Streaming Lower Bounds for Approximating MAX-CUT

Michael Kapralov ${ }^{1}$

${ }^{1}$ EPFL

(Based on joint works with Sanjeev Khanna, Madhu Sudan and Ameya Velingker)

Graphs a common abstraction for representing real world data:

- social networks (Facebook, Twitter)
- web topologies
- interaction graphs
- ...

Modern graphs are often too large to fit into memory of a compute node

Need graph analysis primitives that use very little space

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- edges of $G=(V, E)$ arrive in an arbitrary order in a stream; denote $|V|=n,|E|=m$
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream (ideally one pass)

$\Omega(n)$ space is often needed:
- output size often $\Omega(n)$ (e.g., matching, sparsifier, spanner)
- even if output is a number (e.g. testing connectivity)
$\Omega(n)$ space is often needed:
- output size often $\Omega(n)$ (e.g., matching, sparsifier, spanner)
- even if output is a number (e.g. testing connectivity)

But not always:
Kapralov-Khanna-Sudan'14 - can approximate matching size to poly $(\log n)$ factor using poly $(\log n)$ space in random streams.

Also, Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak'15,
Bury-Schwiegelsohn'15, McGregor-Vorotnikova'16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan'16,...
Approximate solution cost for graph problems
in $o(n)$ space?

MAX-CUT

Given a graph output value of maximum cut

- A random cut cuts half of the edges - trivial factor 2 approximation
- 1.318-approximation due to Goemans-Williamson'95 (best possible assuming UGC)
- 1.884 via spectral techniques Trevisan'09, Kale-Seshadhri'11

Streaming algorithms:

- factor 2 approximation: count the number of edges m and output $m / 2$. Only $O(\log n)$ space.
- (1+ ε)-approximation using $O\left(n / \varepsilon^{2}\right)$ space (keep a sample of the edge set)

Streaming algorithms:

- factor 2 approximation: count the number of edges m and output $m / 2$. Only $O(\log n)$ space.
- (1+ ε)-approximation using $O\left(n / \varepsilon^{2}\right)$ space (keep a sample of the edge set)

Better than factor 2 approximation in polylog (n) space?

Theorem (K.-Khanna-Sudan'15)
For any constant $\varepsilon>0$ a single pass streaming algorithm for approximating MAX-CUT value to factor $2-\varepsilon$ requires $\Omega(\sqrt{n})$ space, even in the random order model.

Theorem (K.-Khanna-Sudan'15)
For any constant $\varepsilon>0$ a single pass streaming algorithm for approximating MAX-CUT value to factor $2-\varepsilon$ requires $\Omega(\sqrt{n})$ space, even in the random order model.

Rules out poly $(\log n)$ space, suggests $\tilde{O}(\sqrt{n})$ space may be possible in some settings...

1. Hard input distribution
2. Boolean Hidden Partition Problem (BHP)
3. Analysis of BHP
4. Hard input distribution
5. Boolean Hidden Partition Problem (BHP)
6. Analysis of BHP

Hard distribution

We establish the main theorem using a hard distribution based on Erdős-Rényi graphs:

YES: random bipartite (multi)graph with expected degree $\approx \frac{1}{\varepsilon^{2}}$
NO: non-bipartite (multi)graph with expected degree $\approx \frac{1}{\varepsilon^{2}}$

Hard distribution

We establish the main theorem using a hard distribution based on Erdős-Rényi graphs:

YES: random bipartite (multi)graph with expected degree $\approx \frac{1}{\varepsilon^{2}}$
NO: non-bipartite (multi)graph with expected degree $\approx \frac{1}{\varepsilon^{2}}$

In the YES case MAX-CUT value is m, in the NO case MAX-CUT value is $(1+O(\varepsilon)) m / 2$.

