On convergence of discrete exterior calculus

Tsogtgerel Gantumur (McGill University)
Joint work with Erick Schultz (McGill University)

Connections in geometric numerical integration and structure-preserving discretization Banff International Research Station

Monday June 12, 2017

Background:

- Discrete exterior calculus
- Previous work on the convergence problem

Our results to date on

- Consistency
- Convergence in H^{1}, and in L^{2}

What is DEC?

Main idea: DEC is a framework for constructing discrete versions of exterior differential objects (Desbrun, Hirani, Leok, and Marsden 2005/2003; Hirani 2003).

- General relativity (Frauendiener 2006)
- Electrodynamics (Stern, Tong, Desbrun, Marsden 2007)
- Linear elasticity (Yavari 2008)
- Computational modeling (Desbrun, Kanso, Tong 2008)
- Port-Hamiltonian systems (Seslija, Schaft, Scherpen 2012)
- Digital geometry processing (Crane, de Goes, Desbrun, Schröder 2013)
- Darcy flow (Hirani, Nakshatrala, Chaudhry 2015)
- Navier-Stokes equations (Mohamed, Hirani, Samtaney 2016)

Codifferential

We define the coderivative $\delta: \Omega^{k} \rightarrow \Omega^{k-1}$ as the L^{2}-adjoint of d .

$$
\langle\delta \alpha, \beta\rangle=\langle\alpha, \mathrm{d} \beta\rangle
$$

Note $\delta \delta=0$ and $\{0\} \rightleftarrows \Omega^{0} \underset{\delta}{\stackrel{\mathrm{~d}}{\rightleftarrows}} \Omega^{1} \rightleftarrows \ldots \rightleftarrows \Omega^{n} \rightleftarrows\{0\}$.
For k-forms, we have

$$
\delta=(-1)^{n(k-1)+1} \star \mathrm{~d} \star=(-1)^{k} \star^{-1} \mathrm{~d} \star
$$

$$
\begin{array}{ll}
\delta=-\operatorname{div} & \text { for } 1 \text {-forms in 3D } \\
\delta=\text { curl } & \text { for 2-forms in 3D } \\
\delta=-\operatorname{grad} & \text { for 3-forms in 3D } \\
\delta=-\operatorname{div} & \text { for } 1 \text {-forms in 2D } \\
\delta=\operatorname{grad}^{\perp}=-J \circ \text { grad } & \text { for 2-forms in 2D }
\end{array}
$$

The Hodge-Laplace operator is $\Delta=\delta \mathrm{d}+\mathrm{d} \delta$.

$$
\begin{array}{ll}
\Delta=- \text { divgrad } & \text { for } 0 \text {-forms } \\
\Delta=\text { curl curl }- \text { graddiv } & \text { for 1-forms in 3D } \\
\Delta=- \text { graddiv }+ \text { curlcurl } & \text { for 2-forms in 3D } \\
\Delta=- \text { divgrad } & \text { for 3-forms in 3D } \\
\Delta=\text { grad }^{\perp} \text { rot }- \text { graddiv } & \text { for } 1 \text {-forms in 2D } \\
\Delta=- \text { divgrad } & \text { for 2-forms in 2D }
\end{array}
$$

Consider the problem

$$
\Delta u \equiv(\delta \mathrm{~d}+\mathrm{d} \delta) u=f
$$

to find $u \in \Omega^{k}(M)$, where

- $M \subset \mathbb{R}^{n}$ is bdd, polyhedral domain
- $f \in \Omega^{k}(M)$ is given
- Some boundary condition is needed

- A k-simplex in \mathbb{R}^{n} is the k-dimensional convex span $\sigma=\left[v_{0}, \ldots, v_{k}\right]$ of $(k+1)$ affinely independent vertices. A simplicial n-complex K is a collection of n-simplices such that:
i Every face of a simplex in K is in K;
ii The intersection of any two simplices of K is either empty or a face of both.
- A triangulation of a domain in \mathbb{R}^{n} is a simplicial complex K_{h} of the same dimension satisfying

$$
\bigcup_{\sigma \in \Delta_{n}\left(K_{h}\right)} \sigma=M
$$

Chains and cochains

- A k-chain $\in C_{k}\left(K_{h}\right)$ is a finite formal sum

$$
\gamma=A_{1} \sigma_{1}+A_{2} \sigma_{2}+\ldots A_{m} \sigma_{m}
$$

of k-simplices, where A_{i} are real coefficients.

