Multisymplecticity of hybridizable discontinuous Galerkin methods*

Ari Stern

Department of Mathematics Washington University in St. Louis stern@wustl.edu

Connections in Geometric Numerical Integration and Structure-Preserving Discretization Banff, June 12, 2017

* Joint work with Robert McLachlan. arXiv:1705.08609 [math.NA]

Multisymplecticity of hybridizable discontinuous Galerkin methods

Ari Stern

Given H = H(t, q, p) on $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, Hamilton's equations are

$$\dot{q}^i = \frac{\partial H}{\partial p_i}, \qquad -\dot{p}_i = \frac{\partial H}{\partial q^i}.$$

Given H = H(t, q, p) on $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, Hamilton's equations are

$$\dot{q}^i = \frac{\partial H}{\partial p_i}, \qquad -\dot{p}_i = \frac{\partial H}{\partial q^i}.$$

The flow preserves the canonical symplectic 2-form $\omega = dq^i \wedge dp_i$.

Symplectic integrators also preserve ω when applied to Hamiltonian ODEs, and their numerical advantages are well established.

Given H = H(t, q, p) on $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, Hamilton's equations are

$$\dot{q}^i = \frac{\partial H}{\partial p_i}, \qquad -\dot{p}_i = \frac{\partial H}{\partial q^i}.$$

- Symplectic integrators also preserve ω when applied to Hamiltonian ODEs, and their numerical advantages are well established.
- Hamiltonian systems of PDEs satisfy a multisymplectic conservation law. By analogy with the symplectic case, we might expect numerical methods that satisfy this conservation law to have desirable properties.

Given H = H(t, q, p) on $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, Hamilton's equations are

$$\dot{q}^i = \frac{\partial H}{\partial p_i}, \qquad -\dot{p}_i = \frac{\partial H}{\partial q^i}.$$

- Symplectic integrators also preserve ω when applied to Hamiltonian ODEs, and their numerical advantages are well established.
- Hamiltonian systems of PDEs satisfy a multisymplectic conservation law. By analogy with the symplectic case, we might expect numerical methods that satisfy this conservation law to have desirable properties.
- Previous multisymplectic methods have generally been low-order finite difference methods and/or required a rectangular grid (e.g., apply a symplectic integrator in each direction).

Given H = H(t, q, p) on $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, Hamilton's equations are

$$\dot{q}^i = \frac{\partial H}{\partial p_i}, \qquad -\dot{p}_i = \frac{\partial H}{\partial q^i}.$$

- Symplectic integrators also preserve ω when applied to Hamiltonian ODEs, and their numerical advantages are well established.
- Hamiltonian systems of PDEs satisfy a multisymplectic conservation law. By analogy with the symplectic case, we might expect numerical methods that satisfy this conservation law to have desirable properties.
- Previous multisymplectic methods have generally been low-order finite difference methods and/or required a rectangular grid (e.g., apply a symplectic integrator in each direction).
- What about finite element methods?

The framework of hybridizable discontinuous Galerkin (HDG) methods[†] makes it particularly natural to talk about local, per-element conservation laws, like the multisymplectic conservation law, for finite element methods.

[†]B. COCKBURN, J. GOPALAKRISHNAN, AND R. LAZAROV, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.

- The framework of hybridizable discontinuous Galerkin (HDG) methods[†] makes it particularly natural to talk about local, per-element conservation laws, like the multisymplectic conservation law, for finite element methods.
- An HDG method consists of a collection of local Galerkin problems, one per element, coupled only through their approximate boundary traces.

[†]B. COCKBURN, J. GOPALAKRISHNAN, AND R. LAZAROV, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.

- The framework of hybridizable discontinuous Galerkin (HDG) methods[†] makes it particularly natural to talk about local, per-element conservation laws, like the multisymplectic conservation law, for finite element methods.
- An HDG method consists of a collection of local Galerkin problems, one per element, coupled only through their approximate boundary traces.
- HDG methods : PDEs :: one-step methods : ODEs

[†]B. COCKBURN, J. GOPALAKRISHNAN, AND R. LAZAROV, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.

- The framework of hybridizable discontinuous Galerkin (HDG) methods[†] makes it particularly natural to talk about local, per-element conservation laws, like the multisymplectic conservation law, for finite element methods.
- An HDG method consists of a collection of local Galerkin problems, one per element, coupled only through their approximate boundary traces.
- HDG methods : PDEs :: one-step methods : ODEs
- We establish multisymplecticity criteria for HDG methods and show that many popular finite element methods are actually multisymplectic.

[†]B. COCKBURN, J. GOPALAKRISHNAN, AND R. LAZAROV, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.

• Let $U \subset \mathbb{R}^m$, and let $(x^{\mu}, u^i, \sigma_i^{\mu})$ be coordinates for $U \times \mathbb{R}^n \times \mathbb{R}^{mn}$.