Hard distribution

We establish the main theorem using a hard distribution based on Erdős-Rényi graphs:

YES: random bipartite (multi)graph with expected degree $\approx \frac{1}{\varepsilon^{2}}$
NO: non-bipartite (multi)graph with expected degree $\approx \frac{1}{\varepsilon^{2}}$

In the YES case MAX-CUT value is m, in the NO case MAX-CUT value is $(1+O(\varepsilon)) m / 2$.

Sufficient to show $\Omega(\sqrt{n})$ space required to distinguish between the two cases.

Erdős-Rényi graphs

$$
\text { Sample } G=(V, E) \text { from distribution } \mathscr{G}_{n, p}
$$

include each edge $(u, v) \in\binom{V}{2}$ independently with probability p

Erdős-Rényi graphs

$$
\text { Sample } G=(V, E) \text { from distribution } \mathscr{G}_{n, p}
$$

include each edge $(u, v) \in\binom{V}{2}$ independently with probability p

If $p=\alpha / n$ for $\alpha<1$, then G is a union of $O(\log n)$ size trees, with probability $1-O\left(\alpha^{3}\right)$.

Erdős-Rényi graphs

$$
\text { Sample } G=(V, E) \text { from distribution } \mathscr{G}_{n, p}
$$

include each edge $(u, v) \in\binom{V}{2}$ independently with probability p

If $p=\alpha / n$ for $\alpha<1$, then G is a union of $O(\log n)$ size trees, with probability $1-O\left(\alpha^{3}\right)$.

Hard input distribution

Partition the stream into $k \approx 1 / \varepsilon^{2}$ phases:

NO

Hard input distribution

Partition the stream into $k \approx 1 / \varepsilon^{2}$ phases:

NO

Hard input distribution

Partition the stream into $k \approx 1 / \varepsilon^{2}$ phases:

NO

Hard input distribution

Partition the stream into $k \approx 1 / \varepsilon^{2}$ phases:

Hard input distribution

Partition the stream into $k \approx 1 / \varepsilon^{2}$ phases:

Hard input distribution

Partition the stream into $k \approx 1 / \varepsilon^{2}$ phases:

Hard input distribution

Partition the stream into $k \approx 1 / \varepsilon^{2}$ phases:

MAX-CUT value is m in YES case and $\leq(1+\varepsilon) m / 2$ in NO case.

We have $S_{0}^{N}=S_{0}^{Y}=0$ and $\left\|S_{k}^{Y}-S_{k}^{N}\right\|_{T V}=\Omega(1)$.

$$
S_{0}^{N}=0
$$

S_{1}^{N}
S_{2}^{N}
S_{k}^{N}
We have $S_{0}^{N}=S_{0}^{Y}=0$ and $\left\|S_{k}^{Y}-S_{k}^{N}\right\|_{T V}=\Omega(1)$.
So there must exist j^{*} (informative index) such that

$$
\left\|S_{j^{*}+1}^{Y}-S_{j^{*}+1}^{N}\right\| T V \geq\left\|S_{j^{*}}^{Y}-S_{j}^{N}\right\|_{T V}+\Omega(1 / k)
$$

We have $S_{0}^{N}=S_{0}^{Y}=0$ and $\left\|S_{k}^{Y}-S_{k}^{N}\right\|_{T V}=\Omega(1)$.
So there must exist j^{*} (informative index) such that

$$
\left\|S_{j^{*}+1}^{Y}-S_{j^{*}+1}^{N}\right\|_{T V} \geq\left\|S_{j^{*}}^{Y}-S_{j^{*}}^{N}\right\|_{T V}+\Omega(1 / k)
$$

NO
$\underset{\text { holds bipartition }}{\text { Alice }} X \in\{0,1\}^{n}$

We have $S_{0}^{N}=S_{0}^{Y}=0$ and $\left\|S_{k}^{Y}-S_{k}^{N}\right\|_{T V}=\Omega(1)$.
So there must exist j^{*} (informative index) such that

$$
\left\|S_{j^{*}+1}^{Y}-S_{j^{*}+1}^{N}\right\|_{T V} \geq\left\|S_{j^{*}}^{Y}-S_{j^{*}}^{N}\right\|_{T V}+\Omega(1 / k)
$$

