbf{d} = \star_h R_h \mathbf{d} - R_h \star \mathbf{d} = (\star_h R_h - R_h \star) \mathbf{d}.$$

Therefore

$$\star_{h} \mathbf{d}_{h} \underbrace{\star_{h} \mathbf{d}_{h} R_{h}}_{h} - R_{h} \star \mathbf{d} \star \mathbf{d} = \star_{h} \mathbf{d}_{h} R_{h} \star \mathbf{d} + \star_{h} \mathbf{d}_{h} (\star_{h} R_{h} - R_{h} \star) \mathbf{d} - R_{h} \star \mathbf{d} \star \mathbf{d}$$
$$= \star_{h} \mathbf{d}_{h} (\star_{h} R_{h} - R_{h} \star) \mathbf{d} + (\star_{h} R_{h} - R_{h} \star) \mathbf{d} \star \mathbf{d}.$$

Hodge star on 0-cochains

Example Let $\pi = *p$. For $f \in \Lambda^0(\mathbb{R}^2)$ differentiable,

$$\star f = f \mathrm{d} x \wedge \mathrm{d} y.$$

While $\langle R_h f, p \rangle = f(p)$, we have

$$\langle R_h \star f, \pi \rangle = \iint_{\pi} f dA$$

=
$$\iint_{\pi} f(p) + ((x, y) - (p_1, p_2))^T Df(p) + O(h^2) dA$$

=
$$|\pi| f(p) + O(h^3) \ (O(h^4) \text{ if } \pi \text{ is symmetric w.r.t. } p).$$

We conclude that

$$\langle R_h \star f, \pi \rangle - \langle \star_h R_h f, \pi \rangle = \langle R_h \star f, \pi \rangle - |\pi| f(p) = O(h^3).$$

Hodge star on 1-cochains

For a 1-form $\omega = f dx + g dy$, we have $\star \omega = f dy - g dx$. Let $h = |\sigma|$ and $\ell = |\star \sigma|$. Then

$$\langle R_h \omega, \sigma \rangle = \int_{-h/2}^{h/2} f dx = h f(0) + O(h^3)$$

and

$$\langle R_h \star \omega, *\sigma \rangle = \int_{\lambda}^{\lambda+\ell} f \mathrm{d}y = \ell f(0) + O(\ell^2).$$

We find that

$$\langle R_h \star \omega, \ast \sigma \rangle = \underbrace{\frac{\ell}{h} \langle R_h \omega, \sigma \rangle}_{\langle \star_h R_h \omega, \ast \sigma \rangle} + O(\ell^2) + O(\ell h^2).$$

In *n*-dimensions, we have

$$\star_{h} R_{h} \omega - R_{h} \star \omega = \begin{cases} O(h^{n}) & \text{in general} \\ O(h^{n+1}) & \text{if } * \sigma \text{ is symmetric wrt } \sigma \end{cases}$$

Theorem

Let σ be a *n*-simplex, and suppose $\tau < \sigma$ is *k*-dimensional. Then

$$\langle \star_h R_h \omega, *\tau \rangle = \langle R_h \star \omega, *\tau \rangle + O\left(h^{n+1}/(\gamma_\tau)^k\right), \ \omega \in C^1 \Lambda^k(\sigma).$$

Corollary For $\omega \in C^1 \Lambda^k(M)$, the estimates

$$\|\star_h R_h \omega - R_h \star \omega\|_{\infty} = O(h^{n-k+1})$$

and

$$\|\star_h R_h \omega - R_h \star \omega\|_h = O(h)$$

hold when K_h is regular.

If K_h is regular, then

$$\Delta_h R_h \omega - R_h \Delta \omega = \star_h \overbrace{d_h}^{h^{-1}} \underbrace{(\star_h R_h - R_h \star)}^h d\omega + (\star_h R_h - R_h \star) d \star d\omega$$
$$= O(1) + O(h),$$

for $\omega \in C^2 \Lambda^0(M)$, in both the maximum and discrete L^2 -norm.

Lemma

The discrete codifferential is adjoint to the discrete exterior derivative, i.e. if $\omega_h \in C^k(K_h)$ and $\eta_h \in C^{k+1}(K_h)$, then $(\mathbf{d}_h \omega_h, \eta_h)_h = (\omega_h, \delta_h \eta_h)_h$.

Proof.

On the one hand,

$$\left(\mathsf{d}_{h}\tau^{*},\eta_{h}\right)_{h}=\sum_{\sigma}\langle\tau^{*},\partial\sigma\rangle\langle\star_{h}\eta_{h},*\sigma\rangle=\langle\tau^{*},\tau\rangle\sum_{\sigma\succ\tau}\langle\star\eta_{h},*\sigma\rangle,$$

where σ is a (k+1)-simplex oriented so that it is consistent with the induced orientation on τ . OTOH, from $\star_h \star_h = (-1)^{k(n-k)}$ on C^k follows $\delta_h = (-1)^k \star_h^{-1} d_h \star_h$, so

$$\left(\tau^*, \delta_h \eta_h\right)_h = (-1)^{k+1} \langle \tau^*, \tau \rangle \langle \mathbf{d}_h \star_h \eta_h, *\tau \rangle = \langle \tau^*, \tau \rangle \sum_{\sigma \succ \tau} \langle \star \eta_h, *\sigma \rangle,$$

where σ is similarly oriented.