- Let $U \subset \mathbb{R}^m$, and let $(x^{\mu}, u^i, \sigma_i^{\mu})$ be coordinates for $U \times \mathbb{R}^n \times \mathbb{R}^{mn}$.
- Given a Hamiltonian $H = H(x, u, \sigma)$, the **de Donder–Weyl equations** are

$$\partial_{\mu}u^{i} = \frac{\partial H}{\partial \sigma_{i}^{\mu}}, \qquad -\partial_{\mu}\sigma_{i}^{\mu} = \frac{\partial H}{\partial u^{i}}.$$

- Let $U \subset \mathbb{R}^m$, and let $(x^{\mu}, u^i, \sigma_i^{\mu})$ be coordinates for $U \times \mathbb{R}^n \times \mathbb{R}^{mn}$.
- Given a Hamiltonian $H = H(x, u, \sigma)$, the **de Donder–Weyl equations** are

$$\partial_{\mu}u^{i} = \frac{\partial H}{\partial\sigma_{i}^{\mu}}, \qquad -\partial_{\mu}\sigma_{i}^{\mu} = \frac{\partial H}{\partial u^{i}}.$$

• Define the canonical 2-forms $\omega^{\mu} := du^{i} \wedge d\sigma_{i}^{\mu}$, where $\mu = 1, \dots, m$. Solutions satisfy the **multisymplectic conservation law** $\partial_{\mu}\omega^{\mu} = 0$.

- Let $U \subset \mathbb{R}^m$, and let $(x^{\mu}, u^i, \sigma_i^{\mu})$ be coordinates for $U \times \mathbb{R}^n \times \mathbb{R}^{mn}$.
- Given a Hamiltonian $H = H(x, u, \sigma)$, the **de Donder–Weyl equations** are

$$\partial_{\mu}u^{i} = \frac{\partial H}{\partial \sigma_{i}^{\mu}}, \qquad -\partial_{\mu}\sigma_{i}^{\mu} = \frac{\partial H}{\partial u^{i}}$$

- Define the canonical 2-forms $\omega^{\mu} := du^{i} \wedge d\sigma_{i}^{\mu}$, where $\mu = 1, \dots, m$. Solutions satisfy the **multisymplectic conservation law** $\partial_{\mu}\omega^{\mu} = 0$.
- \blacksquare Integrating over $K \Subset U$ and applying the divergence theorem gives

$$\int_{\partial K} \omega^{\mu} \, \mathrm{d}^{m-1} x_{\mu} = 0 \, ,$$

which is an integral form of the multisymplectic conservation law.

- Let $U \subset \mathbb{R}^m$, and let $(x^{\mu}, u^i, \sigma_i^{\mu})$ be coordinates for $U \times \mathbb{R}^n \times \mathbb{R}^{mn}$.
- Given a Hamiltonian $H = H(x, u, \sigma)$, the **de Donder–Weyl equations** are

$$\partial_{\mu}u^{i} = \frac{\partial H}{\partial\sigma_{i}^{\mu}}, \qquad -\partial_{\mu}\sigma_{i}^{\mu} = \frac{\partial H}{\partial u^{i}}$$

- Define the canonical 2-forms $\omega^{\mu} := du^{i} \wedge d\sigma_{i}^{\mu}$, where $\mu = 1, \dots, m$. Solutions satisfy the **multisymplectic conservation law** $\partial_{\mu}\omega^{\mu} = 0$.
- \blacksquare Integrating over $K \Subset U$ and applying the divergence theorem gives

$$\int_{\partial K} \omega^{\mu} \, \mathrm{d}^{m-1} x_{\mu} = 0$$

which is an integral form of the multisymplectic conservation law.

The m = 1 case corresponds to canonical Hamiltonian systems of ODEs, along with the usual symplectic conservation law.

• Let n = 1, so u = u(x) is a scalar field and $\sigma = \sigma^{\mu}(x)$ is a vector field.

- Let n = 1, so u = u(x) is a scalar field and $\sigma = \sigma^{\mu}(x)$ is a vector field.
- Take $H(x, u, \sigma) = \frac{1}{2}a_{\mu\nu}(x)\sigma^{\mu}\sigma^{\nu} + F(x, u)$, where $a = a^{\mu\nu}(x)$ is SPD.

- Let n = 1, so u = u(x) is a scalar field and $\sigma = \sigma^{\mu}(x)$ is a vector field.
- Take $H(x, u, \sigma) = \frac{1}{2}a_{\mu\nu}(x)\sigma^{\mu}\sigma^{\nu} + F(x, u)$, where $a = a^{\mu\nu}(x)$ is SPD.
- The de Donder–Weyl equations are

$$\partial_{\mu}u = a_{\mu\nu}\sigma^{\nu}, \qquad -\partial_{\mu}\sigma^{\mu} = \frac{\partial F}{\partial u},$$

i.e.,

Ari Stern

grad
$$u = a^{-1}\sigma$$
, $-\operatorname{div}\sigma = \frac{\partial F}{\partial u}$.