NO

Alice
holds bipartition $X \in\{0,1\}^{n}$

Bob
holds graph G

YES case: Bob's graph consistent with Alice's bipartition NO case: Bob's graph inconsistent with Alice's bipartition

1. Hard input distribution
2. Boolean Hidden Partition Problem (BHP)
3. Analysis of BHP
4. Hard input distribution
5. Boolean Hidden Partition Problem (BHP)
6. Analysis of BHP

Boolean hidden partition problem (BHP)

Alice
binary string $x \in\{0,1\}^{n}$

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

Alice
binary string $x \in\{0,1\}^{n}$

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

binary string $x \in\{0,1\}^{n}$

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

$$
\begin{array}{cl}
\text { Alice } \xrightarrow{\text { message } m} & \text { Bob } \\
\text { binary string } x \in\{0,1\}^{n} & \operatorname{graph} G=(V, E), V=[n]
\end{array}
$$

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

Alice \longrightarrow message m Bob

binary string $x \in\{0,1\}^{n} \quad$ graph $G=(V, E), V=[n]$ labels w_{e} on edges

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

Alice \longrightarrow message $m \quad$ Bob

binary string $x \in\{0,1\}^{n} \quad$ graph $G=(V, E), V=[n]$ labels w_{e} on edges

YES: labels consistent with partition $x: w_{u v}=x_{U}+x_{V}$, i.e. $w=M x$

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

Alice \longrightarrow message $m \quad$ Bob

binary string $x \in\{0,1\}^{n} \quad$ graph $G=(V, E), V=[n]$ labels w_{e} on edges

YES: labels consistent with partition $x: w_{u v}=x_{U}+x_{V}$, i.e. $w=M x$

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

Alice	
binary string $x \in\{0,1\}^{n}$	message m
graph $G=(V, E), V=[n]$	
labels w_{e} on edges	

YES: labels consistent with partition $x: w_{u v}=x_{U}+x_{V}$, i.e. $w=M x$
NO: labels are uniformly random
Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Boolean hidden partition problem (BHP)

Alice	
binary string $x \in\{0,1\}^{n}$	message m
graph $G=(V, E), V=[n]$	
labels w_{e} on edges	

YES: labels consistent with partition $x: w_{u v}=x_{U}+x_{V}$, i.e. $w=M x$
NO: labels are uniformly random
Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

Distributional BHP (D-BHP)

Alice gets a uniformly random string $x \in\{0,1\}^{n}$
Bob gets graph G sampled from distribution $\mathscr{G}_{n, p}$ with $p=\alpha / n$, $\alpha \in(0,1)$ a small constant

YES case independently with probability $1 / 2$, NO case otherwise.

Distributional BHP (D-BHP)

Alice gets a uniformly random string $x \in\{0,1\}^{n}$
Bob gets graph G sampled from distribution $\mathscr{G}_{n, p}$ with $p=\alpha / n$, $\alpha \in(0,1)$ a small constant

YES case independently with probability $1 / 2$, NO case otherwise.
\sqrt{n} communication protocol by birthday paradox: Alice sends x_{i} for $\approx \sqrt{n}$ values of i !

Reduction from D-BHP to MAX-CUT

Lemma
A single-pass streaming algorithm ALG that achieves
($2-\varepsilon$)-approximation to MAX-CUT with probability $\geq 99 / 100$ for our input distribution yields a protocol for D-BHP with advantage $\Omega(1 / k)$ over random guessing.

YES A! il il
 S_{1}^{Y}

holds bipartition $X \in\{0,1\}^{n}$

Alice simulates $S_{j^{*}}^{Y}$ using bipartition X
Bob forms G^{\prime} by including edges of G with $w_{e}=1$

Communication complexity of D-BHP

Theorem
Let $G=(V, E)$ be sampled from $\mathscr{G}_{n, \alpha / n}$ for $\alpha \in\left(n^{-1 / 10}, 1 / 16\right)$.
Then a one-way protocol with communication
$\gamma \sqrt{n}, \gamma \in\left(n^{-1 / 10}, 1\right)$ achieves at most $O\left(\gamma+\alpha^{3 / 2}\right)$ advantage over random guessing for $D-B H P$.

