Communication Complexity with Small Advantage

Thomas Watson

University of Memphis

Classic results
s

Classic
rest
-
-
ri s 8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1
-

Classic results

$$
\begin{array}{ll}
\text { R(InNer-Product) } & =\Theta(n) \\
\text { R(Set-Intersection) } & =\Theta(n) \\
\text { R(Gap-Hamming) } & =\Theta(n)
\end{array}
$$

Classic results

R(InNER-PRoduct)	$=\Theta(n)$
$R($ SEt-Intersection $)$	$=\Theta(n)$
$R($ Gap-Hamming $)$	$=\Theta(n)$

$R=$ randomized c.c., success probability $\geq 3 / 4$

Classic results

R(InNER-PRoduct)	$=\Theta(n)$
$R($ SEt-Intersection $)$	$=\Theta(n)$
$R($ GAP-HAMming $)$	$=\Theta(n)$

$R=$ randomized c.c., success probability $\geq 3 / 4$
Small advantage:
$\mathrm{R}_{1 / 2+\epsilon}=$ randomized c.c., success probability $\geq 1 / 2+\epsilon$

Classic results — revisited

$$
\begin{array}{ll}
\mathrm{R}_{1 / 2+\epsilon}(\text { InNer-Product }) & \left.=\Theta(n) \quad \text { (unless } \epsilon \leq 2^{-\Omega(n)}\right) \\
\mathrm{R}_{1 / 2+\epsilon}(\text { Set-Intersection }) & =\Theta(\epsilon \cdot n) \\
\mathrm{R}_{1 / 2+\epsilon}(\text { Gap-Hamming }) & =\Theta\left(\epsilon^{2} \cdot n\right)
\end{array}
$$

Classic results — revisited

$$
\begin{array}{ll}
\mathrm{R}_{1 / 2+\epsilon}(\text { InNer-Product }) & \left.=\Theta(n) \quad \text { (unless } \epsilon \leq 2^{-\Omega(n)}\right) \\
\mathrm{R}_{1 / 2+\epsilon}(\text { Set-Intersection }) & =\Theta(\epsilon \cdot n) \\
\mathrm{R}_{1 / 2+\epsilon}(\text { Gap-Hamming }) & =\Theta\left(\epsilon^{2} \cdot n\right)
\end{array}
$$

other functions?

Climbing the polynomial hierarchy

NP:
$\mathrm{R}_{1 / 2+\epsilon}($ Set-Intersection $)=\Theta(\epsilon \cdot n)$

Climbing the polynomial hierarchy

NP:
$\mathrm{R}_{1 / 2+\epsilon}$ (SET-Intersection) $=\Theta(\epsilon \cdot n)$
[Braverman-Moitra STOC'13, Göös-Watson RANDOM'14]
(information complexity) (corruption)

Climbing the polynomial hierarchy

NP:
$\mathrm{R}_{1 / 2+\epsilon}($ Set-Intersection $)=\Theta(\epsilon \cdot n)$
[Braverman-Moitra STOC'13, Göös-Watson RANDOM'14] (information complexity) (corruption)
$\Sigma_{2} \mathrm{P}, \Pi_{2} \mathrm{P}:$

Climbing the polynomial hierarchy

NP:
$\mathrm{R}_{1 / 2+\epsilon}($ Set-Intersection $)=\Theta(\epsilon \cdot n)$
[Braverman-Moitra STOC'13, Göös-Watson RANDOM'14]
(information complexity) (corruption)
$\Sigma_{2} \mathrm{P}, \Pi_{2} \mathrm{P}:$
$\mathrm{R}_{1 / 2+\epsilon}($ TRIBES $)=\Theta(\epsilon \cdot n)$

Climbing the polynomial hierarchy

NP:
$\mathrm{R}_{1 / 2+\epsilon}($ Set-Intersection $)=\Theta(\epsilon \cdot n)$
[Braverman-Moitra STOC'13, Göös-Watson RANDOM'14]
(information complexity) (corruption)
$\Sigma_{2} \mathrm{P}, \Pi_{2} \mathrm{P}:$
$\mathrm{R}_{1 / 2+\epsilon}($ TRibes $)=\Theta(\epsilon \cdot n)$

Higher levels? (read-once $A C^{0}$ formulas)

Climbing the polynomial hierarchy

NP:
$\mathrm{R}_{1 / 2+\epsilon}($ Set-Intersection $)=\Theta(\epsilon \cdot n)$
[Braverman-Moitra STOC'13, Göös-Watson RANDOM'14]
(information complexity) (corruption)
$\Sigma_{2} \mathrm{P}, \Pi_{2} \mathrm{P}:$
$\mathrm{R}_{1 / 2+\epsilon}($ TRibes $)=\Theta(\epsilon \cdot n)$