- Let n = 1, so u = u(x) is a scalar field and $\sigma = \sigma^{\mu}(x)$ is a vector field.
- Take $H(x, u, \sigma) = \frac{1}{2}a_{\mu\nu}(x)\sigma^{\mu}\sigma^{\nu} + F(x, u)$, where $a = a^{\mu\nu}(x)$ is SPD.
- The de Donder–Weyl equations are

$$\partial_{\mu}u = a_{\mu\nu}\sigma^{\nu}, \qquad -\partial_{\mu}\sigma^{\mu} = \frac{\partial F}{\partial u},$$

i.e.,

grad
$$u = a^{-1}\sigma$$
, $-\operatorname{div}\sigma = \frac{\partial F}{\partial u}$

This is the "mixed form" of the semilinear elliptic PDE

$$-\operatorname{div}(a\operatorname{grad} u) = \frac{\partial F}{\partial u}$$

If $a^{\mu\nu} \equiv \delta^{\mu\nu}$ and F(x,u) = f(x)u, we get Poisson's equation.

- Let n = 1, so u = u(x) is a scalar field and $\sigma = \sigma^{\mu}(x)$ is a vector field.
- Take $H(x, u, \sigma) = \frac{1}{2}a_{\mu\nu}(x)\sigma^{\mu}\sigma^{\nu} + F(x, u)$, where $a = a^{\mu\nu}(x)$ is SPD.
- The de Donder–Weyl equations are

$$\partial_{\mu}u = a_{\mu\nu}\sigma^{\nu}, \qquad -\partial_{\mu}\sigma^{\mu} = \frac{\partial F}{\partial u},$$

i.e.,

grad
$$u = a^{-1}\sigma$$
, $-\operatorname{div}\sigma = \frac{\partial F}{\partial u}$

This is the "mixed form" of the semilinear elliptic PDE

$$-\operatorname{div}(a\operatorname{grad} u) = \frac{\partial F}{\partial u}$$

If $a^{\mu\nu} \equiv \delta^{\mu\nu}$ and F(x,u) = f(x)u, we get Poisson's equation.

Remark

We can also obtain hyperbolic PDEs (and more) by changing the signature of a.

Ari Stern

Department of Mathematics, Washington University in St. Louis

What does the multisymplectic conservation law really say?

$$\int_{\partial K} \omega^{\mu} \, \mathrm{d}^{m-1} x_{\mu} = 0, \qquad \omega^{\mu} := \mathrm{d} u^{i} \wedge \mathrm{d} \sigma^{\mu}_{i}$$

If (u, σ) is a solution and (v, τ) and (v', τ') are variations tangent to the space of solutions—i.e., solutions to the linearized problem at (u, σ) —then

$$\omega^{\mu}((v,\tau),(v',\tau')) = v^{i}\tau_{i}^{\prime\mu} - v^{\prime i}\tau_{i}^{\mu}.$$

$$\int_{\partial K} \omega^{\mu} \, \mathrm{d}^{m-1} x_{\mu} = 0, \qquad \omega^{\mu} := \mathrm{d} u^{i} \wedge \mathrm{d} \sigma^{\mu}_{i}$$

If (u, σ) is a solution and (v, τ) and (v', τ') are variations tangent to the space of solutions—i.e., solutions to the linearized problem at (u, σ) —then

$$\omega^{\mu}((v,\tau),(v',\tau')) = v^{i}\tau_{i}^{\prime\mu} - v^{\prime i}\tau_{i}^{\mu}.$$

The multisymplectic conservation law therefore says that

$$\int_{\partial K} v^i \tau_i^{\prime \mu} \, \mathrm{d}^{m-1} x_\mu = \int_{\partial K} v^{\prime i} \tau_i^\mu \, \mathrm{d}^{m-1} x_\mu.$$

Symmetry relation between boundary conditions for v, v' and those for τ, τ' . Describes how original system responds to perturbation of boundary values.

$$\int_{\partial K} \omega^{\mu} \, \mathrm{d}^{m-1} x_{\mu} = 0, \qquad \omega^{\mu} := \mathrm{d} u^{i} \wedge \mathrm{d} \sigma^{\mu}_{i}$$

If (u, σ) is a solution and (v, τ) and (v', τ') are variations tangent to the space of solutions—i.e., solutions to the linearized problem at (u, σ) —then

$$\omega^{\mu}((v,\tau),(v',\tau')) = v^{i}\tau_{i}'^{\mu} - v'^{i}\tau_{i}^{\mu}.$$

The multisymplectic conservation law therefore says that

$$\int_{\partial K} v^i \tau_i^{\prime \mu} \, \mathrm{d}^{m-1} x_\mu = \int_{\partial K} v^{\prime i} \tau_i^\mu \, \mathrm{d}^{m-1} x_\mu.$$

Symmetry relation between boundary conditions for v, v' and those for τ, τ' . Describes how original system responds to perturbation of boundary values.

