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(2016) dx.doi.org/10.1016/j.crme.2016.08.004

Vakhtang Putkaradze Variational integrator methods for fluid-structure interactions

dx.doi.org/10.1016/j.crme.2016.08.004 


Outline

1 Introduction to variational discretization methods

2 Problem formulation: tubes conveying fluid

3 Background: exact geometric rod theory and variational fluid
mechanics

4 Variational derivation of tube-fluid equations

5 Discretization in space, continuous time

6 Dynamic behavior of simple models

7 Discretization in space and time

8 Conclusions and open questions

Vakhtang Putkaradze Variational integrator methods for fluid-structure interactions



A brief intro to variational method

Standard numerical methods for Euler-Lagrange equations (e.g.
Runge-Kutta), as a rule, do not preserve any of the integrals of
motion for mechanical systems. These integrals are especially
important for studying long-term stability of mechanical systems.

Instead, consider a mechanical system with configuration space Rn

and discretization of the trajectory t0, t1, . . . , tn and
q(ti ) ' q i ∈ Rn. Write the discrete Lagrangian

L
(
q(t), q̇(t), t

)
→ L(q i , q̇ i , ti ) ' L

(
q i ,

q i+1 − q i

h

)
= Li (q i ,q i+1)

The action becomes (Di is the derivative wrt the i-th argument).

S =
∑

i

Li (q i ,q i+1) ⇒ δS =
∑

i

(D1Li + D2Li−1) δq i = 0

Discrete Euler-Lagrange equations D1Li + D2Li−1 = 0

In general, appropriately defined momenta are conserved by
variational methods with machine precision.

Energy is not conserved, but it is oscillatory and is typically
preserved on average with a very high accuracy.
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Advantages and disadvantages of variational integrators

Variational methods preserve symplectic structure, momenta,
Noether theorems, long time energy stability, can incorporate
constraints . . .

+ Conservation laws preserved to machine precision for any time step

+ Preservation of symplectic structure of the system

+ No artificial momentum and energy sources and sinks, advantages
for stability of and long-term behavior study

– Except for some simple cases, the integrators are implicit and
(slightly) more complex to use than e.g. Runge-Kutta methods.

+ Potential for application to fluid-structure interactions,

+/- To use these methods, fluid-structure interaction needs to be
expressed in the variational form
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Example: variational treatment of a tube conveying fluid

Figure: Image of a garden hose and its mathematical description

No friction in the system, incompressible fluid, Reynolds numbers
∼ 104 (much higher in some applications), general 3D motions

Hose can stretch and bend arbitrarily (inextensible also possible)

Cross-section of the hose changes dynamically with deformations:
collapsible tube
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Previous work

Constant fluid velocity in the tube, 2D dynamics:
English: Benjamin (1961); Gregory, Päıdoussis (1966); Päıdoussis
(1998); Doare, De Langre (2002); Flores, Cros (2009), . . .
Russian: Bolotin (?) (1956), Svetlitskii (monographs 1982, 1987),
Danilin (2005), Zhermolenko (2008), Akulenko et al. (2015) . . .
Hard to generalize to general 3D motions
Not possible to consistently incorporate the cross-sectional dynamics

Elastic rod with directional (tangent) momentum source at the end
– the follower-force method, see Bou-Rabee, Romero, Salinger
(2002), critiqued by Elishakoff (2005).

Shell models: Paidoussis & Denise (1972), Matsuzaki & Fung
(1977), Heil (1996), Heil & Pedley (1996) , . . . : Complex,
computationally intensive, difficult (impossible) to perform analytic
work for non-straight tubes.

3D dynamics from Cosserat’s model (Beauregard, Goriely & Tabor
2010): Force balance, not variational, cannot accommodate
dynamical change of the cross-section.