1. Hard input distribution
2. Boolean Hidden Partition Problem (BHP)
3. Analysis of BHP
4. Hard input distribution
5. Boolean Hidden Partition Problem (BHP)
6. Analysis of BHP

Show that distribution of $M X$ in the YES case is close to uniform

Show that distribution of $M X$ in the YES case is close to uniform

Conditioned on Alice's message, is distribution of $M X$ close to uniform?

Show that distribution of $M X$ in the YES case is close to uniform
Conditioned on Alice's message, is distribution of $M X$ close to uniform?
$X \sim \operatorname{UNIF}(A)$ conditioned on m

$|A| \approx 2^{n-s}$
$f(x):=$ indicator of A

Goal: show that

$$
p_{M}(z)=\operatorname{Pr}[M x=z \mid x \in A]
$$

is close to uniform

Goal: show that

$$
p_{M}(z)=\operatorname{Pr}[M x=z \mid x \in A]
$$

is close to uniform

Write $p_{M}(\cdot)$ in Fourier basis:

$$
p_{M}(z)=\sum_{s \in\{0,1\}^{E}} \widehat{p}_{M}(s)(-1)^{s \cdot z}
$$

Show that most Fourier mass is in the constant term, i.e. bound

$$
\sum_{s \neq \varnothing} \hat{p}_{M}(s)^{2}
$$

Gavinsky et al'07:

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\}^{M} \backslash\{0\}} \widehat{f}\left(M^{T} s\right)^{2}
$$

Gavinsky et al'07:

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\}^{M} \backslash\{0\}} \widehat{f}\left(M^{T} s\right)^{2}
$$

Given $v \in\{0,1\}^{n}$, when do we have $M^{T} s=v$ for some $s \in\{0,1\}^{M}$?

Gavinsky et al'07:

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\}^{M} \backslash\{0\}} \widehat{f}\left(M^{T} s\right)^{2}
$$

Given $v \in\{0,1\}^{n}$, when do we have $M^{T} s=v$ for some $s \in\{0,1\}^{M}$?

Gavinsky et al'07:

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\}^{M} \backslash\{0\}} \widehat{f}\left(M^{T} s\right)^{2}
$$

Given $v \in\{0,1\}^{n}$, when do we have $M^{T} s=v$ for some $s \in\{0,1\}^{M}$?

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\}^{M} \backslash\{0\}} \widehat{f}\left(M^{T} s\right)^{2}
$$

Each element of weight k appears with probability $\approx n^{-k / 2}$.

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\}^{M} \backslash\{0\}} \widehat{f}\left(M^{T} s\right)^{2}
$$

Each element of weight k appears with probability $\approx n^{-k / 2}$.

Lemma (Gavinsky et al'07; from KKL) If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is the indicator function of a set $A \subset\{0,1\}^{n}$, $|A| \geq 2^{n-s}$, then for every $k \geq 1$,

$$
\frac{2^{2 n}}{|A|^{2}} \sum_{z \in\{0,1\}^{n},|z|=2 k} \widehat{f}(z)^{2} \leq(O(s) / k)^{2 k}
$$

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\}^{M} \backslash\{0\}} \widehat{f}\left(M^{T} s\right)^{2}
$$

Each element of weight k appears with probability $\approx n^{-k / 2}$.