This is deeply related to reciprocity laws in physical systems: Green's reciprocity in electrostatics, Betti reciprocity in elasticity, etc.

Multisymplecticity of hybridizable discontinuous Galerkin methods

Ari Stern

$$\int_{\partial K} \omega^{\mu} \, \mathrm{d}^{m-1} x_{\mu} = 0, \qquad \omega^{\mu} := \mathrm{d} u^{i} \wedge \mathrm{d} \sigma^{\mu}_{i}$$

If (u, σ) is a solution and (v, τ) and (v', τ') are variations tangent to the space of solutions—i.e., solutions to the linearized problem at (u, σ) —then

$$\omega^{\mu}((v,\tau),(v',\tau')) = v^{i}\tau_{i}^{\prime\mu} - v^{\prime i}\tau_{i}^{\mu}.$$

The multisymplectic conservation law therefore says that

$$\int_{\partial K} v^i \tau_i^{\prime \mu} \, \mathrm{d}^{m-1} x_\mu = \int_{\partial K} v^{\prime i} \tau_i^\mu \, \mathrm{d}^{m-1} x_\mu.$$

Symmetry relation between boundary conditions for v,v' and those for $\tau,\tau'.$ Describes how original system responds to perturbation of boundary values.

- This is deeply related to **reciprocity laws** in physical systems: Green's reciprocity in electrostatics, Betti reciprocity in elasticity, etc.
- Laplace's equation: symmetry of the Dirichlet-to-Neumann operator $v|_{\partial K} \mapsto \operatorname{grad} v \cdot \mathbf{n}|_{\partial K}$, related to Green's identity.

• Consider a system of PDEs on U in the following canonical form:

$$\partial_{\mu}u^{i} = \phi^{i}_{\mu}(\cdot, u, \sigma), \qquad -\partial_{\mu}\sigma^{\mu}_{i} = f_{i}(\cdot, u, \sigma).$$

Consider a system of PDEs on U in the following canonical form:

$$\partial_{\mu}u^{i} = \phi^{i}_{\mu}(\cdot, u, \sigma), \qquad -\partial_{\mu}\sigma^{\mu}_{i} = f_{i}(\cdot, u, \sigma).$$

• Let \mathcal{T}_h be a triangulation of U. If $v = v^i(x)$ and $\tau = \tau^{\mu}_i(x)$ are test functions on $K \in \mathcal{T}_h$, then integration by parts gives

$$\int_{\partial K} u^{i} \tau_{i}^{\mu} d^{m-1} x_{\mu} = \int_{K} (u^{i} \partial_{\mu} \tau_{i}^{\mu} + \phi_{\mu}^{i} \tau_{i}^{\mu}) d^{m} x_{\mu}$$
$$\int_{\partial K} \sigma_{i}^{\mu} v^{i} d^{m-1} x_{\mu} = \int_{K} (\sigma_{i}^{\mu} \partial_{\mu} v^{i} - f_{i} v^{i}) d^{m} x.$$

Consider a system of PDEs on U in the following canonical form:

$$\partial_{\mu}u^{i} = \phi^{i}_{\mu}(\cdot, u, \sigma), \qquad -\partial_{\mu}\sigma^{\mu}_{i} = f_{i}(\cdot, u, \sigma).$$

• Let \mathcal{T}_h be a triangulation of U. If $v = v^i(x)$ and $\tau = \tau_i^{\mu}(x)$ are test functions on $K \in \mathcal{T}_h$, then integration by parts gives

$$\int_{\partial K} u^i \tau_i^{\mu} d^{m-1} x_{\mu} = \int_K (u^i \partial_{\mu} \tau_i^{\mu} + \phi_{\mu}^i \tau_i^{\mu}) d^m x_{\mu}$$
$$\int_{\partial K} \sigma_i^{\mu} v^i d^{m-1} x_{\mu} = \int_K (\sigma_i^{\mu} \partial_{\mu} v^i - f_i v^i) d^m x.$$