- A discrete k-form is a k-cochain $\in C^{k}\left(K_{h}\right)=\operatorname{Hom}\left(C_{k}\left(K_{h}\right), \mathbb{R}\right)$.

Given a basis $\left\{\sigma_{i}\right\}$ for $C_{k}\left(K_{h}\right)$,

$$
\sigma_{i}^{*}\left(\sigma_{j}\right)=\delta_{i j}
$$

defines a dual basis $\left\{\sigma_{i}^{*}\right\}$ for $C^{k}\left(K_{h}\right)$, i.e. given $\omega_{h}=\sum B_{i} \sigma_{i}^{*}$,

$$
\sum B_{j} \sigma_{j}^{*}(\gamma)=\sum B_{i} A_{i}=\omega_{h}^{T} \gamma .
$$

Discrete calculus on primal mesh

- Differential k-forms are naturally integrated over k-chains:

$$
\left\langle R_{h} \omega, \gamma\right\rangle=\int_{\gamma} \omega
$$

where $R_{h}: \Lambda^{k} \longrightarrow C^{k}$ defines the operator called the deRham map.

- The boundary $\partial \sigma$ of a k-chain is a ($k-1$)-chain.

- The discrete exterior derivative $\mathrm{d}_{h}: C^{k}\left(K_{h}\right) \longrightarrow C^{k+1}\left(K_{h}\right)$ is defined through

$$
\left\langle\mathrm{d}_{h} \omega_{h}, \sigma\right\rangle=\left\langle\omega_{h}, \partial \sigma\right\rangle
$$

which guarantes DEC compatibility with Stokes theorem. It is easy to show that

$$
R_{h} \mathrm{~d}=\mathrm{d}_{h} R_{h}
$$

Comparison with other discretizations

- Given an inner product $\langle\cdot, \cdot\rangle_{h}$ on C^{k}, we can define the discrete coderivative $\delta_{h}: C^{k} \rightarrow C^{k-1}$ by enforcing

$$
\left\langle\delta_{h} \alpha, \beta\right\rangle_{h}=\left\langle\alpha, \mathrm{d}_{h} \beta\right\rangle_{h}
$$

- In mimetic finite differences and in (some interpretation of) finite elements, $\langle\cdot, \cdot\rangle_{h}$ is naturally induced by a reconstruction operator

$$
W_{h}: C^{k} \rightarrow L^{1} \Lambda^{k}
$$

In other words, cochains are considered as sitting inside a space of continuous forms.

- This is NOT the approach we follow in DEC. The codifferential is built piece by piece (in fact through discretizing the Hodge map).

Circumcentricity and dual cells

- We assume the primal mesh to be completely circumcentric.
- To each $\sigma \in C_{k}$ is assigned an ($n-k$)-cell $* \sigma$, inducing a dual cell complex $* K_{h}$.
- The circumcentric dual $* K_{h}$ is defined on the circumcenters.

- Define discrete Hodge star $\star_{h}: C^{k}\left(K_{h}\right) \rightarrow C^{n-k}\left(* K_{h}\right)$ by

$$
\left\langle\star_{h} \omega_{h}, * \sigma\right\rangle=\frac{|* \sigma|}{|\sigma|}\left\langle\omega_{h}, \sigma\right\rangle .
$$

- Discrete codifferential is defined as

$$
\delta_{h}=(-1)^{n(k-1)+1} \star_{h} \mathrm{~d}_{h} \star_{h}
$$

- The boundary operator is extended to $* K_{h}$ by

$$
\partial * \tau=(-1)^{k+1} \sum_{\eta>\tau} * \eta
$$

where $\eta \in C_{k+1}\left(K_{h}\right)$ is appropriately oriented.