Lemma (Gavinsky et al'07; from KKL)
If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is the indicator function of a set $A \subset\{0,1\}^{n}$, $|A| \geq 2^{n-s}$, then for every $k \geq 1$,

$$
\frac{2^{2 n}}{|A|^{2}} \sum_{z \in\{0,1\}^{n},|z|=2 k} \widehat{f}(z)^{2} \leq(O(s) / k)^{2 k}
$$

Plugging in $k=1$, we get $\approx s^{2} / n$, so $s \ll \sqrt{n}$ suffices

$$
\left\|p_{M}-U N I F\right\|_{T V D} \leq \frac{2^{2 n}}{|A|^{2}} \sum_{s \in\{0,1\} M \backslash\{0\}} \hat{f}\left(M^{T} s\right)^{2}
$$

Each element of weight k appears with probability $\approx n^{-k / 2}$.

Lemma (Gavinsky et al'07; from KKL)
If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is the indicator function of a set $A \subset\{0,1\}^{n}$, $|A| \geq 2^{n-s}$, then for every $k \geq 1$,

$$
\frac{2^{2 n}}{|A|^{2}} \sum_{z \in\{0,1\}^{n},|z|=2 k} \widehat{f}(z)^{2} \leq(O(s) / k)^{2 k}
$$

Plugging in $k=1$, we get $\approx s^{2} / n$, so $s \ll \sqrt{n}$ suffices
Fourier mass bounds fairly tight for a coordinate subspace...

($1+\Omega(1)$)-Approximation to MAX-CUT Requires Linear Space

Main result

Theorem (K.-Khanna-Sudan-Velingker'17)
There exists a constant $\varepsilon_{*}>0$ such that a single pass streaming algorithm for approximating MAX-CUT value to factor $1+\varepsilon_{*}$ requires $\Omega(n)$ space.

Q1: A poly $(\log n)$ space approximation scheme?

Q1: A poly $(\log n)$ space approximation scheme?

NO:
Better than factor 2 requires $\Omega(\sqrt{n})$ space K-Khanna-Sudan'14
$(1+\varepsilon)$-approximation requires $n^{1-O(\varepsilon)}$ space K-Khanna-Sudan'14, Kogan-Krauthgamer'14

Q1: A poly $(\log n)$ space approximation scheme?

NO:
Better than factor 2 requires $\Omega(\sqrt{n})$ space K-Khanna-Sudan'14
$(1+\varepsilon)$-approximation requires $n^{1-O(\varepsilon)}$ space K-Khanna-Sudan'14, Kogan-Krauthgamer'14

Q2: For every $1<\alpha<2$ there exists $0 \leq \beta<1$ such that α-approximation can be achieved in n^{β} space?

Q1: A poly $(\log n)$ space approximation scheme?

NO:
Better than factor 2 requires $\Omega(\sqrt{n})$ space K-Khanna-Sudan'14
$(1+\varepsilon)$-approximation requires $n^{1-O(\varepsilon)}$ space K-Khanna-Sudan'14, Kogan-Krauthgamer'14

Q2: For every $1<\alpha<2$ there exists $0 \leq \beta<1$ such that α-approximation can be achieved in n^{β} space?
this result: NO

Q1: A poly $(\log n)$ space approximation scheme?
NO:
Better than factor 2 requires $\Omega(\sqrt{n})$ space K-Khanna-Sudan'14
$(1+\varepsilon)$-approximation requires $n^{1-O(\varepsilon)}$ space K-Khanna-Sudan'14, Kogan-Krauthgamer'14

Q2: For every $1<\alpha<2$ there exists $0 \leq \beta<1$ such that α-approximation can be achieved in n^{β} space?
this result: NO

Q3: There exist $1<\alpha_{*}<2$ and $0 \leq \beta_{*}<1$ such that α_{*}-approximation can be achieved in $n^{\beta_{*}}$ space?

Q1: A poly $(\log n)$ space approximation scheme?

NO:

Better than factor 2 requires $\Omega(\sqrt{n})$ space K-Khanna-Sudan'14
$(1+\varepsilon)$-approximation requires $n^{1-O(\varepsilon)}$ space K-Khanna-Sudan'14, Kogan-Krauthgamer'14

Q2: For every $1<\alpha<2$ there exists $0 \leq \beta<1$ such that α-approximation can be achieved in n^{β} space?
this result: NO

Q3: There exist $1<\alpha_{*}<2$ and $0 \leq \beta_{*}<1$ such that α_{*}-approximation can be achieved in $n^{\beta_{*}}$ space?