Variational derivation: FGB & VP (2014,2015).
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Variational treatment of changing cross-sections dynamics

Mathematical preliminaries:

Rod dynamics is described by SE (3)-valued functions
(rotations and translations in space) π(s, t) = (Λ, r)(s, t).

Fluid dynamics inside the rod is described by 1D
diffeomorphisms s = ϕ(a, t), where a is the Lagrangian label.

Conservation of 1-form volume element (fluid
incompressibility) defined through a holonomic constraint:

Q(Ω,Γ) := A

∣∣∣∣
dr

ds

∣∣∣∣ =
(
Q0 ◦ ϕ−1(s, t)

)
∂sϕ

−1(s, t) (1)

Alternatively, evolution equation for Q is ∂tQ + ∂s(Qu) = 0.

Note that commonly used Au =const does not conserve
volume for time-dependent flow. See e.g. [Kudryashov et al,
Nonlinear dynamics (2008)] for correct derivation in 1D.
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Mathematical preliminaries: Geometric rod theory for
elastic rods I

Purely elastic Lagrangian

L = L(r, ṙ, r′,Λ, Λ̇,Λ′)

Use SE (3) symmetry reduction [Simo, Marsden, Krishnaprasad
1988] (SMK) to reduce the Lagrangian to `(ω,γ,Ω,Γ) of the
following coordinate-invariant variables (prime= ∂s , dot=∂t):

Γ = Λ−1r′ , Ω = Λ−1Λ′ , (2)

γ = Λ−1ṙ , ω = Λ−1Λ̇ . (3)

Note that symmetry reduction for elastic rods is left-invariant
(reduces to body variables).

Notation: small letters (e.g. ω,γ) denote time derivatives; capital
letters (e.g. Ω,Γ) denote the s-derivatives.
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Mathematical preliminaries: Geometric rod theory for
elastic rods II

Euler Poincaré theory: [Holm, Marsden, Ratiu 1998].
For elastic rods: compute variations as in [Ellis, Holm, Gay-Balmaz,
VP and Ratiu, Arch. Rat.Mech. Anal., (2010)]: consider
Σ = Λ−1δΛ ∈ so(3) and Ψ = Λ−1δr ∈ R3, and (Σ,Ψ) ∈ se(3).

δω =
∂Σ

∂t
+ ω ×Σ, δγ =

∂ψ

∂t
+ γ ×Σ + ω ×ψ (4)

δΩ =
∂Σ

∂s
+ Ω×Σ, δΓ =

∂ψ

∂s
+ Γ×Σ + Ω×ψ, (5)

Compatibility conditions (cross-derivatives in s and t are equal)

Ωt − ωs = Ω× ω , Γt + ω × Γ = γs + Ω× γ .
Critical action principle δ

∫
`dtds = 0+ (4,5) give SMK equations.

0 = δ

∫
`dtds =

∫ 〈
δ`

δω
, δω

〉
+

∫ 〈
δ`

δΩ
, δΩ

〉
+ . . .

=

∫
〈linear momentum eq,Ψ〉+ 〈angular momentum eq,Σ〉 dtds
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Mathematics preliminaries: right-invariant incompressible
fluid motion

Following Arnold (1966), describe a 3D incompressible fluid
motion by DiffVol group r = ϕ(a, t).

Eulerian fluid velocity is u = ϕt ◦ ϕ−1; symmetry-reduced
Lagrangian is ` = 1/2

∫
u2dr.

Variations of velocity are computed as

η =δϕ ◦ ϕ−1(s, t) , δu = ηt + u∇η − η∇u . (6)

Incompressibility condition

J =

∣∣∣∣
∂r

∂a

∣∣∣∣ = 1⇒ Lagrange multiplier p . (7)

Euler equations: δ
∫
` dV dt = 0 with (6) and (7)

∂u

∂t
+ u · ∇u = −∇p , divu = 0
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Garden hoses: Lagrangian and symmetry reductions

1 Symmetry group of the system (ignoring gravity for now)

G = SE (3)×DiffA(R) = SO(3)sR×DiffA(R) . (8)

2 Position of elastic tube and fluid:

(π, ϕ) ·
((

Λ0, rt,0
)
, rf
)

=
(
π ·
(
Λ0, rt,0

)
︸ ︷︷ ︸
left invariant

, π · rf ◦ ϕ−1(s, t)︸ ︷︷ ︸
right invariant

)
.