The spaces $C^{k}\left(K_{h}\right)$ and $C^{k}\left(* K_{h}\right)$ are finite dimensional Hilbert spaces when respectively equipped with the discrete inner products

$$
\left(\alpha_{h}, \beta_{h}\right)_{h}=\sum_{\tau \in \Delta_{k}\left(K_{h}\right)} \frac{|* \tau|}{|\tau|}\left\langle\alpha_{h}, \tau\right\rangle\left\langle\beta_{h}, \tau\right\rangle=\sum_{\tau \in \Delta_{k}\left(K_{h}\right)}\left\langle\alpha_{h}, \tau\right\rangle\left\langle\star_{h} \beta_{h}, * \tau\right\rangle
$$

and

$$
\left(\star \alpha_{h}, \star \beta_{h}\right)_{h}=\left(\alpha_{h}, \beta_{h}\right)_{h}
$$

The DEC Hodge-Laplacian is finally obtained as

$$
\begin{gathered}
\Delta_{h}: C^{k}\left(K_{h}\right) \longrightarrow C^{k}\left(K_{h}\right), \\
\Delta_{h}=\delta_{h} \mathrm{~d}_{h}+\mathrm{d}_{h} \delta_{h}= \pm \star_{h} \mathrm{~d}_{h} \star_{h} \mathrm{~d}_{h} \pm \mathrm{d}_{h} \star_{h} \mathrm{~d}_{h} \star_{h}
\end{gathered}
$$

We consider the Poisson problem of finding ω_{h}

$$
\begin{cases}\Delta_{h} \omega_{h}=R_{h} f & \text { in } K_{h}, \\ \omega_{h}=R_{h} g & \text { on } \partial K_{h},\end{cases}
$$

where f and g are differential forms, and R_{h} is the deRham operator.

- For p fixed in a shrinking n-gon. Numerical experiments by Xu (2004) revealed

$$
\left(\Delta_{h} u\right)(p)-\Delta u(p) \nrightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

in general, but

$$
\left(\Delta_{h} u\right)(p)-\Delta u(p)=O\left(h^{2}\right)
$$

under a very special symmetry assumption.

- On the other hand, Nong (2004) observed that $\left\|\omega-\omega_{h}\right\|=O\left(h^{2}\right)$.
- For $n=2$ and $k=0$, the matrix $\mathrm{d}_{h} \star_{h} \mathrm{~d}_{h}$ is identical to a FEM stiffness matrix (Hildebrandt, Polthier, and Wardetzky 2006).

- Model of exact solutions
- Initial primal mesh
- Example of mesh refinement

i	$e_{i}^{\infty}=\left\\|e_{C \cdot 2^{-i}}\right\\|_{\infty}$	$\log \left(e_{i}^{\infty} / e_{i-1}^{\infty}\right)$	$e^{H_{d}^{1}}=\left\\|\mathrm{d} e_{C \cdot 2^{-i}}\right\\|_{C \cdot 2^{-i}}$	$\log \left(e_{i}^{H_{d}^{1}} / e_{i-1}^{H_{d}^{1}}\right)$	$e^{L_{d}^{2}}=\left\\|e_{C \cdot 2^{-i}}\right\\|_{C \cdot 2^{-i}}$	$\log \left(e_{i}^{L_{d}^{2}} / e_{i-1}^{L_{d}^{2}}\right)$
0	0	-	0	-	0	-
1	$3.402738 \mathrm{e}-02$	-	$8.467970 \mathrm{e}-02$	-	$2.346479 \mathrm{e}-02$	-
2	$3.194032 \mathrm{e}-02$	$9.131748 \mathrm{e}-02$	$6.533106 \mathrm{e}-02$	$3.742472 \mathrm{e}-01$	$1.353817 \mathrm{e}-02$	$7.934654 \mathrm{e}-01$
3	$2.346298 \mathrm{e}-02$	$4.449927 \mathrm{e}-01$	$4.496497 \mathrm{e}-02$	$5.389676 \mathrm{e}-01$	$6.570546 \mathrm{e}-03$	$1.042947 \mathrm{e}+00$
4	$1.595752 \mathrm{e}-02$	$5.561491 \mathrm{e}-01$	$2.983035 \mathrm{e}-02$	$5.920204 \mathrm{e}-01$	$2.970932 \mathrm{e}-03$	$1.145097 \mathrm{e}+00$
5	$1.054876 \mathrm{e}-02$	$5.971636 \mathrm{e}-01$	$1.952228 \mathrm{e}-02$	$6.116590 \mathrm{e}-01$	$1.299255 \mathrm{e}-03$	$1.193231 \mathrm{e}+00$
6	$6.894829 \mathrm{e}-03$	$6.134867 \mathrm{e}-01$	$1.270715 \mathrm{e}-02$	$6.194814 \mathrm{e}-01$	$5.584503 \mathrm{e}-04$	$1.218184 \mathrm{e}+00$
7	$4.485666 \mathrm{e}-03$	$6.201927 \mathrm{e}-01$	$8.252738 \mathrm{e}-03$	$6.226958 \mathrm{e}-01$	$2.377754 \mathrm{e}-04$	$1.231830 \mathrm{e}+00$
8	$2.912660 \mathrm{e}-03$	$6.229847 \mathrm{e}-01$	$5.354822 \mathrm{e}-03$	$6.240341 \mathrm{e}-01$	$1.007013 \mathrm{e}-04$	$1.239517 \mathrm{e}+00$