Hard distribution on MAX-CUT instances

YES: random bipartite graph with \approx constant degrees
NO: non-bipartite graph with \approx constant degrees

Hard distribution on MAX-CUT instances

YES: random bipartite graph with \approx constant degrees
NO: non-bipartite graph with \approx constant degrees

1. ensure MAX-CUT value gap between NO case and YES case
2. show $\Omega(n)$ space required to distinguish between the two cases
3. Implicit hidden partition problem
4. Reduction from MAX-CUT
5. Communication problem analysis via Fourier techniques
6. Implicit hidden partition problem
7. Reduction from MAX-CUT
8. Communication problem analysis via Fourier techniques

Implicit Hidden Partition Problem

Player 1
graph G_{1}, labels
w^{1} on edges

Implicit Hidden Partition Problem

Implicit Hidden Partition Problem

$$
\text { Player } 1 \longrightarrow m_{1}
$$

graph G_{1}, labels
w^{1} on edges

Player T
graph G_{T}, labels
w^{T} on edges

Implicit Hidden Partition Problem

$$
\text { Player } 1 \longrightarrow m_{1}
$$

graph G_{1}, labels
w^{1} on edges

Player $T \longrightarrow m_{T}$
graph G_{T}, labels
w^{T} on edges

Implicit Hidden Partition Problem

Player $1 \longrightarrow m_{1}$
graph G_{1}, labels
w^{1} on edges

Player $T \longrightarrow m_{T}$
graph G_{T}, labels
w^{\top} on edges

YES case: \exists partition $x \in\{0,1\}^{n}$ such that $w^{t}=M^{t} x$ for $1 \leq t \leq T$

Implicit Hidden Partition Problem

Player $1 \longrightarrow m_{1}$
graph G_{1}, labels
w^{1} on edges

Player $T \longrightarrow m_{T}$
graph G_{T}, labels
w^{T} on edges

YES case: \exists partition $x \in\{0,1\}^{n}$ such that $w^{t}=M^{t} x$ for $1 \leq t \leq T$

Implicit Hidden Partition Problem

Player $1 \longrightarrow m_{1}$
graph G_{1}, labels
w^{1} on edges

Player $T \longrightarrow m_{T}$
graph G_{T}, labels
w^{T} on edges

YES case: \exists partition $x \in\{0,1\}^{n}$ such that $w^{t}=M^{t} x$ for $1 \leq t \leq T$

Implicit Hidden Partition Problem

Player $1 \longrightarrow m_{1}$
graph G_{1}, labels
w^{1} on edges

$$
\begin{aligned}
& \text { Player } T \longrightarrow m_{T} \\
& \text { graph } G_{T} \text {, labels } \\
& w^{T} \text { on edges }
\end{aligned}
$$

YES case: \exists partition $x \in\{0,1\}^{n}$ such that $w^{t}=M^{t} x$ for $1 \leq t \leq T$ NO case: no such partition exists

Distributional communication problem

Choose a hidden partition $X \in \operatorname{UNIF}\left(\{0,1\}^{n}\right)$

Distributional communication problem

Choose a hidden partition $X \in \operatorname{UNIF}\left(\{0,1\}^{n}\right)$

> Player $1 \longrightarrow m_{1}$ graph G_{1}, labels w^{1} on edges

Player T

graph G_{T}, labels
w^{T} on edges

Distributional communication problem

Choose a hidden partition $X \in \operatorname{UNIF}\left(\{0,1\}^{n}\right)$

YES case: labels satisfy $w^{t}=M^{t} X$ for $1 \leq t \leq T$
NO case: labels are random: $w^{t} \sim$ UNIF