Variational formulation

We compute

$$\left(\delta_{h}\mathbf{d}_{h}\omega_{h},p^{*}\right)_{h}-\left(R_{h}f,p^{*}\right)_{h}=p^{*}(p)|*p|\left(\langle\delta_{h}\mathbf{d}_{h}\omega_{h},p\rangle-\langle R_{h}f,p\rangle\right).$$

In other words,

$$\Delta_h \omega_h = R_h f \iff (\delta_h d_h \omega_h, v_h)_h = (R_h f, v_h)_h$$

for all $v_h \in C^0(K_h)$.

The homogeneous Poisson problem is thus equivalent to the one of finding $\omega_h \in C^0(K_h)$ with $\omega_h|_{\partial K_h} \equiv 0$ such that

 $(\mathbf{d}_h \omega_h, \mathbf{d}_h v_h)_h = \left(R_h f, v_h \right)_h \quad \forall v_h \in C^0 \cap \{ v_h |_{\partial K_h} \equiv 0 \}.$

For $u_h \in C^0$ in general,

$$(d_h u_h, d_h u_h)_h = 0 \iff u_h = \text{constant.}$$

We conclude that $\Delta_h = \delta_h \mathbf{d}_h$ is invertible over $\{v_h|_{\partial K_h} \equiv 0\}$, and deduce the existence and uniqueness of discrete solutions.

Equivalence of norms

Linearly extending $W_h \omega_h(\tau) = \sum_{\tau} \omega_h(\tau) \phi_{\tau}$, where

$$\phi_{\tau} = k! \sum_{i=0}^{k} (-1)^{i} \lambda_{i} d\lambda_{1} \wedge ... \wedge \widehat{d\lambda_{i}} \wedge ... \wedge d\lambda_{k},$$

and λ_i is the piecewise linear hat function on the *i*th vertex of τ , defines the Whitney map from the space of cochains to the Whitney forms.

Theorem

Let K_h be a family of regular triangulations. There exist two positive constants c_1 and c_2 , independent of h, satisfying

$$c_1 \|\omega_h\|_h \le \|W_h \omega_h\|_{L^2 \Lambda^k(K_h)} \le c_2 \|\omega_h\|_h, \ \omega_h \in C^k(K_h).$$

Corollary

There exists a constant C, independent of h, such that the discrete Poincare inequality

 $\|\omega_h\|_h \le C \|\mathbf{d}_h \omega_h\|_h$

holds for all $\omega_h \in C^0(K_h)$ such that $\omega_h = 0$ on ∂K_h .

Proof.

Using the previous theorem and the Poincare inequality, we have

 $\|\omega_h\|_h \lesssim \|W_h \omega_h\|_{L^2 \Lambda^k(K_h)} \lesssim \|\mathbf{d}W_h \omega_h\|_{L^2 \Lambda^k(K_h)} = \|W_h \mathbf{d}_h \omega_h\|_{L^2 \Lambda^k(K_h)} \lesssim \|\mathbf{d}_h \omega_h\|_h.$

We have

$$(\mathbf{d}_h\omega_h, \mathbf{d}_h\omega_h)_h = \left(R_h f, \omega_h\right)_h \le \|R_h f\|_h \|\omega_h\|_h \le C \|R_h f\|_h \|\mathbf{d}_h\omega_h\|_h$$

Hence

$$\|\omega_h\|_h \le C \|R_h f\|_h$$
 i.e., $\|\Delta_h^{-1}\| \le C$

Coupled with

$$\Delta_h R_h \omega - R_h \Delta \omega = O(1)$$

this only gives

$$\|e_h\|_h \le \|\Delta_h^{-1}\| \cdot \|\Delta_h R_h \omega - R_h \Delta \omega\|_h = O(1)$$

Convergence in L_2

Our consistency and stability estimates only yields $||e_h||_h = O(1)$.

However,

$$\begin{aligned} (\mathbf{d}_{h}e_{h},\mathbf{d}_{h}e_{h})_{h} &= (\Delta_{h}e_{h},e_{h})_{h} \\ &= (\star_{h}\mathbf{d}_{h}(\star_{h}R_{h}-R_{h}\star)\,\mathbf{d}\omega,e_{h})_{h} + ((\star_{h}R_{h}-R_{h}\star)\,\mathbf{d}\star\,\mathbf{d}\omega,e_{h})_{h} \\ &= (\star_{h}^{-1}(\star_{h}R_{h}-R_{h}\star)\,\mathbf{d}\omega,\mathbf{d}_{h}e_{h})_{h} + ((\star_{h}R_{h}-R_{h}\star)\,\mathbf{d}\star\,\mathbf{d}\omega,e_{h})_{h} \\ &\leq Ch\|\mathbf{d}_{h}e\|_{h} + Ch\|e_{h}\|_{h}. \end{aligned}$$

Theorem

The discrete solutions $\omega_h \in C^0(K_h)$ of the Dirichlet Poisson problem for 0-forms over a regular triangulation K_h satisfy

 $\|e_h\|_h \leq C \|\mathbf{d}_h e_h\|_h = O(h)$

Open problems and references

Open problems

- Higher degree forms
- Duality argument?
- Convergence in uniform norm
- Numerical experiments
- Eigenvalue problems

References

- A.N. Hirani. Discrete exterior calculus. PhD thesis. Caltech 2003.
- M. Desbrun, A.N. Hirani, M. Leok, J.E. Marsden. Discrete exterior calculus. Preprint 2005.
- E. Schulz, G. Tsogtgerel. Convergence of DEC approximations for Poisson problems. Preprint 2016.