Higher levels? (read-once AC^{0} formulas)
Constant advantage: well-understood [Jayram-Kopparty-Raghavendra/Leonardos-Saks CCC'09]

Climbing the polynomial hierarchy

NP:
$\mathrm{R}_{1 / 2+\epsilon}($ Set-Intersection $)=\Theta(\epsilon \cdot n)$
[Braverman-Moitra STOC'13, Göös-Watson RANDOM'14]
(information complexity) (corruption)
$\Sigma_{2} \mathrm{P}, \Pi_{2} \mathrm{P}:$
$\mathrm{R}_{1 / 2+\epsilon}($ TRibes $)=\Theta(\epsilon \cdot n)$

Higher levels? (read-once AC^{0} formulas)
Constant advantage: well-understood [Jayram-Kopparty-Raghavendra/Leonardos-Saks CCC'09]

Small advantage: open

Function definitions

SET-InTERSECTION:

Function definitions

SET-InTERSECTION:

Tribes:

What's known about Tribes?

$$
R(\text { Tribes })=\Theta(n)
$$

What's known about Tribes?

$R($ Tribes $)=\Theta(n)$
[Jayram-Kumar-Sivakumar STOC'03, Harsha-Jain FSTTCS'13]
(information complexity)
(smooth rectangle bound)

What's known about Tribes?

$R($ Tribes $)=\Theta(n)$
[Jayram-Kumar-Sivakumar STOC'03, Harsha-Jain FSTTCS'13]
(information complexity)
(smooth rectangle bound)

$$
R_{1 / 2+\epsilon}(\text { TRibes })=? ?
$$

What's known about Tribes?

$R($ Tribes $)=\Theta(n)$
[Jayram-Kumar-Sivakumar STOC'03, Harsha-Jain FSTTCS'13]
(information complexity)
(smooth rectangle bound)
$R_{1 / 2+\epsilon}($ TRibes $)=? ?$
[Göös-Watson] trick: $\mathrm{R}_{1 / 2+\epsilon} \geq \Omega(\epsilon$. corruption bound)

What's known about Tribes?

$R($ Tribes $)=\Theta(n)$
[Jayram-Kumar-Sivakumar STOC'03, Harsha-Jain FSTTCS'13]
(information complexity)
(smooth rectangle bound)
$R_{1 / 2+\epsilon}($ TRibes $)=? ?$
[Göös-Watson] trick: $\mathrm{R}_{1 / 2+\epsilon} \geq \Omega(\epsilon$. corruption bound)

- Doesn't work for Tribes: corruption bound $\approx \sqrt{n}$

What's known about Tribes?

$R($ Tribes $)=\Theta(n)$
[Jayram-Kumar-Sivakumar STOC'03, Harsha-Jain FSTTCS'13]
(information complexity)
(smooth rectangle bound)

$R_{1 / 2+\epsilon}($ Tribes $)=? ?$

[Göös-Watson] trick: $\mathrm{R}_{1 / 2+\epsilon} \geq \Omega(\epsilon$. corruption bound)

- Doesn't work for Tribes: corruption bound $\approx \sqrt{n}$
?? Similar trick: $\mathrm{R}_{1 / 2+\epsilon} \geq \Omega(\epsilon \cdot$ smooth rectangle bound $)$??

What's known about Tribes?

$R($ Tribes $)=\Theta(n)$
[Jayram-Kumar-Sivakumar STOC'03, Harsha-Jain FSTTCS'13]
(information complexity)
(smooth rectangle bound)

$R_{1 / 2+\epsilon}($ Tribes $)=? ?$

[Göös-Watson] trick: $\mathrm{R}_{1 / 2+\epsilon} \geq \Omega(\epsilon$. corruption bound)

- Doesn't work for Tribes: corruption bound $\approx \sqrt{n}$
?? Similar trick: $\mathrm{R}_{1 / 2+\epsilon} \geq \Omega(\epsilon \cdot$ smooth rectangle bound) ??
- Fails in general (Gap-Hamming)

Our approach for Tribes

 Our a\square
-

-

-

\qquad
F

Our approach for Tribes

Information complexity:

- $\Omega(1)$-advantage for Tribes [JKS'03]

Our approach for Tribes

Information complexity:

- $\Omega(1)$-advantage for Tribes [JKS'03]
- ϵ-advantage for Set-Inter [BM'13]

Our approach for Tribes

Information complexity:

- $\Omega(1)$-advantage for Tribes [JKS'03]
- ϵ-advantage for Set-Inter [BM'13]
- Combine?