• (H)DG methods replace $u|_{\partial K}$ and $\sigma|_{\partial K}$ by approximate traces \hat{u} and $\hat{\sigma}$:

$$\int_{\partial K} \widehat{u}^{i} \tau_{i}^{\mu} d^{m-1} x_{\mu} = \int_{K} (u^{i} \partial_{\mu} \tau_{i}^{\mu} + \phi_{\mu}^{i} \tau_{i}^{\mu}) d^{m} x_{\mu}$$
$$\int_{\partial K} \widehat{\sigma}_{i}^{\mu} v^{i} d^{m-1} x_{\mu} = \int_{K} (\sigma_{i}^{\mu} \partial_{\mu} v^{i} - f_{i} v^{i}) d^{m} x.$$

Consider a system of PDEs on U in the following canonical form:

$$\partial_{\mu}u^{i} = \phi^{i}_{\mu}(\cdot, u, \sigma), \qquad -\partial_{\mu}\sigma^{\mu}_{i} = f_{i}(\cdot, u, \sigma).$$

• Let \mathcal{T}_h be a triangulation of U. If $v = v^i(x)$ and $\tau = \tau_i^{\mu}(x)$ are test functions on $K \in \mathcal{T}_h$, then integration by parts gives

$$\int_{\partial K} u^i \tau_i^{\mu} d^{m-1} x_{\mu} = \int_K (u^i \partial_{\mu} \tau_i^{\mu} + \phi_{\mu}^i \tau_i^{\mu}) d^m x_{\mu}$$
$$\int_{\partial K} \sigma_i^{\mu} v^i d^{m-1} x_{\mu} = \int_K (\sigma_i^{\mu} \partial_{\mu} v^i - f_i v^i) d^m x.$$

• (H)DG methods replace $u|_{\partial K}$ and $\sigma|_{\partial K}$ by approximate traces \hat{u} and $\hat{\sigma}$:

$$\int_{\partial K} \widehat{u}^{i} \tau_{i}^{\mu} d^{m-1} x_{\mu} = \int_{K} (u^{i} \partial_{\mu} \tau_{i}^{\mu} + \phi_{\mu}^{i} \tau_{i}^{\mu}) d^{m} x_{\mu}$$
$$\int_{\partial K} \widehat{\sigma}_{i}^{\mu} v^{i} d^{m-1} x_{\mu} = \int_{K} (\sigma_{i}^{\mu} \partial_{\mu} v^{i} - f_{i} v^{i}) d^{m} x.$$

Numerical integration analogy: think of u, σ as internal stages or collocation polynomials, and û, ô as the endpoint values.

Standard DG methods define $\hat{u}, \hat{\sigma}$ in terms of u, σ from adjacent simplices.[‡]

Ari Stern

[‡]D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, *Unified analysis of discontinuous Galerkin methods for elliptic problems*, SIAM J. Numer. Anal., 39 (2001/02), pp. 1749–1779.

- Standard DG methods define $\hat{u}, \hat{\sigma}$ in terms of u, σ from adjacent simplices.[‡]
- By contrast, HDG methods take \hat{u} to be a new unknown function on $\mathcal{E}_h := \bigcup_{K \in \mathcal{T}_h} \partial K$ and define $\hat{\sigma}$ locally on each $K \in \mathcal{T}_h$ in terms of u, σ, \hat{u} .

[‡]D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, *Unified analysis of discontinuous Galerkin methods for elliptic problems*, SIAM J. Numer. Anal., 39 (2001/02), pp. 1749–1779.

- Standard DG methods define $\hat{u}, \hat{\sigma}$ in terms of u, σ from adjacent simplices.[‡]
- By contrast, HDG methods take \hat{u} to be a new unknown function on $\mathcal{E}_h := \bigcup_{K \in \mathcal{T}_h} \partial K$ and define $\hat{\sigma}$ locally on each $K \in \mathcal{T}_h$ in terms of u, σ, \hat{u} .
- **To** determine the extra unknown \hat{u} , we add the **conservativity condition**,

$$\sum_{K\in\mathcal{T}_h}\int_{\partial K}\widehat{\sigma}_i^{\mu}\widehat{v}^i\,\mathrm{d}^{m-1}x_{\mu}=0,$$

to the flux formulation. (The test function \hat{v} comes from the same space as \hat{u} and vanishes on $\partial U.)$

[‡]D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, *Unified analysis of discontinuous Galerkin methods for elliptic problems*, SIAM J. Numer. Anal., 39 (2001/02), pp. 1749–1779.

- Standard DG methods define $\hat{u}, \hat{\sigma}$ in terms of u, σ from adjacent simplices.[‡]
- By contrast, HDG methods take \hat{u} to be a new unknown function on $\mathcal{E}_h := \bigcup_{K \in \mathcal{T}_h} \partial K$ and define $\hat{\sigma}$ locally on each $K \in \mathcal{T}_h$ in terms of u, σ, \hat{u} .
- **To** determine the extra unknown \hat{u} , we add the **conservativity condition**,

$$\sum_{K\in\mathcal{T}_h}\int_{\partial K}\widehat{\sigma}_i^{\mu}\widehat{v}^i\,\mathrm{d}^{m-1}x_{\mu}=0,$$

to the flux formulation. (The test function \hat{v} comes from the same space as \hat{u} and vanishes on $\partial U.)$

• For Galerkin variational integrators, the conservativity condition corresponds to the **discrete Euler–Lagrange equations**.

[‡]D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, *Unified analysis of discontinuous Galerkin methods for elliptic problems*, SIAM J. Numer. Anal., 39 (2001/02), pp. 1749–1779.

- Standard DG methods define $\hat{u}, \hat{\sigma}$ in terms of u, σ from adjacent simplices.[‡]
- By contrast, HDG methods take \widehat{u} to be a new unknown function on $\mathcal{E}_h := \bigcup_{K \in \mathcal{T}_h} \partial K$ and define $\widehat{\sigma}$ locally on each $K \in \mathcal{T}_h$ in terms of u, σ, \widehat{u} .
- **To** determine the extra unknown \hat{u} , we add the **conservativity condition**,

$$\sum_{K\in\mathcal{T}_h}\int_{\partial K}\widehat{\sigma}_i^{\mu}\widehat{v}^i\,\mathrm{d}^{m-1}x_{\mu}=0,$$

to the flux formulation. (The test function \hat{v} comes from the same space as \hat{u} and vanishes on $\partial U.)$

- For Galerkin variational integrators, the conservativity condition corresponds to the **discrete Euler–Lagrange equations**.
- An HDG method is defined by specifying the the global trace space in which \hat{u} lives, and for each $K \in \mathcal{T}_h$, the local spaces in which $u|_K$ and $\sigma|_K$ live, together with the numerical flux $\hat{\sigma}|_{\partial K}$.

[‡]D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, *Unified analysis of discontinuous Galerkin methods for elliptic problems*, SIAM J. Numer. Anal., 39 (2001/02), pp. 1749–1779.

Multisymplecticity and strong multisymplecticity of HDG methods

Definition

An HDG method is **multisymplectic** if, when applied to a Hamiltonian system of PDEs, solutions satisfy

$$\int_{\partial K} (\mathrm{d}\widehat{u}^i \wedge \mathrm{d}\widehat{\sigma}^{\mu}_i) \,\mathrm{d}^{m-1} x_{\mu} = 0,$$

for all $K \in \mathcal{T}_h$. It is strongly multisymplectic if

$$\int_{\partial(\overline{\bigcup \mathcal{K}})} (\mathrm{d}\widehat{u}^i \wedge \mathrm{d}\widehat{\sigma}_i^\mu) \,\mathrm{d}^{m-1} x_\mu = 0,$$

for any collection of elements $\mathcal{K} \subset \mathcal{T}_h$.

Multisymplecticity and strong multisymplecticity of HDG methods

Definition

An HDG method is **multisymplectic** if, when applied to a Hamiltonian system of PDEs, solutions satisfy

$$\int_{\partial K} (\mathrm{d}\widehat{u}^i \wedge \mathrm{d}\widehat{\sigma}^{\mu}_i) \,\mathrm{d}^{m-1} x_{\mu} = 0,$$

for all $K \in \mathcal{T}_h$. It is strongly multisymplectic if

$$\int_{\partial(\overline{\bigcup \mathcal{K}})} (\mathrm{d}\widehat{u}^i \wedge \mathrm{d}\widehat{\sigma}_i^\mu) \,\mathrm{d}^{m-1} x_\mu = 0,$$

for any collection of elements $\mathcal{K} \subset \mathcal{T}_h$.

Theorem (McLachlan–S.)

If a multisymplectic HDG method has a strongly conservative numerical flux, i.e., $[\hat{\sigma}] = 0$, then it is strongly multisymplectic.

Lemma (McLachlan–S.)

If an HDG method is applied to a Hamiltonian system of PDEs, then

$$\int_{\partial K} (\mathrm{d}\widehat{u}^{i} \wedge \mathrm{d}\widehat{\sigma}_{i}^{\mu}) \,\mathrm{d}^{m-1} x_{\mu} = \int_{\partial K} \left[\mathrm{d}(\widehat{u}^{i} - u^{i}) \wedge \mathrm{d}(\widehat{\sigma}_{i}^{\mu} - \sigma_{i}^{\mu}) \right] \mathrm{d}^{m-1} x_{\mu}.$$

Consequently, the method is multisymplectic if and only if

$$\int_{\partial K} \left[\mathrm{d}(\widehat{u}^{i} - u^{i}) \wedge \mathrm{d}(\widehat{\sigma}_{i}^{\mu} - \sigma_{i}^{\mu}) \right] \mathrm{d}^{m-1} x_{\mu} = 0.$$

Ari Stern

Multisymplecticity of hybridizable discontinuous Galerkin methods

Lemma (McLachlan–S.)

