A quantum information trade-off for Augmented Index

Ashwin Nayak

Joint work with Dave Touchette
(Waterloo)

Augmented Index (Al_{n})

k, $x[1, k-I], b$

$$
\text { Is } \quad x_{k}=b \quad ?
$$

Variant of Index function
Alice has an n-bit string x
Bob has the prefix $x[l, k-I]$, and a bit b
Goal: Compute $x_{k} \oplus b$

(Augmented) Index function

Fundamental problem with a rich history

- communication complexity [KN'97]
- data structures [MNSW'98]
- private information retrieval [CKGS'98]
- learnability of states [KNR'95, A'07]
- finite automata [ANTV'99]
- formula size [K’07]
- locally decodable codes [KdW'03]
- sketching e.g., [BJKK'04]
- information causality [PPKSWZ'09]
- non-locality and uncertainty principle [OW' 10]
- quantum ignorance [VW'II] and more!

Connection with streaming algorithms

Magniez, Mathieu, N. 'IO:

- For Dyck(2): is an expression in two types of parentheses is well-formed?
- ([]()) is well-formed
- ([)(]) is not well-formed
- Motivation: what is the complexity of problems beyond recognizing regular languages, say of context-free languages?
- Dyck(2) is a canonical CFL, used in practice: e.g., checking wellformedness of large XML file

Streaming algorithms for Dyck(2)

Magniez, Mathieu, N.'I 0 :

- A single pass randomized algorithm that uses $O\left((n \log n)^{1 / 2}\right)$ space, O(polylog n) time/ symbol
- 2-pass algorithm, uses $O\left(\log ^{2} n\right)$ space, $O($ polylog $n)$ time/ symbol, second pass in reverse
- Space usage of one-pass algorithm is optimal, via an information cost trade-off for Augmented Index (two-round)

Chakrabarti, Cormode, Kondapalli, McGregor'I0; Jain, N.'IO:

- Space usage of unidirectional T-pass algorithm is $n^{1 / 2} / T$
- Again, through information cost trade-off for Augmented Index, for an arbitrary number of rounds

Classical information trade-offs for Al_{n}

rounds	error	Alice reveals	or Bob reveals	Ref.
two, Alice starts	$1 /(n \log n)$	$\Omega(n)$	$\Omega(n \log n)$	MMN'10
any no.	constant	$\Omega(n)$	$\Omega(1)$	CCKM'10 JN'10
any no.	constant	$\Omega(n / 2 m)$	$\Omega(m)$	CK'11

- trade-offs w.r.t. uniform distribution over 0-inputs
- Internal information cost for classical protocols

Augmented Index Al_{n}

$$
\text { Is } \quad x_{k}=b \text { ? }
$$

- Simple protocols: Alice sends x or Bob sends k, b
- Can interpolate between the two:
- Bob sends the m leading bits of k
- Alice sends the corresponding block of x of length $n / 2^{m}$

Streaming algorithms

Attractive model for quantum computation

- initial quantum computers are likely to have few qubits
- captures fast processing of input, may cope with low coherence time
- goes beyond finite quantum automata

Streaming quantum algorithms

Advantage over classical

- Quantum finite automata: streaming algorithms with constant memory and time per symbol. Some are exponentially smaller than classical FA.
- Use exponentially smaller amount of memory for certain problems [LeG'06, GKKRdW'06]

Advantage for natural problems ?

- For Dyck(2), checking if an expression in two types of parentheses is well-formed ?

Quantum streaming complexity of Dyck(2) ?

Theorem [Jain, N.'II]

If a quantum protocol computes Al_{n} with probability $\mathrm{I}-\varepsilon$ on the uniform distribution, either

Alice reveals $\Omega(n / t)$ information about x, or
Bob reveals $\Omega(1 / t)$ information about k, under the uniform distribution over 0 -inputs, where t is the number of rounds.

- Specialized notion of information cost
- Connection to streaming algorithms breaks down
- Connection to communication complexity unclear
- Other notions: fixed above problems, but couldn't analyze

Results

$x=x_{1} x_{2} \ldots x_{n}$

Is $\quad x_{k}=b \quad$?

k, x[l,k-I], b

Theorem [N., Touchette 'I6]

* If a quantum protocol computes Al_{n} with probability $\mathrm{I}-\varepsilon$ on the uniform distribution, either

Alice reveals $\Omega\left(n / t^{2}\right)$ information about x, or
Bob reveals $\Omega\left(1 / t^{2}\right)$ information about k,
under the uniform distribution over 0 -inputs, where t is the number of rounds.

* Any T-pass unidirectional quantum streaming algorithm for Dyck(2) uses $n^{1 / 2} / T^{3}$ qubits on instances of length n

Quantum information trade-off

- Uses a new notion, Quantum Information Cost [Touchette '15]
- High-level intuition and structure of proof similar to [Jain, N.'II], but new execution, uses new tools
- Overcomes earlier difficulties in analysis:
- inputs to Alice and Bob are correlated
- need to work with superpositions over inputs
- superpositions leak information in counter-intuitive ways
- Develop a "fully-quantum" analogue of the "Average Encoding Theorem" [KNTZ'07, JRS'03]
- Use of tools needs special care

Lower bound for quantum streaming algorithms

- Define general model for quantum streaming algorithms: allows for measurements / discarding qubits (non-unitary evolution)
- Quantum Information Cost allows us to lift the [MMN'I0] connection between streaming and low-information protocols, even for this general model
- Proof of information cost trade-off requires protocols with pure (unmeasured) quantum states
- QIC does not increase, when we transform protocols with intermediate measurements to those without

Main

Result

$x=x_{1} x_{2} \ldots x_{n}$

Is $\quad x_{k}=b \quad$?