Our approach for Tribes

Information complexity:

- $\Omega(1)$-advantage for Tribes [JKS'03]
- ϵ-advantage for Set-Inter [BM'13]
- Combine?

4-step approach:

Our approach for Tribes

Information complexity:

- $\Omega(1)$-advantage for Tribes [JKS'03]
- ϵ-advantage for Set-Inter [BM'13]
- Combine?

4-step approach:

1. Conditioning and direct sum
2. Uniformly covering a pair of gadgets
3. Relating information and probabilities for inputs
4. Relating information and probabilities for transcripts

Preliminaries

Preliminaries

$2+2+x+20+2$
r
r
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Idea from $\left[B M^{\prime} 13\right]:$

\qquad
\qquad

4

\qquad

-

Idea from [BM'13]: \square

Idea from $\left[B M^{\prime} 13\right]$: \square

$-$

r

1

[^0]\qquad dea from $\left[B M^{\prime} 13\right]$:
(
-
$1+\pi-2$
-
20.
\qquad
\qquad
\qquad Fr- \qquad
\qquad

 \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
 \qquad
\qquad

\author{

}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 7 \qquad

\qquad
\qquad
$?$

\qquad
\square
\square
\square
\qquad
\qquad (astern

Preliminaries

Idea from [BM'13]:
Suffices to use 3EQ gadget instead of And gadget

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

Preliminaries

Idea from [BM'13]:
Suffices to use 3 EQ gadget instead of And gadget

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Usual info complexity proofs:

- mutual info \rightarrow Hellinger distance \rightarrow statistical distance

Preliminaries

Idea from [BM'13]:
Suffices to use 3 EQ gadget instead of And gadget

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Usual info complexity proofs:

- mutual info \rightarrow Hellinger distance \rightarrow statistical distance
- quadratic loss-very roughly:

Preliminaries

Idea from [BM'13]:
Suffices to use 3 EQ gadget instead of And gadget

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Usual info complexity proofs:

- mutual info \rightarrow Hellinger distance \rightarrow statistical distance
- quadratic loss-very roughly:
- info cost: quadratic terms (in small parameters)

Preliminaries

Idea from [BM'13]:
Suffices to use 3 EQ gadget instead of And gadget

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Usual info complexity proofs:

- mutual info \rightarrow Hellinger distance \rightarrow statistical distance
- quadratic loss-very roughly:
- info cost: quadratic terms (in small parameters)
- probabilities: quadratic and linear terms

Preliminaries

Idea from [BM'13]:
Suffices to use 3EQ gadget instead of And gadget

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Usual info complexity proofs:

- mutual info \rightarrow Hellinger distance \rightarrow statistical distance
- quadratic loss-very roughly:
- info cost: quadratic terms (in small parameters)
- probabilities: quadratic and linear terms

3EQ has nice symmetry properties

- Exploit to get linear terms to perfectly cancel

1. Conditioning and direct sum

info cost $O(\epsilon \cdot n)$

\leadsto
info cost $o(\epsilon)$

1. Conditioning and direct sum

info cost $O(\epsilon \cdot n)$

info cost $O(\epsilon)$

Want to show: advantage $\leq O$ (info cost)
2. Uniformly covering a pair of gadgets
2. Uniformly covering a pair of gadgets

Uniformly cover

2. Uniformly covering a pair of gadgets

Uniformly cover

Lemma: Linear combination of acceptance probabilities $\leq O\left(\sum\right.$ four contributions to info cost)

2. Uniformly covering a pair of gadgets

with

Lemma: Linear combination of acceptance probabilities $\leq O\left(\sum\right.$ four contributions to info cost) \Downarrow adv $\leq\left(\sum_{\text {light gray }}\right.$ acc prob $)-\left(\sum_{\text {white }}\right.$ acc prob $)$ $\leq O$ (info cost)
3. Relating information and probabilities for inputs

Lemma: Linear combination of acceptance probabilities $\leq O$ (\sum four contributions to info cost)

3. Relating information and probabilities for inputs

Lemma: Linear combination of acceptance probabilities $\leq O\left(\sum\right.$ four contributions to info cost)

Prove for individual transcripts?
contribution to lin comb of acc prob $\leq O$ (contribution to info costs)

3. Relating information and probabilities for inputs

Lemma: Linear combination of acceptance probabilities $\leq O\left(\sum\right.$ four contributions to info cost)