3 Velocities:
(
vr , vf

)
=

d

dt

(
r(s, t) , r ◦ ϕ−1(s, t)

)

=
(

ṙ(s, t), ṙ ◦ ϕ−1(s, t) + r′(s, t)u(s, t)
)
. (9)

4 Change in cross-section A = A(Ω,Γ)

5 Incompressibility condition J = A(s, t)∂a
∂s |Γ| = 1 with Lagrange

multiplier µ (pressure)

∂Q

∂t
+

∂

∂s
(Qu) = 0 , with Q = A|Γ| . (10)
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Equations of motion





(∂t + ω×)
δ`

δω
+ γ × δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
−∂Q
∂Ω

µ

)
+ Γ×

(
δ`

δΓ
−∂Q
∂Γ

µ

)
= 0

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
−∂Q
∂Γ

µ

)
= 0

mt + ∂s (mu − µ) = 0, m :=
1

Q

δ`

δu

∂tQ + ∂s(Qu) = 0, Q = A|Γ|

∂tΩ = ω ×Ω + ∂sω , ∂tΓ + ω × Γ = ∂sγ + Ω× γ

Assume A = A(Ω,Γ) , symmetric tube with axis E1 for Lagrangian

`(ω,γ,Ω,Γ, u)

=
1

2

∫ (
α|γ|2 +

〈
Iω,ω

〉
+ ρA(Ω,Γ)|γ + Γu|2 −

〈
JΩ,Ω

〉
− λ|Γ− E1|2

)
|Γ|ds .

See FGB & VP for linear stability analysis, nonlinear solutions etc.
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Non-conservation of energy

Define the energy function

e(ω,γ,Ω,Γ, u) =

∫ L

0

(
δ`

δω
· ω +

δ`

δγ
· γ +

δ`

δu
u

)
ds−`(ω,γ,Ω,Γ, u)

and boundary forces at the exit (free boundary)

Fu :=
δ`

δu
u−µQ

∣∣∣
s=L

, FΓ :=
δ`

δΓ
−µ∂Q

∂Γ

∣∣∣
s=L

, FΩ :=
δ`

δΩ
−µ∂Q

∂Ω

∣∣∣
s=L

.

Then, the energy changes according to

d

dt
e(ω,γ,Ω,Γ, u) =

∫ T

0
(FΩ ·Ω + FΓ · Γ + Fuu)

∣∣∣
s=0

s=L
dt.

The system is not closed and the energy is not conserved. Similar
statement is true for the discrete version of the problem.
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Variational discretization of tube conveying fluid in space:
definitions

As in Demoures et al (2014), discretize s as s → (s0, s1, . . . , sN) and
define the variables λi := Λ−1

i Λi+1 ∈ SO(3) (relative orientation)
and κi = Λ−1

i (ri+1 − ri ) ∈ R3 (relative shift).

Define the forward Lagrangian map s = ϕ(a, t) and back to labels
map a = ψ(s, t) = ϕ−1(s, t).

Discretize ψ(s, t) as ψ(t) = (ψ1(t), ψ2(t), . . . , ψN(t)) with
ψi (t) ' ψ(si , t).

Discretize the spatial derivative as Diψ(t) :=
∑

j∈J ajψi+j(t), where
J is a discrete set around 0,

For example, we can take Diψ = (ψi − ψi−1)/h (backwards
derivative), in that case

J = (−1, 0) and a−1 = −1

h
, a0 =

1

h
.

