Communication Complexity with Small Advantage

Thomas Watson

University of Memphis

R(INNER-PRODUCT)	$= \Theta(n)$
R(Set-Intersection)	$= \Theta(n)$
R(GAP-HAMMING)	$= \Theta(n)$

R(INNER-PRODUCT)	$= \Theta(n)$
R(Set-Intersection)	$= \Theta(n)$
R(GAP-HAMMING)	$= \Theta(n)$

R = randomized c.c., success probability $\ge 3/4$

R(INNER-PRODUCT)	$= \Theta(n)$
R(Set-Intersection)	$= \Theta(n)$
R(GAP-HAMMING)	$= \Theta(n)$

R = randomized c.c., success probability $\ge 3/4$

Small advantage: $R_{1/2+\epsilon} = randomized c.c., success probability \geq 1/2 + \epsilon$

Classic results — revisited

 $\begin{aligned} \mathsf{R}_{1/2+\epsilon}(\operatorname{INNER-PRODUCT}) &= \Theta(n) \quad (\text{unless } \epsilon \leq 2^{-\Omega(n)}) \\ \mathsf{R}_{1/2+\epsilon}(\operatorname{Set-INTERSECTION}) &= \Theta(\epsilon \cdot n) \\ \mathsf{R}_{1/2+\epsilon}(\operatorname{Gap-Hamming}) &= \Theta(\epsilon^2 \cdot n) \end{aligned}$

Classic results — revisited

 $\begin{aligned} \mathsf{R}_{1/2+\epsilon}(\text{INNER-PRODUCT}) &= \Theta(n) \quad (\text{unless } \epsilon \leq 2^{-\Omega(n)}) \\ \mathsf{R}_{1/2+\epsilon}(\text{SET-INTERSECTION}) &= \Theta(\epsilon \cdot n) \\ \mathsf{R}_{1/2+\epsilon}(\text{GAP-HAMMING}) &= \Theta(\epsilon^2 \cdot n) \end{aligned}$

other functions?

Climbing the polynomial hierarchy

NP:

 $R_{1/2+\epsilon}$ (SET-INTERSECTION) = $\Theta(\epsilon \cdot n)$

Climbing the polynomial hierarchy

NP:

 $R_{1/2+\epsilon}(\text{SET-INTERSECTION}) = \Theta(\epsilon \cdot n)$ [Braverman–Moitra STOC'13, Göös–Watson RANDOM'14]
(information complexity) (corruption)

Climbing the polynomial hierarchyNP: $R_{1/2+\epsilon}(SET-INTERSECTION) = \Theta(\epsilon \cdot n)$ [Braverman-Moitra STOC'13, Göös-Watson RANDOM'14](information complexity) (corruption)

 $\Sigma_2 P, \Pi_2 P$:

Climbing the polynomial hierarchyNP: $R_{1/2+\epsilon}(SET-INTERSECTION) = \Theta(\epsilon \cdot n)$ [Braverman-Moitra STOC'13, Göös-Watson RANDOM'14](information complexity)(corruption)

 $\Sigma_2 P, \Pi_2 P$: $R_{1/2+\epsilon}(\text{TRIBES}) = \Theta(\epsilon \cdot n)$

Climbing the polynomial hierarchyNP: $R_{1/2+\epsilon}(SET-INTERSECTION) = \Theta(\epsilon \cdot n)$ [Braverman–Moitra STOC'13, Göös–Watson RANDOM'14](information complexity)(corruption)

 $\Sigma_2 P, \Pi_2 P$: $R_{1/2+\epsilon}(\text{TRIBES}) = \Theta(\epsilon \cdot n)$

Higher levels? (read-once AC⁰ formulas)

Climbing the polynomial hierarchyNP: $R_{1/2+\epsilon}(SET-INTERSECTION) = \Theta(\epsilon \cdot n)$ [Braverman–Moitra STOC'13, Göös–Watson RANDOM'14](information complexity)(corruption)

 $\Sigma_2 P, \Pi_2 P$: $R_{1/2+\epsilon}(\text{TRIBES}) = \Theta(\epsilon \cdot n)$

Higher levels? (read-once AC⁰ formulas)

Constant advantage: well-understood [Jayram–Kopparty–Raghavendra/Leonardos–Saks CCC'09]

Climbing the polynomial hierarchyNP: $R_{1/2+\epsilon}(SET-INTERSECTION) = \Theta(\epsilon \cdot n)$ [Braverman–Moitra STOC'13, Göös–Watson RANDOM'14](information complexity)(corruption)

 $\Sigma_2 P, \Pi_2 P$: $R_{1/2+\epsilon}(\text{TRIBES}) = \Theta(\epsilon \cdot n)$

Higher levels? (read-once AC⁰ formulas)

Constant advantage: well-understood [Jayram–Kopparty–Raghavendra/Leonardos–Saks CCC'09]

Small advantage: open

Function definitions

SET-INTERSECTION:

Function definitions

 $R(TRIBES) = \Theta(n)$

 $R(TRIBES) = \Theta(n)$

[Jayram-Kumar-Sivakumar STOC'03,Harsha-Jain FSTTCS'13](information complexity)(smooth rectangle bound)

 $R(TRIBES) = \Theta(n)$

[Jayram-Kumar-Sivakumar STOC'03,Harsha-Jain FSTTCS'13](information complexity)(smooth rectangle bound)

 $R_{1/2+\epsilon}(\text{TRIBES}) = ??$

 $R(TRIBES) = \Theta(n)$

[Jayram–Kumar–Sivakumar STOC'03, Harsha–Jain FSTTCS'13] (information complexity) (smooth rectangle bound)

 $R_{1/2+\epsilon}(\text{TRIBES}) = ??$

[Göös–Watson] trick: $R_{1/2+\epsilon} \geq \Omega(\epsilon \cdot \text{corruption bound})$

 $R(TRIBES) = \Theta(n)$

[Jayram–Kumar–Sivakumar STOC'03, Harsha–Jain FSTTCS'13] (information complexity) (smooth rectangle bound)

 $R_{1/2+\epsilon}(\text{TRIBES}) = ??$

[Göös–Watson] trick: $R_{1/2+\epsilon} \geq \Omega(\epsilon \cdot \text{corruption bound})$

• Doesn't work for TRIBES: corruption bound $\approx \sqrt{n}$

 $R(TRIBES) = \Theta(n)$

[Jayram–Kumar–Sivakumar STOC'03, Harsha–Jain FSTTCS'13] (information complexity) (smooth rectangle bound)

 $R_{1/2+\epsilon}(\text{TRIBES}) = ??$

[Göös–Watson] trick: $R_{1/2+\epsilon} \geq \Omega(\epsilon \cdot \text{corruption bound})$

• Doesn't work for TRIBES: corruption bound $\approx \sqrt{n}$

?? Similar trick: $R_{1/2+\epsilon} \geq \Omega(\epsilon \cdot \text{smooth rectangle bound})$??

 $R(TRIBES) = \Theta(n)$

[Jayram–Kumar–Sivakumar STOC'03, Harsha–Jain FSTTCS'13] (information complexity) (smooth rectangle bound)

 $R_{1/2+\epsilon}(\text{TRIBES}) = ??$

[Göös–Watson] trick: $R_{1/2+\epsilon} \geq \Omega(\epsilon \cdot \text{corruption bound})$

• Doesn't work for TRIBES: corruption bound $\approx \sqrt{n}$

?? Similar trick: $R_{1/2+\epsilon} \geq \Omega(\epsilon \cdot \text{smooth rectangle bound})$??

► Fails in general (GAP-HAMMING)

Information complexity:

Information complexity:

Ω(1)-advantage for TRIBES [JKS'03]

Information complexity:

- Ω(1)-advantage for TRIBES [JKS'03]
- ► ε-advantage for SET-INTER [BM'13]

Information complexity:

- Ω(1)-advantage for TRIBES [JKS'03]
- ε-advantage for SET-INTER [BM'13]
- Combine?

Information complexity:

- Ω(1)-advantage for TRIBES [JKS'03]
- ε-advantage for SET-INTER [BM'13]
- Combine?

4-step approach:

Information complexity:

- Ω(1)-advantage for TRIBES [JKS'03]
- ϵ-advantage for SET-INTER [BM'13]
- Combine?

4-step approach:

- 1. Conditioning and direct sum
- 2. Uniformly covering a pair of gadgets
- 3. Relating information and probabilities for inputs
- 4. Relating information and probabilities for transcripts

Idea from [BM'13]:

Idea from [BM'13]:

Suffices to use3EQ gadgetinstead ofAND gadget $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Idea from [BM'13]:

Suffices to use3EQ gadgetinstead ofAND gadget $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Usual info complexity proofs:

• mutual info \rightarrow Hellinger distance \rightarrow statistical distance

Idea from [BM'13]:

Suffices to use3EQ gadgetinstead ofAND gadget $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Usual info complexity proofs:

- ► mutual info → Hellinger distance → statistical distance
- quadratic loss—very roughly:

Idea from [BM'13]:

Suffices to use3EQ gadgetinstead ofAND gadget $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Usual info complexity proofs:

- ► mutual info → Hellinger distance → statistical distance
- quadratic loss—very roughly:
 - info cost: quadratic terms (in small parameters)

Idea from [BM'13]:

Suffices to use3EQ gadgetinstead ofAND gadget $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Usual info complexity proofs:

- ► mutual info → Hellinger distance → statistical distance
- quadratic loss—very roughly:
 - info cost: quadratic terms (in small parameters)
 - probabilities: quadratic and linear terms

Idea from [BM'13]:

Suffices to use3EQ gadgetinstead ofAND gadget $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Usual info complexity proofs:

- ► mutual info → Hellinger distance → statistical distance
- quadratic loss—very roughly:
 - info cost: quadratic terms (in small parameters)
 - probabilities: quadratic and linear terms

3Eq has nice symmetry properties

Exploit to get linear terms to perfectly cancel

1. Conditioning and direct sum

info cost $o(\epsilon \cdot n)$

 $\sim \rightarrow$

~

info cost $o(\epsilon)$

1. Conditioning and direct sum

info cost $o(\epsilon \cdot n)$

 $\sim \rightarrow$

~

info cost $o(\epsilon)$

Want to show: advantage $\leq O(info cost)$

Uniformly cover

with

Uniformly cover

with

Lemma: Linear combination of acceptance probabilities $\leq O(\sum \text{four contributions to info cost})$

Uniformly cover

with

Lemma: Linear combination of acceptance probabilities $\leq O(\sum \text{ four contributions to info cost})$ \downarrow adv $\leq (\sum_{\text{light gray}} \text{acc prob}) - (\sum_{\text{white}} \text{acc prob})$ $\leq O(\text{info cost})$

Lemma: Linear combination of acceptance probabilities $\leq O(\sum \text{four contributions to info cost})$

Lemma: Linear combination of acceptance probabilities $\leq O(\sum \text{four contributions to info cost})$

Prove for individual transcripts?

contribution to lin comb of acc prob $\leq O(\text{contribution to info costs})$

Lemma: Linear combination of acceptance probabilities $\leq O(\sum \text{four contributions to info cost})$

Prove for individual transcripts? contribution to lin comb of acc prob $\leq O(\text{contribution to info costs})$

[BM'13] setting: yes

Our setting:

[BM'13] transcript lemma:

Our transcript lemma:

[BM'13] transcript lemma:

Our transcript lemma:

[BM'13] transcript lemma:

Our transcript lemma:

[BM'13] transcript lemma:

Our transcript lemma:

\forall transcript:

contribution to lin comb of prob $\leq O(\text{contribution to info costs})$

lin comb of probabilities = $2 \cdot \text{green}$ area = $\Theta(\delta\gamma)$

 $\Omega(\epsilon \cdot \ell m)$: still holds

 $\Omega(\epsilon \cdot \ell m)$: still holds

 $O(\epsilon \cdot \ell m)$: if $\epsilon \geq \Omega(1/\ell)$

 $\Omega(\epsilon \cdot \ell m)$: still holds

 $O(\epsilon \cdot \ell m)$: if $\epsilon \geq \Omega(1/\ell)$

What if $\epsilon \leq o(1/\ell)$?

 $\Omega(\epsilon \cdot \ell m)$: still holds

 $O(\epsilon \cdot \ell m)$: if $\epsilon \geq \Omega(1/\ell)$

What if $\epsilon \leq o(1/\ell)$?

$$\ell = 2$$
: $O(\sqrt{\epsilon} \cdot m)$

 $\Omega(\epsilon \cdot \ell m)$: still holds $O(\epsilon \cdot \ell m)$: if $\epsilon \geq \Omega(1/\ell)$ What if $\epsilon \leq o(1/\ell)$? $\ell = 2: O(\sqrt{\epsilon} \cdot m)$ $\Omega(\sqrt{\epsilon} \cdot m)$ for decision trees

 $\Omega(\epsilon \cdot \ell m)$: still holds $O(\epsilon \cdot \ell m)$: if $\epsilon \geq \Omega(1/\ell)$ What if $\epsilon \leq o(1/\ell)$? $\ell = 2: O(\sqrt{\epsilon} \cdot m)$ $\Omega(\sqrt{\epsilon} \cdot m)$ for decision trees open: $\Omega(\sqrt{\epsilon} \cdot m)$ for communication?

Inputs: Uniquely intersecting subsets of [n][n] is partitioned into ℓ equal-size parts Output: Which part contains the intersection?

Inputs: Uniquely intersecting subsets of [n][n] is partitioned into ℓ equal-size parts Output: Which part contains the intersection?

 $R_{1/\ell+\epsilon}$ (this problem) = $\Theta(\epsilon \cdot n)$

Inputs: Uniquely intersecting subsets of [n][n] is partitioned into ℓ equal-size parts Output: Which part contains the intersection?

$\mathsf{R}_{1/\ell+\epsilon}$ (this problem) = $\Theta(\epsilon \cdot n)$

Proof: Combine [BM'13], and direct sum for info complexity under promise that exactly one input evaluates to 1

Inputs: Uniquely intersecting subsets of [n][n] is partitioned into ℓ equal-size parts Output: Which part contains the intersection?

$R_{1/\ell+\epsilon}$ (this problem) = $\Theta(\epsilon \cdot n)$

Proof: Combine [BM'13], and direct sum for info complexity under promise that exactly one input evaluates to 1

Also: Simplified proof of UP \cap coUP $\not\subseteq$ BPP [Klauck, CCC'03]

The end