Table: Experiment with $\omega(r, \theta)=r^{\mu} \sin (\mu \theta), \mu=\pi /(2 \pi-\beta)=\pi / \alpha=5 / 8$.

Numerical experiments 3D

i	$e_{i}^{\infty}=\left\\|e_{C \cdot 2^{-i}}\right\\|_{\infty}$	$\log \left(e_{i}^{\infty} / e_{i-1}^{\infty}\right)$	$e^{H_{d}^{1}}=\left\\|\mathrm{d} e_{C \cdot 2^{-i}}\right\\|_{C \cdot 2^{-i}}$	$\log \left(e_{i}^{H_{d}^{1}} / e_{i-1}^{H_{d}^{1}}\right)$	$e^{L_{d}^{2}}=\left\\|e_{C \cdot 2^{-i}}\right\\|_{C \cdot 2^{-i}}$	$\log \left(e_{i}^{L_{d}^{2}} / e_{i-1}^{L_{d}^{2}}\right)$
0	$8.586493 \mathrm{e}-04$	-	$1.487224 \mathrm{e}-03$	-	$3.035784 \mathrm{e}-04$	-
1	$2.666725 \mathrm{e}-04$	$1.687000 \mathrm{e}+00$	$6.216886 \mathrm{e}-04$	$1.258358 \mathrm{e}+00$	$1.156983 \mathrm{e}-04$	$1.391702 \mathrm{e}+00$
2	$7.122948 \mathrm{e}-05$	$1.904523 \mathrm{e}+00$	$1.774812 \mathrm{e}-04$	$1.808526 \mathrm{e}+00$	$3.166206 \mathrm{e}-05$	$1.869540 \mathrm{e}+00$
3	$1.835021 \mathrm{e}-05$	$1.956678 \mathrm{e}+00$	$4.594339 \mathrm{e}-05$	$1.949737 \mathrm{e}+00$	$8.083333 \mathrm{e}-06$	$1.969733 \mathrm{e}+00$
4	$4.621759 \mathrm{e}-06$	$1.989283 \mathrm{e}+00$	$1.158904 \mathrm{e}-05$	$1.987096 \mathrm{e}+00$	$2.031176 \mathrm{e}-06$	$1.992635 \mathrm{e}+00$

Table: Experiment with $\omega(x, y)=x^{2} \sin (y)+\cos (z)$.
[Holst, Stern '12] Let $i_{h}: C^{*}\left(K_{h}\right) \rightarrow L^{2} \Omega(M)$ be a morphism of Hilbert complexes, and let $V_{h}=i_{h} C^{*}\left(K_{h}\right)$. Then

$$
\begin{gathered}
\left\|\mathrm{d}\left(\omega-i_{h} \omega_{h}\right)\right\|_{L^{2}} \lesssim \operatorname{dist}\left(\omega, V_{h}\right)+\left\|i_{h}^{*} i_{h}-\mathrm{id}\right\|_{C^{*}\left(K_{h}\right) \rightarrow C^{*}\left(K_{h}\right)} \\
\left\langle\left(i_{h}^{*} i_{h}-\mathrm{id}\right) u_{h}, v_{h}\right\rangle_{h}=\left\langle i_{h} u_{h}, i_{h} v_{h}\right\rangle-\left\langle u_{h}, v_{h}\right\rangle_{h}
\end{gathered}
$$

Take $i_{h}=W_{h}$, the Whitney map. Then we can write

$$
\left\langle i_{h} u_{h}, i_{h} v_{h}\right\rangle-\left\langle u_{h}, v_{h}\right\rangle_{h}=u_{h}^{T}\left(M_{h}-\star_{h}\right) v_{h}
$$

where M_{h} is the mass matrix, and \star_{h} is the Hodge matrix.

- For $k=n$, we have $M_{h}=\star_{h}$.
- For $k=0$ and $n=1$, we have $M_{h}=\operatorname{tridiag}(h / 6,2 h / 3, h / 6)$ and $\star_{h}=h I$. So $M_{h}-\star_{h}=\operatorname{tridiag}(h / 6,-h / 3, h / 6)$, and

$$
\left\|i_{h}^{*} i_{h}-\mathrm{id}\right\| \nrightarrow 0
$$

Our strategy

Suppose $\Delta_{h} \omega_{h}=R_{h} f$ and $\Delta \omega=f$, and write $e_{h}=\omega_{h}-R_{h} \omega$ for the error.

- We use a Lax-Richtmyer type of argument, i.e.

$$
\begin{aligned}
\left\|e_{h}\right\| & \leq\left\|\Delta_{h}^{-1}\right\|\|\underbrace{\Delta_{h}\left(\omega_{h}-R_{h} \omega\right)}_{\text {discrete residual }}\| \\
& =\left\|\Delta_{h}^{-1}\right\|\left\|\Delta_{h} \omega_{h}-R_{h} f+R_{h} \Delta \omega-\Delta_{h} R_{h} \omega\right\| \\
& =\underbrace{\left\|\Delta_{h}^{-1}\right\|}_{\text {stability }} \underbrace{\left\|R_{h} \Delta \omega-\Delta_{h} R_{h} \omega\right\|}_{\text {consistency }}
\end{aligned}
$$

but a naive application only gives an $O(1)$ bound on the error.

- To obtain convergence, we exploit a special structure of the error.

Lemma

Given $\omega \in C^{2} \Lambda^{k}(M)$, we have

$$
\begin{aligned}
\Delta_{h} R_{h} \omega-R_{h} \Delta \omega= & \star_{h} \mathrm{~d}_{h}\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} \omega+\left(\star_{h} R_{h}-R_{h} \star\right) d \star d \omega \\
& +\mathrm{d}_{h}\left(\star_{h} R_{h}-R_{h} \star\right) d \star \omega+\mathrm{d}_{h} \star_{h} \mathrm{~d}_{h}\left(\star_{h} R_{h}-R_{h} \star\right) \omega .
\end{aligned}
$$

Proof (case $k=0$).

Since $\mathrm{d}_{h} R_{h}=R_{h} \mathrm{~d}$, we have

$$
\star_{h} \mathrm{~d}_{h} R_{h}-R_{h} \star \mathrm{~d}=\star_{h} R_{h} \mathrm{~d}-R_{h} \star \mathrm{~d}=\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} .
$$

Therefore

$$
\begin{aligned}
& \star_{h} \mathrm{~d}_{h} \overparen{\star{ }_{h} \mathrm{~d}_{h} R_{h}-R_{h} \star \mathrm{~d} \star \mathrm{~d}=\star_{h} \mathrm{~d}_{h} R_{h} \star \mathrm{~d}+\star_{h} \mathrm{~d}_{h}\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d}-R_{h} \star \mathrm{~d} \star \mathrm{~d} .} \\
& =\star_{h} \mathrm{~d}_{h}\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d}+\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} \star \mathrm{~d} .
\end{aligned}
$$

Hodge star on 0-cochains

Example

Let $\pi=* p$. For $f \in \Lambda^{0}\left(\mathbb{R}^{2}\right)$ differentiable,

$$
\star f=f \mathrm{~d} x \wedge \mathrm{~d} y .
$$

While $\left\langle R_{h} f, p\right\rangle=f(p)$, we have

$$
\begin{aligned}
\left\langle R_{h} \star f, \pi\right\rangle & =\iint_{\pi} f \mathrm{~d} A \\
& =\iint_{\pi} f(p)+\left((x, y)-\left(p_{1}, p_{2}\right)\right)^{T} D f(p)+O\left(h^{2}\right) \mathrm{d} A \\
& =|\pi| f(p)+O\left(h^{3}\right)\left(O\left(h^{4}\right) \text { if } \pi \text { is symmetric w.r.t. } p\right) .
\end{aligned}
$$

We conclude that

$$
\left\langle R_{h} \star f, \pi\right\rangle-\left\langle\star_{h} R_{h} f, \pi\right\rangle=\left\langle R_{h} \star f, \pi\right\rangle-|\pi| f(p)=O\left(h^{3}\right) .
$$

Hodge star on l-cochains

For a 1-form $\omega=f \mathrm{~d} x+g \mathrm{~d} y$, we have $\star \omega=f \mathrm{~d} y-g \mathrm{~d} x$.
Let $h=|\sigma|$ and $\ell=|* \sigma|$. Then

$$
\left\langle R_{h} \omega, \sigma\right\rangle=\int_{-h / 2}^{h / 2} f \mathrm{~d} x=h f(0)+O\left(h^{3}\right)
$$

and

$$
\left\langle R_{h} \star \omega, * \sigma\right\rangle=\int_{\lambda}^{\lambda+\ell} f \mathrm{~d} y=\ell f(0)+O\left(\ell^{2}\right)
$$

We find that

$$
\left\langle R_{h} \star \omega, * \sigma\right\rangle=\underbrace{\frac{\ell}{h}\left\langle R_{h} \omega, \sigma\right\rangle}_{\left\langle\star_{h} R_{h} \omega, * \sigma\right\rangle}+O\left(\ell^{2}\right)+O\left(\ell h^{2}\right) .
$$

In n-dimensions, we have

$$
\star_{h} R_{h} \omega-R_{h} \star \omega=\left\{\begin{array}{ll}
O\left(h^{n}\right) & \text { in general } \\
O\left(h^{n+1}\right) & \text { if } * \sigma \text { is symmetric wrt } \sigma
\end{array} .\right.
$$

Consistency of the discrete Hodge star

Theorem
Let σ be a n-simplex, and suppose $\tau<\sigma$ is k-dimensional. Then

$$
\left\langle\star_{h} R_{h} \omega, * \tau\right\rangle=\left\langle R_{h} \star \omega, * \tau\right\rangle+O\left(h^{n+1} /\left(\gamma_{\tau}\right)^{k}\right), \omega \in C^{1} \Lambda^{k}(\sigma) .
$$

Corollary
For $\omega \in C^{1} \Lambda^{k}(M)$, the estimates

$$
\left\|\star_{h} R_{h} \omega-R_{h} \star \omega\right\|_{\infty}=O\left(h^{n-k+1}\right)
$$

and

$$
\left\|\star_{h} R_{h} \omega-R_{h} \star \omega\right\|_{h}=O(h)
$$

hold when K_{h} is regular.

Consistency of the discrete Laplacian

If K_{h} is regular, then

$$
\begin{aligned}
\Delta_{h} R_{h} \omega-R_{h} \Delta \omega & =\star_{h} \overbrace{\mathrm{~d}_{h}}^{h^{-1}} \overbrace{\left({ }_{h} R_{h}-R_{h} \star\right)}^{h} \mathrm{~d} \omega+\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} \star \mathrm{~d} \omega \\
& =O(1)+O(h),
\end{aligned}
$$

for $\omega \in C^{2} \Lambda^{0}(M)$, in both the maximum and discrete L^{2}-norm.

Integration by parts

Lemma

The discrete codifferential is adjoint to the discrete exteriror derivative, i.e. if $\omega_{h} \in C^{k}\left(K_{h}\right)$ and $\eta_{h} \in C^{k+1}\left(K_{h}\right)$, then $\left(\mathrm{d}_{h} \omega_{h}, \eta_{h}\right)_{h}=\left(\omega_{h}, \delta_{h} \eta_{h}\right)_{h}$.