Theorem [N., Touchette 'I6]

If a quantum protocol computes Al_{n} with probability $\mathrm{I}-\varepsilon$ on the uniform distribution, either

Alice reveals $\Omega\left(n / t^{2}\right)$ information about x, or
Bob reveals $\Omega\left(1 / t^{2}\right)$ information about k, under the uniform distribution over 0 -inputs, where t is the number of rounds.

Intuition behind proof
 (2 classical messages, [[N^{\prime} '0])

$$
x=x_{1} x_{2} \ldots x_{n}
$$

$k, x[I, k-I], b$

Consider uniformly random X, K, let $B=X_{K} \quad(0$-input)

- Consider K in [n/2]. If M_{A} has $o(n)$ information about X, then it is nearly independent of $X_{L}, L>n / 2$. Flipping Alice's L-th bit does not perturb MA much.
- If M_{B} has $o(I)$ information about K, then M_{B} is nearly the same, on average, for pairs $J \leq n / 2, \quad L>n / 2$. Switching Bob's index from J to L does not perturb M_{B} much.

Intuition continued...

Finally...

Alice's input

Bob's input

Protocol transcript
M
0 -input

M" I-input

We have $M \approx M^{\prime}$ and $M \approx M^{\prime \prime}$. Therefore, $M^{\prime} \approx M^{\prime \prime}$ (triangle inequality)

Cut and paste lemma [BJKS'04]

In any (private coin) randomized protocol, the Hellinger distance between message transcripts on inputs (u, v) and (u^{\prime}, v^{\prime}) is the same as that between (u^{\prime}, v) and (u, v^{\prime})

Therefore, $M \approx M^{\prime \prime \prime}$ and the (low-information) protocol errs.

Quantum case

(2 messages, both superpositions)

$$
x=x_{1} x_{2} \ldots x_{n}
$$

$k, x[l, k-I], b$

Uniformly random X, K, let $B=X_{K} \quad$ (0 -input)

- Assume no party retains private qubits
- K in [n/2], $L>n / 2$
- first message has $o(n)$ information about X (given prefix), second message has little information about K (given X)

In this case, can use (quantum) mutual information, and Average Encoding Theorem [KNTZ'07, JRS'03]

Quantum case continued...

Alice's input

$X[I, K]$

same L-th bit

$X[1, L]$
$|\psi "\rangle \approx|\psi\rangle$

Final protocol state
$|\psi\rangle \quad 0$-input
$\left|\psi^{\prime}\right\rangle \approx|\psi\rangle$
same index

\square
switch index

Finally...

Alice's input

Bob's input Protocol state

$$
X[1, K]
$$

$$
|\psi\rangle
$$

$$
\begin{gathered}
\uparrow \\
, ~ ᄂ]
\end{gathered}
$$

switch index
$X[1, L]$

$$
|\phi\rangle \approx|\psi\rangle ?
$$

$$
|\psi\rangle=v_{k} U_{x}|0\rangle, \quad\left|\psi^{\prime}\right\rangle=v_{k} U_{x}|0\rangle, \quad\left|\psi^{\prime \prime}\right\rangle=v_{L} U_{x}|0\rangle
$$

$$
|\phi\rangle=V_{L} U_{X}|0\rangle
$$

$$
|\varphi-\psi| \leq\left|\psi-\psi^{\prime \prime}\right|+\left|\varphi-\psi^{\prime \prime}\right|
$$

$$
\left.\leq \delta+\left|v_{L} U_{x}\right| 0\right\rangle-v_{L} U_{x}|0\rangle \mid
$$

$$
\left.=\delta+\left|v_{k} U_{x}\right| 0\right\rangle-v_{k} U_{x}|0\rangle \mid
$$

$$
=\delta+\left|\psi-\psi^{\prime}\right| \leq 2 \delta
$$

Details omitted

- Alice and Bob may maintain private workspace, communicate over more rounds
- Need to use QIC to quantify information, work with superpositions over inputs
- Use "superposed average encoding theorem", building on a 2015 breakthrough by Fawzi-Renner
- Perturbation of message due to switching of input depends on the number of rounds
- Hybrid argument conducted round by round à la [JRS'03]
- Leads to round-dependant trade-off
- Trade-off can be strengthened using ideas from [Lauriere and Touchette' I6], can then work with Average Encoding Theorem

Final remarks

- Established a trade-off for quantum information cost for Augmented Index
- Round dependence probably an artefact of the proof; eliminating this is related to question about Disjointness
- Implies a space lower bound for streaming algorithms for Dyck(2): matches classical case, up to round-dependence
- Tools may be useful more generally in quantum communication complexity