Prove for individual transcripts?
contribution to lin comb of acc prob $\leq O$ (contribution to info costs)
[BM'13] setting: yes Our setting:
3. Relating information and probabilities for inputs
[BM'13] transcript lemma:
Our transcript lemma:
3. Relating information and probabilities for inputs
[BM'13] transcript lemma:
Our transcript lemma:

3. Relating information and probabilities for inputs
[BM'13] transcript lemma:

Our transcript lemma:

3. Relating information and probabilities for inputs
[BM'13] transcript lemma:

Our transcript lemma:

\forall transcript:
contribution to lin comb of prob $\leq O$ (contribution to info costs)
3. Relating information and probabilities for inputs
3. Relating information and probabilities for inputs
accepting
rejecting

rejecting

3. Relating information and probabilities for inputs
accepting
rejecting

$+2$
(2) -4 (2) +2 .

2
-1
-1
-1
(2) -1

rejecting

4. Relating information and probabilities for transcripts

4. Relating information and probabilities for transcripts

lin comb of probabilities
$=2 \cdot$ green area
$=\Theta(\delta \gamma)$
4. Relating information and probabilities for transcripts

lin comb of probabilities
$=2 \cdot$ green area
$=\Theta(\delta \gamma)$
contribution to info costs
$=\Theta\left(\delta^{2}+\gamma^{2}\right)$

Generalized Tribes

Generalized Tribes

$\Omega(\epsilon \cdot l m)$: still holds

Generalized Tribes

$\Omega(\epsilon \cdot \ell m):$ still holds
$O(\epsilon \cdot \ell m):$ if $\epsilon \geq \Omega(1 / \ell)$

Generalized Tribes

$\Omega(\epsilon \cdot \ell m):$ still holds
$O(\epsilon \cdot \ell m):$ if $\epsilon \geq \Omega(1 / \ell)$

What if $\epsilon \leq o(1 / \ell)$?

Generalized Tribes

$\Omega(\epsilon \cdot \ell m):$ still holds
$O(\epsilon \cdot \ell m):$ if $\epsilon \geq \Omega(1 / \ell)$

What if $\epsilon \leq o(1 / \ell)$?
$\ell=2: O(\sqrt{\epsilon} \cdot m)$

Generalized Tribes

$\Omega(\epsilon \cdot \ell m):$ still holds
$O(\epsilon \cdot \ell m):$ if $\epsilon \geq \Omega(1 / \ell)$

What if $\epsilon \leq o(1 / \ell)$?
$\ell=2: O(\sqrt{\epsilon} \cdot m)$
$\Omega(\sqrt{\epsilon} \cdot m)$
for decision trees

Generalized Tribes

$$
\begin{aligned}
& \Omega(\epsilon \cdot \ell m): \text { still holds } \\
& O(\epsilon \cdot \ell m): \text { if } \epsilon \geq \Omega(1 / \ell)
\end{aligned}
$$

What if $\epsilon \leq o(1 / \ell)$?

$$
\ell=2: O(\sqrt{\epsilon} \cdot m)
$$

$$
\Omega(\sqrt{\epsilon} \cdot m)
$$

for decision trees open:
$\Omega(\sqrt{\epsilon} \cdot m)$
for communication?

Which part contains the intersecting coordinate?

Which part contains the intersecting coordinate?

Inputs: Uniquely intersecting subsets of [n]
[n] is partitioned into ℓ equal-size parts
Output: Which part contains the intersection?

Which part contains the intersecting coordinate?

Inputs: Uniquely intersecting subsets of [n]
[n] is partitioned into ℓ equal-size parts
Output: Which part contains the intersection?

$$
\mathrm{R}_{1 / \ell+\epsilon}(\text { this problem })=\Theta(\epsilon \cdot n)
$$

Which part contains the intersecting coordinate?

Inputs: Uniquely intersecting subsets of [n]
[n] is partitioned into ℓ equal-size parts
Output: Which part contains the intersection?
$\mathrm{R}_{1 / \ell+\epsilon}$ (this problem) $=\Theta(\epsilon \cdot n)$
Proof: Combine [BM'13], and direct sum for info complexity under promise that exactly one input evaluates to 1

Which part contains the intersecting coordinate?

Inputs: Uniquely intersecting subsets of [n]
[n] is partitioned into ℓ equal-size parts
Output: Which part contains the intersection?
$\mathrm{R}_{1 / \ell+\epsilon}$ (this problem) $=\Theta(\epsilon \cdot n)$
Proof: Combine [BM'13], and direct sum for info complexity under promise that exactly one input evaluates to 1

Also: Simplified proof of UP \cap coUP \nsubseteq BPP [Klauck, CCC'03]

[^0]:

