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R(Set-Intersection) = Θ(n)

R(Gap-Hamming) = Θ(n)
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(information complexity) (corruption)

Σ2P, Π2P:

R1/2+ε(Tribes) = Θ(ε · n)

Higher levels? (read-once AC0 formulas)

Constant advantage: well-understood
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(information complexity) (corruption)

Σ2P, Π2P:

R1/2+ε(Tribes) = Θ(ε · n)

Higher levels? (read-once AC0 formulas)

Constant advantage: well-understood
[Jayram–Kopparty–Raghavendra/Leonardos–Saks CCC’09]

Small advantage: open



Climbing the polynomial hierarchy

NP:

R1/2+ε(Set-Intersection) = Θ(ε · n)

[Braverman–Moitra STOC’13, Göös–Watson RANDOM’14]
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What’s known about Tribes?

R(Tribes) = Θ(n)

[Jayram–Kumar–Sivakumar STOC’03, Harsha–Jain FSTTCS’13]

(information complexity) (smooth rectangle bound)

R1/2+ε(Tribes) = ??

[Göös–Watson] trick: R1/2+ε ≥ Ω(ε · corruption bound)

I Doesn’t work for Tribes: corruption bound ≈
√
n

?? Similar trick: R1/2+ε ≥ Ω(ε · smooth rectangle bound) ??

I Fails in general (Gap-Hamming)
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Our approach for Tribes

Information complexity:

I Ω(1)-advantage for Tribes [JKS’03]

I ε-advantage for Set-Inter [BM’13]

I Combine?

4-step approach:

1. Conditioning and direct sum

2. Uniformly covering a pair of gadgets

3. Relating information and probabilities for inputs

4. Relating information and probabilities for transcripts
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Preliminaries

Idea from [BM’13]:

Suffices to use 3Eq gadget instead of And gadget1 0 0
0 1 0
0 0 1

 [
0 0
0 1

]

Usual info complexity proofs:

I mutual info → Hellinger distance → statistical distance
I quadratic loss—very roughly:

I info cost: quadratic terms (in small parameters)
I probabilities: quadratic and linear terms

3Eq has nice symmetry properties

I Exploit to get linear terms to perfectly cancel
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1. Conditioning and direct sum
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2. Uniformly covering a pair of gadgets

Uniformly cover with
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4. Relating information and probabilities for transcripts
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Generalized Tribes
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Ω(ε · `m): still holds

O(ε · `m): if ε ≥ Ω(1/`)

What if ε ≤ o(1/`)?

` = 2: O(
√
ε ·m)

Ω(
√
ε ·m)

for decision trees

open:
Ω(
√
ε ·m)

for communication?
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Which part contains the intersecting coordinate?

Inputs: Uniquely intersecting subsets of [n]
[n] is partitioned into ` equal-size parts
Output: Which part contains the intersection?

R1/`+ε(this problem) = Θ(ε · n)

Proof: Combine [BM’13], and direct sum for info complexity under
promise that exactly one input evaluates to 1

Also: Simplified proof of UP ∩ coUP 6⊆ BPP [Klauck, CCC’03]
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The end