For more general cases, for example, variable s-step, we take
Diψ(t) :=

∑
j∈i+J Aijψj(t).
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Variational discretization of a tube conveying fluid in
space: definitions

Discretize the conservation law (Q0 ◦ ϕ−1)∂sϕ
−1 = Q(Ω,Γ) as

Q0Diψ = F (λi ,κi ) := Fi ⇒ Ḟi + Di

(
uF
)

= 0

Differentiate the identity s = ϕ(ψ(s, t), t) with respect to time to
get u(s, t) = (ϕt ◦ ψ)(s, t) as

u(s, t) = (∂tϕ ◦ ψ)(s, t) = −∂tψ(s, t)

∂sψ(s, t)
⇒ ui (t) = − ψ̇i

Diψ

Define the approximation for the action

S =

∫
`(ω,γ,Ω,Γ, u)dtds → Sd =

∫ ∑

i

`d(ωi ,γ i , λi ,κi , ui )dt
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Variational discretization of variables: variations

Define the discrete action principle

δ

∫ ∑

i

[
`d(ωi ,γ i , λi ,κi , ui ) + µi

(
Q0Diψ − F (λi ,κi )

)]
dt = 0

Compute the variations of elastic in variables terms of free
variations ξi = Λ−1

i δΛi ∈ so(3) and ηi = Λ−1
i δri ∈ R3 as

δλi = −ξiλi + λiξi+1 δκi = −ξi × κi + λiηi+1 − ηi ,

Compute the variations of velocity in terms of δψi

δui = − δψ̇i

Diψ
+

ψ̇i

(Diψ)2

∑

j∈J

ajδψi+j = − Q0

Diψ

(
δψ̇i + uiDiδψ

)
.

Terms proportional to ξi give angular momentum conservation law

Terms proportional to ηi give linear momentum conservation law

Terms proportional to ψi give a fluid momentum, but we need to
use the fluid conservation law Q0Diψ = F (λi ,κi ) := Fi to remove
all ψ from equations.
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Variational integrator for spatial discretization I

Angular momentum: terms proportional to ξi =
(
Λ−1
i δΛi

)∨ 1

(
d

dt
+ ωi×

)
∂`d
∂ωi

+ γ i ×
∂`d
∂γ i

+

[(
∂`d
∂λi
− µi

∂F

∂λi

)
λTi

−λTi−1

(
∂`d
∂λi−1

− µi−1
∂F

∂λi−1

)]∨
+ κi ×

(
∂`d
∂κi
− µi

∂F

∂κi

)
= 0

Compare with the continuum equation:

(∂t + ω×)
δ`

δω
+ γ× δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
− ∂Q

∂Ω
µ

)
+ Γ×

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
=0

Linear momentum: terms proportional to ηi = Λ−1
i δri

(
d

dt
+ ωi×

)
∂`d
∂γ i

+

(
∂`d
∂κi
− µi

∂F

∂κi

)
− λTi−1

(
∂`d
∂κi−1

− µi−1
∂F

∂κi−1

)
= 0

Corresponding continuum equation

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
= 0

1We denote â = −εijkak is the hat map for R3 → so(3), and a∨ = a ∈ R3 is
its inverse
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Variational integrator for spatial discretization I

Angular momentum: terms proportional to ξi =
(
Λ−1
i δΛi

)∨ 1

(
d

dt
+ ωi×

)
∂`d
∂ωi

+ γ i ×
∂`d
∂γ i

+

[(
∂`d
∂λi
− µi

∂F

∂λi

)
λTi

−λTi−1

(
∂`d
∂λi−1

− µi−1
∂F

∂λi−1

)]∨
+ κi ×

(
∂`d
∂κi
− µi

∂F

∂κi

)
= 0

Compare with the continuum equation:

(∂t + ω×)
δ`

δω
+ γ× δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
− ∂Q

∂Ω
µ

)
+ Γ×

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
=0

Linear momentum: terms proportional to ηi = Λ−1
i δri

(
d

dt
+ ωi×

)
∂`d
∂γ i

+

(
∂`d
∂κi
− µi

∂F

∂κi

)
− λTi−1

(
∂`d
∂κi−1

− µi−1
∂F

∂κi−1

)
= 0

Corresponding continuum equation

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
= 0

1We denote â = −εijkak is the hat map for R3 → so(3), and a∨ = a ∈ R3 is
its inverse
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Variational integrator for spatial discretization II

Fluid momentum equation: terms proportional to δψi

d

dt

(
1

Fi

∂`d
∂ui

)
+ D+

i

(
u

F

∂`d
∂u
− µ

)
= 0

where we have defined the dual discrete derivative
D+

i X := −∑j∈J ajXi−j , and m∨c := − 1
2

∑
ab εabcmab

Continuum equation:

mt + ∂s (mu − µ) = 0, m :=
1

Q

δ`

δu

Conservation law in the discrete form:

Q0Diψ = F (λi ,κi ) := Fi ⇒ Ḟi + Di

(
uF
)

= 0

Continuum version

Q(Ω,Γ) := A |Γ| =
(
Q0 ◦ ϕ−1(s, t)

)
ϕ′ ◦ ϕ−1(s, t) ⇒ ∂tQ + ∂s(Qu) = 0
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An example: 1D stretching motion

x 

0 h(1+x1) h(2+x2) 

Assume that all motion of the tube is along the E1 direction, so
rk = h(k + xk , 0, 0)T and Λi = Id3×3, where xk is the dimensionless
deviation from equilibrium.

Consider a simplified model with only three points, k = 0, 1, 2,
denote x = x1.

Fixed BC on the left, x0 = 0 and no deformation in the
cross-section.

Free BC on the right, x2 = x1 = x .

Express all variables ui , µi in terms of xi and its time derivatives.

Get a nonlinear ODE ẍ = f (x , ẋ) for a single variable x(t).
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Numerical solutions of stretching tube equations

Figure 3.1 Trajectories of the 1-dimensional stretching tube system, where x (t) is the

displacement of the center point from the resting position. The initial conditions are x0 = 0

and x0
0 varied from 10 to -25.

0 1 2 3
−10

−5

0

5

10

t

x
(t

)

Stretching Tube Trajectories

3.3 Stability Analysis

3.3.1 Steady State Solutions

Let us now analyse and study the stability of this system. First, we will look for steady state

solutions. So let us write (3.38) with x0 = x00 = 0

3

2
V 2

0

✓
F0

F1

◆2

� 3

2
V 2

0

F0

F1

(1 + x)2 + P

✓
3

2
x2 + x

◆
+

1

2
V 2

0 �Zx (1 + x)3 � µ0�T 2

⇢F1

x = 0 (3.41)

Now, we want to find x0 which is a solution of this steady state equation. So let us expand

(3.41):

3

2
V 2

0

"✓
1 � �Zx2

2

◆2

�
✓

1 � �Zx2

2

◆
(1 + x)2

#
+ P

✓
3

2
x2 + x

◆
+ Z̃x (1 + x)3 � M0x = 0

(3.42)
3

2
V 2

0


��Zx2

2
+
�2Z2x4

4
� 2x � x2 +

�Zx2

2

�
2x + x2

��
+

Px

✓
3

2
x + 1

◆
+ Z̃x (1 + x)3 � M0x = 0

(3.43)

31

Figure: Trajectories x(t) starting with x(0) = 0 for varying initial
conditions x ′(0) = x ′0.
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Steady states and their stability as a function of u0

Parameter values:

h = 0.1, T = 1, µ0 = 1, ρ = 11, F1 = 2, α = 1, β = 3, ξ = 1.

0 0.125 0.25 0.375 0.5

−10

−5

0

5

10

Equilibrium points

u
0

x

0 0.125 0.25 0.375 0.5

−15

−7.5

0

7.5

15

Stability of equilibrium points

u
0

R
e

(r
)

Figure: Left: Equilibrium points as a function of u0, Right: their stability.
Color labeling is the same for each equilibrium point.
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Time and space discretization

Discretize s → (s0, s1, . . . , sN) and t → (t0, t1, . . . , tM).

Define the temporal and spatial relative orientations and shifts (first
index is s, second index is t):

λi,j := Λ−1
i,j Λi+1,j , κi,j := Λ−1

i,j (ri+1,j − ri,j)

qi,j := Λ−1
i,j Λi,j+1 , γ i,j := Λ−1

i,j (ri,j+1 − ri,j) .

Define discrete spatial and temporal derivatives are
Ds

i,jψ :=
∑

k∈K ajψi,j+k , Dt
i,jψ :=

∑
m∈M bmψi+m,j

The velocity is given by

ui,j = −
Dt

i,jψ

Ds
i,jψ

(
Compare with u = −ψt

ψs

)

Discrete conservation law is

Q0D
s
i,jψ = Fi,j ⇒ Dt

i,jF + Ds
i,j( uF ) = 0 .
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Variational integrator in time and space

Consider the critical discrete action principle

δ
∑

i,j

Ld

(
λi,j ,κi,j , qi,j ,γ i,j , ui,j

)
+ µi,j

(
Q0D

s
i,jψ − F (λi,j ,κi,j)

)
= 0

Perform variations to obtain equations of motion

Angular momentum equation: terms proportional to

Σi,j =
(

Λ−1
i,j δΛi,j

)∨

[
∂Ld

∂qi,j
qTi,j − qTi,j−1

∂Ld

∂qi,j−1

]∨
+

[(
∂Ld

∂λi,j
−µi,j

∂F

∂λi,j

)
λTi,j

−λTi−1,j

(
∂Ld

∂λi−1,j
−µi−1,j

∂F

∂λi−1,j

)]∨
+γ i,j×

∂Ld

∂γ i,j

+κi,j×
∂Ld

∂κi,j
=0

Continuum equation for reference

(∂t + ω×)
δ`

δω
+ γ× δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
− ∂Q

∂Ω
µ

)
+ Γ×

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
=0
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Equations of motion, continued

Linear momentum equation: terms proportional to Ψi,j = Λ−1
i,j δri,j

∂Ld

∂γ i,j

−qTi,j−1

∂Ld

∂γ i,j−1

+

(
∂Ld

∂κi,j
−µi,j

∂F

∂κi,j

)
−λTi−1,j

(
∂Ld

∂κi−1,j
− µi−1,j

∂F

∂κi−1,j

)
= 0

Continuum version for reference:

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
= 0

Fluid momentum equation: terms proportional to δψi,j

Dt,+
i,j m + Ds,+

i,j (um − µ) = 0 , mi,j :=
1

Fi,j

∂Ld

∂ui,j

Ds,+
i,j X := −

∑

k∈K

akXi,j−k , Dt,+
i,j X := −

∑

m∈M

bjXi−m,j

Continuum version: mt + ∂s (mu − µ) = 0, m :=
1

Q

δ`

δu
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Future work

1 Change in tube’s radius R(s, t) dynamically coupled with tube+fluid
motion in 3D (FGB & VP, in preparation)

2 Understanding the discretization of free end boundary conditions

3 Variational spectral methods – expansion in modes - if possible.

4 Stability of variational FSI methods

5 Variational discretization of non-closed systems

6 Simulation of bending motion in 2D and comparison with linearized
theory

7 1D reduction and comparison with exact solutions

8 Suggestions welcome for other examples of fluid-structure
interactions treatable by this method

9 Workshop on computer graphics applications (funding for workshop
awarded from PIMS, tentative timing – spring of 2018): What
conservation laws are needed for graphics to ’look good’
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