If an HDG method is applied to a Hamiltonian system of PDEs, then

$$\int_{\partial K} (\mathrm{d}\widehat{u}^{i} \wedge \mathrm{d}\widehat{\sigma}_{i}^{\mu}) \,\mathrm{d}^{m-1} x_{\mu} = \int_{\partial K} \left[\mathrm{d}(\widehat{u}^{i} - u^{i}) \wedge \mathrm{d}(\widehat{\sigma}_{i}^{\mu} - \sigma_{i}^{\mu}) \right] \mathrm{d}^{m-1} x_{\mu}.$$

Consequently, the method is multisymplectic if and only if

$$\int_{\partial K} \left[\mathrm{d}(\widehat{u}^i - u^i) \wedge \mathrm{d}(\widehat{\sigma}^{\mu}_i - \sigma^{\mu}_i) \right] \mathrm{d}^{m-1} x_{\mu} = 0.$$

Remark

This condition is usually straightforward to check from the numerical flux $\hat{\sigma}$, since it only depends on the jump between the actual and approximate traces.

Theorem (McLachlan–S.)

Ari Stern

Department of Mathematics, Washington University in St. Louis

Theorem (McLachlan–S.)

• The following HDG methods are strongly multisymplectic:

Ari Stern

Theorem (McLachlan–S.)

The following HDG methods are strongly multisymplectic:
RT-H (hybridized Raviart–Thomas)

Theorem (McLachlan–S.)

- The following HDG methods are strongly multisymplectic:
 - **1** *RT-H* (hybridized Raviart–Thomas)
 - 2 BDM-H (hybridized Brezzi–Douglas–Marini)

Ari Stern

Theorem (McLachlan–S.)

The following HDG methods are strongly multisymplectic:

- **1** *RT-H* (hybridized Raviart–Thomas)
- 2 BDM-H (hybridized Brezzi–Douglas–Marini)
- **3** LDG-H (hybridized local DG)

Theorem (McLachlan–S.)

- The following HDG methods are strongly multisymplectic:
 - I RT-H (hybridized Raviart-Thomas)
 - 2 BDM-H (hybridized Brezzi–Douglas–Marini)
 - 3 LDG-H (hybridized local DG)
 - MC-H (hybridized nonconforming)

Theorem (McLachlan–S.)

- The following HDG methods are strongly multisymplectic:
 - I RT-H (hybridized Raviart-Thomas)
 - 2 BDM-H (hybridized Brezzi–Douglas–Marini)
 - 3 LDG-H (hybridized local DG)
 - MC-H (hybridized nonconforming)
 - 5 IP-H (hybridized interior penalty)

Multisymplecticity of hybridizable discontinuous Galerkin methods

Theorem (McLachlan–S.)

- The following HDG methods are strongly multisymplectic:
 - I RT-H (hybridized Raviart-Thomas)
 - 2 BDM-H (hybridized Brezzi–Douglas–Marini)
 - 3 LDG-H (hybridized local DG)
 - 4 NC-H (hybridized nonconforming)
 - 5 IP-H (hybridized interior penalty)
- The CG-H (hybridized continuous Galerkin) method is multisymplectic but not strongly multisymplectic except when m = 1.

Show that the methods satisfy

$$\int_{\partial K} \left[\mathrm{d}(\widehat{u}^{i} - u^{i}) \wedge \mathrm{d}(\widehat{\sigma}_{i}^{\mu} - \sigma_{i}^{\mu}) \right] \mathrm{d}^{m-1} x_{\mu} = 0.$$

Ari Stern

Show that the methods satisfy

$$\int_{\partial K} \left[\mathrm{d}(\widehat{u}^{i} - u^{i}) \wedge \mathrm{d}(\widehat{\sigma}_{i}^{\mu} - \sigma_{i}^{\mu}) \right] \mathrm{d}^{m-1} x_{\mu} = 0.$$

• The RT-H and BDM-H methods use the numerical flux $\hat{\sigma} = \sigma$, so the integral above vanishes.

Show that the methods satisfy

$$\int_{\partial K} \left[\mathrm{d}(\widehat{u}^{i} - u^{i}) \wedge \mathrm{d}(\widehat{\sigma}_{i}^{\mu} - \sigma_{i}^{\mu}) \right] \mathrm{d}^{m-1} x_{\mu} = 0.$$

- The RT-H and BDM-H methods use the numerical flux $\hat{\sigma} = \sigma$, so the integral above vanishes.
- For the CG-H method, û = u, so again the integral vanishes. For the NC-H method, û u is orthogonal to the space of numerical traces (a "weak version" of û = u), which is enough.