Proof.

On the one hand,

$$
\left(\mathrm{d}_{h} \tau^{*}, \eta_{h}\right)_{h}=\sum_{\sigma}\left\langle\tau^{*}, \partial \sigma\right\rangle\left\langle\star{ }_{h} \eta_{h}, * \sigma\right\rangle=\left\langle\tau^{*}, \tau\right\rangle \sum_{\sigma>\tau}\left\langle\star \eta_{h}, * \sigma\right\rangle,
$$

where σ is a $(k+1)$-simplex oriented so that it is consistent with the induced orientation on τ. OTOH, from $\star_{h} \star_{h}=(-1)^{k(n-k)}$ on C^{k} follows $\delta_{h}=(-1)^{k} \star_{h}^{-1} \mathrm{~d}_{h} \star_{h}$, so

$$
\left(\tau^{*}, \delta_{h} \eta_{h}\right)_{h}=(-1)^{k+1}\left\langle\tau^{*}, \tau\right\rangle\left\langle\mathrm{d}_{h} \star_{h} \eta_{h}, * \tau\right\rangle=\left\langle\tau^{*}, \tau\right\rangle \sum_{\sigma>\tau}\left\langle\star \eta_{h}, * \sigma\right\rangle,
$$

where σ is similarly oriented.

We compute

$$
\left(\delta_{h} \mathrm{~d}_{h} \omega_{h}, p^{*}\right)_{h}-\left(R_{h} f, p^{*}\right)_{h}=p^{*}(p)|* p|\left(\left\langle\delta_{h} \mathrm{~d}_{h} \omega_{h}, p\right\rangle-\left\langle R_{h} f, p\right\rangle\right)
$$

In other words,

$$
\Delta_{h} \omega_{h}=R_{h} f \Longleftrightarrow\left(\delta_{h} d_{h} \omega_{h}, v_{h}\right)_{h}=\left(R_{h} f, v_{h}\right)_{h}
$$

for all $v_{h} \in C^{0}\left(K_{h}\right)$.

The homogeneous Poisson problem is thus equivalent to the one of finding $\omega_{h} \in C^{0}\left(K_{h}\right)$ with $\left.\omega_{h}\right|_{\partial K_{h}} \equiv 0$ such that

$$
\left(\mathrm{d}_{h} \omega_{h}, \mathrm{~d}_{h} v_{h}\right)_{h}=\left(R_{h} f, v_{h}\right)_{h} \quad \forall v_{h} \in C^{0} \cap\left\{\left.v_{h}\right|_{\partial K_{h}} \equiv 0\right\}
$$

For $u_{h} \in C^{0}$ in general,

$$
\left(\mathrm{d}_{h} u_{h}, \mathrm{~d}_{h} u_{h}\right)_{h}=0 \Longleftrightarrow u_{h}=\text { constant. }
$$

We conclude that $\Delta_{h}=\delta_{h} \mathrm{~d}_{h}$ is invertible over $\left\{\left.v_{h}\right|_{\partial K_{h}} \equiv 0\right\}$, and deduce the existence and uniqueness of discrete solutions.

Linearly extending $W_{h} \omega_{h}(\tau)=\sum_{\tau} \omega_{h}(\tau) \phi_{\tau}$, where

$$
\phi_{\tau}=k!\sum_{i=0}^{k}(-1)^{i} \lambda_{i} \mathrm{~d} \lambda_{1} \wedge \ldots \wedge \widehat{\mathrm{~d} \lambda_{i}} \wedge \ldots \wedge \mathrm{~d} \lambda_{k}
$$

and λ_{i} is the piecewise linear hat function on the i th vertex of τ, defines the Whitney map from the space of cochains to the Whitney forms.
Theorem
Let K_{h} be a family of regular triangulations. There exist two positive constants c_{1} and c_{2}, independent of h, satisfying

$$
c_{1}\left\|\omega_{h}\right\|_{h} \leq\left\|W_{h} \omega_{h}\right\|_{L^{2} \Lambda^{k}\left(K_{h}\right)} \leq c_{2}\left\|\omega_{h}\right\|_{h}, \quad \omega_{h} \in C^{k}\left(K_{h}\right) .
$$

