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Multisymplecticity of hybridizable discontinuous Galerkin methods



Motivation

Given H = H(t, q, p) on R× Rn × Rn, Hamilton’s equations are

q̇i =
∂H

∂pi
, −ṗi =

∂H

∂qi
.

The flow preserves the canonical symplectic 2-form ω = dqi ∧ dpi.

Symplectic integrators also preserve ω when applied to Hamiltonian
ODEs, and their numerical advantages are well established.

Hamiltonian systems of PDEs satisfy a multisymplectic conservation law.
By analogy with the symplectic case, we might expect numerical methods
that satisfy this conservation law to have desirable properties.

Previous multisymplectic methods have generally been low-order finite
difference methods and/or required a rectangular grid (e.g., apply a
symplectic integrator in each direction).

What about finite element methods?
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Approach

The framework of hybridizable discontinuous Galerkin (HDG) methods†

makes it particularly natural to talk about local, per-element conservation
laws, like the multisymplectic conservation law, for finite element methods.

An HDG method consists of a collection of local Galerkin problems, one per
element, coupled only through their approximate boundary traces.

HDG methods : PDEs :: one-step methods : ODEs

We establish multisymplecticity criteria for HDG methods and show that
many popular finite element methods are actually multisymplectic.

†B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous
Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J.
Numer. Anal., 47 (2009), pp. 1319–1365.
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Canonical Hamiltonian PDEs and the multisymplectic conservation law

Let U ⊂ Rm, and let (xµ, ui, σµi ) be coordinates for U × Rn × Rmn.

Given a Hamiltonian H = H(x, u, σ), the de Donder–Weyl equations are

∂µu
i =

∂H

∂σµi
, −∂µσµi =

∂H

∂ui
.

Define the canonical 2-forms ωµ := dui ∧ dσµi , where µ = 1, . . . ,m.

Solutions satisfy the multisymplectic conservation law ∂µω
µ = 0 .

Integrating over K b U and applying the divergence theorem gives∫
∂K

ωµ dm−1xµ = 0 ,

which is an integral form of the multisymplectic conservation law.

The m = 1 case corresponds to canonical Hamiltonian systems of ODEs,
along with the usual symplectic conservation law.
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Example: semilinear elliptic PDE

Let n = 1, so u = u(x) is a scalar field and σ = σµ(x) is a vector field.

Take H(x, u, σ) = 1
2
aµν(x)σ

µσν + F (x, u), where a = aµν(x) is SPD.

The de Donder–Weyl equations are

∂µu = aµνσ
ν , −∂µσµ =

∂F

∂u
,

i.e.,

gradu = a−1σ, −div σ =
∂F

∂u
.

This is the “mixed form” of the semilinear elliptic PDE

−div(a gradu) =
∂F

∂u
.

If aµν ≡ δµν and F (x, u) = f(x)u, we get Poisson’s equation.

Remark

We can also obtain hyperbolic PDEs (and more) by changing the signature of a.
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What does the multisymplectic conservation law really say?

∫
∂K

ωµ dm−1xµ = 0, ωµ := dui ∧ dσµi

If (u, σ) is a solution and (v, τ) and (v′, τ ′) are variations tangent to the
space of solutions—i.e., solutions to the linearized problem at (u, σ)—then

ωµ
(
(v, τ), (v′, τ ′)

)
= viτ ′µi − v

′iτµi .

The multisymplectic conservation law therefore says that∫
∂K

viτ ′µi dm−1xµ =

∫
∂K

v′iτµi dm−1xµ.

Symmetry relation between boundary conditions for v, v′ and those for τ, τ ′.
Describes how original system responds to perturbation of boundary values.

This is deeply related to reciprocity laws in physical systems: Green’s
reciprocity in electrostatics, Betti reciprocity in elasticity, etc.

Laplace’s equation: symmetry of the Dirichlet-to-Neumann operator
v|∂K 7→ grad v · n|∂K , related to Green’s identity.
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Flux formulation for canonical PDEs

Consider a system of PDEs on U in the following canonical form:

∂µu
i = φiµ(·, u, σ), −∂µσµi = fi(·, u, σ).

Let Th be a triangulation of U . If v = vi(x) and τ = τµi (x) are test
functions on K ∈ Th, then integration by parts gives∫

∂K

uiτµi dm−1xµ =

∫
K

(ui∂µτ
µ
i + φiµτ

µ
i ) d

mx,∫
∂K

σµi v
i dm−1xµ =

∫
K

(σµi ∂µv
i − fivi) dmx.

(H)DG methods replace u|∂K and σ|∂K by approximate traces û and σ̂:∫
∂K

ûiτµi dm−1xµ =

∫
K

(ui∂µτ
µ
i + φiµτ

µ
i ) d

mx,∫
∂K

σ̂µi v
i dm−1xµ =

∫
K

(σµi ∂µv
i − fivi) dmx.

Numerical integration analogy: think of u, σ as internal stages or
collocation polynomials, and û, σ̂ as the endpoint values.
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collocation polynomials, and û, σ̂ as the endpoint values.

Ari Stern Department of Mathematics, Washington University in St. Louis

Multisymplecticity of hybridizable discontinuous Galerkin methods



Flux formulation for canonical PDEs

Consider a system of PDEs on U in the following canonical form:

∂µu
i = φiµ(·, u, σ), −∂µσµi = fi(·, u, σ).

Let Th be a triangulation of U . If v = vi(x) and τ = τµi (x) are test
functions on K ∈ Th, then integration by parts gives∫

∂K

uiτµi dm−1xµ =

∫
K

(ui∂µτ
µ
i + φiµτ

µ
i ) d

mx,∫
∂K

σµi v
i dm−1xµ =

∫
K

(σµi ∂µv
i − fivi) dmx.

(H)DG methods replace u|∂K and σ|∂K by approximate traces û and σ̂:∫
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HDG methods and numerical fluxes

Standard DG methods define û, σ̂ in terms of u, σ from adjacent simplices.‡

By contrast, HDG methods take û to be a new unknown function on
Eh :=

⋃
K∈Th

∂K and define σ̂ locally on each K ∈ Th in terms of u, σ, û.

To determine the extra unknown û, we add the conservativity condition,∑
K∈Th

∫
∂K

σ̂µi v̂
i dm−1xµ = 0,

to the flux formulation. (The test function v̂ comes from the same space as
û and vanishes on ∂U .)
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û lives, and for each K ∈ Th, the local spaces in which u|K and σ|K live,
together with the numerical flux σ̂|∂K .

‡D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of
discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2001/02), pp.
1749–1779.

Ari Stern Department of Mathematics, Washington University in St. Louis

Multisymplecticity of hybridizable discontinuous Galerkin methods



HDG methods and numerical fluxes
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Multisymplecticity and strong multisymplecticity of HDG methods

Definition

An HDG method is multisymplectic if, when applied to a Hamiltonian system
of PDEs, solutions satisfy∫

∂K

(dûi ∧ dσ̂µi ) d
m−1xµ = 0,

for all K ∈ Th. It is strongly multisymplectic if∫
∂(

⋃
K)

(dûi ∧ dσ̂µi ) d
m−1xµ = 0,

for any collection of elements K ⊂ Th.

Theorem (McLachlan–S.)

If a multisymplectic HDG method has a strongly conservative numerical flux,
i.e., Jσ̂K = 0, then it is strongly multisymplectic.
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Multisymplecticity criteria

Lemma (McLachlan–S.)

If an HDG method is applied to a Hamiltonian system of PDEs, then∫
∂K

(dûi ∧ dσ̂µi ) d
m−1xµ =

∫
∂K

[
d(ûi − ui) ∧ d(σ̂µi − σ

µ
i )
]
dm−1xµ.

Consequently, the method is multisymplectic if and only if∫
∂K

[
d(ûi − ui) ∧ d(σ̂µi − σ

µ
i )
]
dm−1xµ = 0.

Remark

This condition is usually straightforward to check from the numerical flux σ̂,
since it only depends on the jump between the actual and approximate traces.
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Multisymplectic HDG methods

Theorem (McLachlan–S.)

The following HDG methods are strongly multisymplectic:

1 RT-H (hybridized Raviart–Thomas)
2 BDM-H (hybridized Brezzi–Douglas–Marini)
3 LDG-H (hybridized local DG)
4 NC-H (hybridized nonconforming)
5 IP-H (hybridized interior penalty)

The CG-H (hybridized continuous Galerkin) method is multisymplectic but
not strongly multisymplectic except when m = 1.
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Proof ideas

Show that the methods satisfy∫
∂K

[
d(ûi − ui) ∧ d(σ̂µi − σ

µ
i )
]
dm−1xµ = 0.

The RT-H and BDM-H methods use the numerical flux σ̂ = σ, so the
integral above vanishes.

For the CG-H method, û = u, so again the integral vanishes. For the NC-H
method, û− u is orthogonal to the space of numerical traces (a “weak
version” of û = u), which is enough.

The LDG-H method takes σ̂ − σ = λ(û− u)n, where λ is a penalty
parameter and n is the outer unit normal to ∂K. Substituting this above,
the antisymmetry of the wedge product implies

λδijd(û
i − ui) ∧ d(ûj − uj) = 0,

so the integral vanishes. The IP-H method is similar.
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The CG-H method is not strongly multisymplectic

u1

u2

u3

u4

Apply degree-1 CG-H to Laplace’s equation on the two-triangle mesh above.

Assembling the matrix for the Dirichlet-to-Neumann map v̂ 7→ τ̂ · n on ∂U
yields (up to a scaling factor)

2 −1 −1 0
0 2 −2 0
0 −2 2 0
0 −1 −1 2

 ,
which is not symmetric.
This is due to the fact that σ̂ is only weakly conservative for CG-H.
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Concluding thoughts

The multisymplectic conservation law is a local condition, describing a
physically important “perturbation-response” symmetry for boundary
conditions (i.e., symmetry of a Poincaré–Steklov operator).

HDG methods consist of local solvers coupled through their boundaries, so
this is a natural framework to use.

In the m = 1 case, these are one-step symplectic integrators. Difficulty of
understanding “symplecticity” for multi-step methods is analogous to the
difficulty of understanding multisymplecticity without hybridization.

Multisymplecticity has some important physical manifestations: Betti
reciprocity in elasticity, symmetry of the Dirichlet-to-Neumann map used in
electrical impedance tomography, etc.

Ongoing work: other multisymplectic methods (Reich-type collocation
methods, Marsden–Patrick–Shkoller-type variational methods) can be seen
as HDG with “variational crimes” in the local solvers, e.g., quadrature.

Ari Stern Department of Mathematics, Washington University in St. Louis

Multisymplecticity of hybridizable discontinuous Galerkin methods



Concluding thoughts

The multisymplectic conservation law is a local condition, describing a
physically important “perturbation-response” symmetry for boundary
conditions (i.e., symmetry of a Poincaré–Steklov operator).
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