Show that the methods satisfy

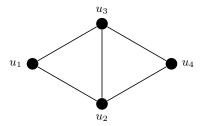
$$\int_{\partial K} \left[\mathrm{d}(\widehat{u}^{i} - u^{i}) \wedge \mathrm{d}(\widehat{\sigma}_{i}^{\mu} - \sigma_{i}^{\mu}) \right] \mathrm{d}^{m-1} x_{\mu} = 0.$$

- The RT-H and BDM-H methods use the numerical flux $\hat{\sigma} = \sigma$, so the integral above vanishes.
- For the CG-H method, û = u, so again the integral vanishes. For the NC-H method, û u is orthogonal to the space of numerical traces (a "weak version" of û = u), which is enough.
- The LDG-H method takes σ̂ σ = λ(û u)n, where λ is a penalty parameter and n is the outer unit normal to ∂K. Substituting this above, the antisymmetry of the wedge product implies

$$\lambda \delta_{ij} \mathrm{d}(\widehat{u}^i - u^i) \wedge \mathrm{d}(\widehat{u}^j - u^j) = 0,$$

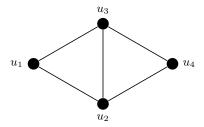
so the integral vanishes. The IP-H method is similar.

The CG-H method is not strongly multisymplectic



Apply degree-1 CG-H to Laplace's equation on the two-triangle mesh above.

The CG-H method is not strongly multisymplectic

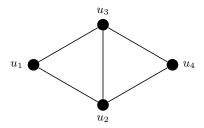


Apply degree-1 CG-H to Laplace's equation on the two-triangle mesh above.
Assembling the matrix for the Dirichlet-to-Neumann map v̂ → r̂ ⋅ n on ∂U yields (up to a scaling factor)

$$\begin{bmatrix} 2 & -1 & -1 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & -1 & -1 & 2 \end{bmatrix},$$

which is not symmetric.

The CG-H method is not strongly multisymplectic



- Apply degree-1 CG-H to Laplace's equation on the two-triangle mesh above.
- Assembling the matrix for the Dirichlet-to-Neumann map $\hat{v} \mapsto \hat{\tau} \cdot \mathbf{n}$ on ∂U yields (up to a scaling factor)

$$\begin{bmatrix} 2 & -1 & -1 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & -1 & -1 & 2 \end{bmatrix},$$

which is not symmetric.

• This is due to the fact that $\hat{\sigma}$ is only weakly conservative for CG-H.

 The multisymplectic conservation law is a local condition, describing a physically important "perturbation-response" symmetry for boundary conditions (i.e., symmetry of a Poincaré–Steklov operator).

- The multisymplectic conservation law is a local condition, describing a physically important "perturbation-response" symmetry for boundary conditions (i.e., symmetry of a Poincaré–Steklov operator).
- HDG methods consist of local solvers coupled through their boundaries, so this is a natural framework to use.

- The multisymplectic conservation law is a local condition, describing a physically important "perturbation-response" symmetry for boundary conditions (i.e., symmetry of a Poincaré–Steklov operator).
- HDG methods consist of local solvers coupled through their boundaries, so this is a natural framework to use.
- In the m = 1 case, these are one-step symplectic integrators. Difficulty of understanding "symplecticity" for multi-step methods is analogous to the difficulty of understanding multisymplecticity without hybridization.

- The multisymplectic conservation law is a local condition, describing a physically important "perturbation-response" symmetry for boundary conditions (i.e., symmetry of a Poincaré–Steklov operator).
- HDG methods consist of local solvers coupled through their boundaries, so this is a natural framework to use.
- In the m = 1 case, these are one-step symplectic integrators. Difficulty of understanding "symplecticity" for multi-step methods is analogous to the difficulty of understanding multisymplecticity without hybridization.
- Multisymplecticity has some important physical manifestations: Betti reciprocity in elasticity, symmetry of the Dirichlet-to-Neumann map used in electrical impedance tomography, etc.

- The multisymplectic conservation law is a local condition, describing a physically important "perturbation-response" symmetry for boundary conditions (i.e., symmetry of a Poincaré–Steklov operator).
- HDG methods consist of local solvers coupled through their boundaries, so this is a natural framework to use.
- In the m = 1 case, these are one-step symplectic integrators. Difficulty of understanding "symplecticity" for multi-step methods is analogous to the difficulty of understanding multisymplecticity without hybridization.
- Multisymplecticity has some important physical manifestations: Betti reciprocity in elasticity, symmetry of the Dirichlet-to-Neumann map used in electrical impedance tomography, etc.
- Ongoing work: other multisymplectic methods (Reich-type collocation methods, Marsden–Patrick–Shkoller-type variational methods) can be seen as HDG with "variational crimes" in the local solvers, e.g., quadrature.