Corollary

There exists a constant C, independent of h, such that the discrete Poincare inequality

$$
\left\|\omega_{h}\right\|_{h} \leq C\left\|\mathrm{~d}_{h} \omega_{h}\right\|_{h}
$$

holds for all $\omega_{h} \in C^{0}\left(K_{h}\right)$ such that $\omega_{h}=0$ on ∂K_{h}.
Proof.
Using the previous theorem and the Poincare inequality, we have
$\left\|\omega_{h}\right\|_{h} \lesssim\left\|W_{h} \omega_{h}\right\|_{L^{2} \Lambda^{k}\left(K_{h}\right)} \lesssim\left\|\mathrm{d} W_{h} \omega_{h}\right\|_{L^{2} \Lambda^{k}\left(K_{h}\right)}=\left\|W_{h} \mathrm{~d}_{h} \omega_{h}\right\|_{L^{2} \Lambda^{k}\left(K_{h}\right)} \lesssim\left\|\mathrm{d}_{h} \omega_{h}\right\|_{h}$.

Stability

We have

$$
\left(\mathrm{d}_{h} \omega_{h}, \mathrm{~d}_{h} \omega_{h}\right)_{h}=\left(R_{h} f, \omega_{h}\right)_{h} \leq\left\|R_{h} f\right\|_{h}\left\|\omega_{h}\right\|_{h} \leq C\left\|R_{h} f\right\|_{h}\left\|\mathrm{~d}_{h} \omega_{h}\right\|_{h}
$$

Hence

$$
\left\|\omega_{h}\right\|_{h} \leq C\left\|R_{h} f\right\|_{h} \quad \text { i.e., } \quad\left\|\Delta_{h}^{-1}\right\| \leq C
$$

Coupled with

$$
\Delta_{h} R_{h} \omega-R_{h} \Delta \omega=O(1)
$$

this only gives

$$
\left\|e_{h}\right\|_{h} \leq\left\|\Delta_{h}^{-1}\right\| \cdot\left\|\Delta_{h} R_{h} \omega-R_{h} \Delta \omega\right\|_{h}=O(1)
$$

Convergence in L_{2}

Our consistency and stability estimates only yields $\left\|e_{h}\right\|_{h}=O(1)$.
However,

$$
\begin{aligned}
\left(\mathrm{d}_{h} e_{h}, \mathrm{~d}_{h} e_{h}\right)_{h} & =\left(\Delta_{h} e_{h}, e_{h}\right)_{h} \\
& =\left(\star_{h} \mathrm{~d}_{h}\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} \omega, e_{h}\right)_{h}+\left(\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} \star \mathrm{~d} \omega, e_{h}\right)_{h} \\
& =\left(\star_{h}^{-1}\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} \omega, \mathrm{~d}_{h} e_{h}\right)_{h}+\left(\left(\star_{h} R_{h}-R_{h} \star\right) \mathrm{d} \star \mathrm{~d} \omega, e_{h}\right)_{h} \\
& \leq C h\left\|\mathrm{~d}_{h} e\right\|_{h}+C h\left\|e_{h}\right\|_{h} .
\end{aligned}
$$

Theorem
The discrete solutions $\omega_{h} \in C^{0}\left(K_{h}\right)$ of the Dirichlet Poisson problem for 0 -forms over a regular triangulation K_{h} satisfy

$$
\left\|e_{h}\right\|_{h} \leq C\left\|\mathrm{~d}_{h} e_{h}\right\|_{h}=O(h)
$$

Open problems and references

Open problems

- Higher degree forms
- Duality argument?
- Convergence in uniform norm
- Numerical experiments
- Eigenvalue problems

References

- A.N. Hirani. Discrete exterior calculus. PhD thesis. Caltech 2003.
- M. Desbrun, A.N. Hirani, M. Leok, J.E. Marsden. Discrete exterior calculus. Preprint 2005.
- E. Schulz, G. Tsogtgerel. Convergence of DEC approximations for Poisson problems. Preprint 2016.