Distribution on players' graphs

G_{1} a perfect matching

Distribution on players' graphs

G_{1} a perfect matching, G_{2} a (random) near perfect matching

Distribution on players' graphs

G_{1} a perfect matching, G_{2} a (random) near perfect matching

Distribution on players' graphs

G_{1} a perfect matching, G_{2} a (random) near perfect matching, G_{3} an Erdős-Rényi graph

1. Implicit hidden partition problem
2. Reduction from MAX-CUT
3. Communication problem analysis via Fourier techniques
4. Implicit hidden partition problem
5. Reduction from MAX-CUT
6. Communication problem analysis via Fourier techniques

Reduction from MAX-CUT

YES: random bipartite graph with \approx constant degrees
NO: non-bipartite graph with \approx constant degrees

Reduction from MAX-CUT

YES: random bipartite graph with \approx constant degrees
NO: non-bipartite graph with \approx constant degrees

> Player $t \quad \longrightarrow m_{t}$ graph G_{t}, labels w^{t} on edges
t-th player generates graph G_{t}^{\prime} by including edges $e \in G_{t}$ with

$$
w_{e}^{t^{t}}=1
$$

Reduction from MAX-CUT

YES: random bipartite graph with \approx constant degrees
NO: non-bipartite graph with \approx constant degrees

$$
\begin{aligned}
& \text { Player } t \longrightarrow m_{t} \longrightarrow \\
& \text { graph } G_{t}, \text { labels } \\
& w^{t} \text { on edges }
\end{aligned}
$$

t-th player generates graph G_{t}^{\prime} by including edges $e \in G_{t}$ with

$$
w_{e}^{t^{t}}=1
$$

YES case: labels satisfy $w^{t}=M^{t} X$ for $1 \leq t \leq T$
$\cup_{t} G_{t}^{\prime}$ is bipartite

Reduction from MAX-CUT

YES: random bipartite graph with \approx constant degrees
NO: non-bipartite graph with \approx constant degrees

$$
\begin{aligned}
& \text { Player } t \longrightarrow m_{t} \\
& \text { graph } G_{t}, \text { labels } \\
& w^{t} \text { on edges }
\end{aligned}
$$

t-th player generates graph G_{t}^{\prime} by including edges $e \in G_{t}$ with

$$
w_{e}^{t}=1
$$

YES case: labels satisfy $w^{t}=M^{t} X$ for $1 \leq t \leq T$ $\cup_{t} G_{t}^{\prime}$ is bipartite
NO case: labels are random: $w^{t} \sim U N I F$ $U_{t} G_{t}^{\prime}$ is a sample of $U_{t} G_{t}$ at rate $1 / 2$

Distributional Implicit Hidden Partition Problem (DIHP): G_{1} a perfect matching, G_{2} a (random) near perfect matching, G_{3} an Erdős-Rényi graph close to the giant component threshold

Theorem
If $G_{i}(1 / 2), i=1,2,3$ is G_{i} subsampled at rate $1 / 2$, then
$G_{1}(1 / 2) \cup G_{2}(1 / 2) \cup G_{3}(1 / 2)$ is $\Omega(1)$-far from bipartite with high probability.

1. Implicit hidden partition problem
2. Reduction from MAX-CUT
3. Communication problem analysis via Fourier techniques
4. Implicit hidden partition problem
5. Reduction from MAX-CUT
6. Communication problem analysis via Fourier techniques

> Player $1 \longrightarrow m_{1}$ graph G_{1}, labels $w^{1}=M^{1} X$ on edges

Player $3 \longrightarrow m_{3}$ graph G_{3}, labels
$w^{3}=M^{3} X$ on edges
player 0 dominates communication!

K.-Khanna-Sudan'15

> Player $1 \longrightarrow m_{1}$ graph G_{1}, labels $w^{1}=M^{1} X$ on edges

Player $3 \longrightarrow m_{3}$ graph G_{3}, labels
$w^{3}=M^{3} X$ on edges

Our approach: Implicit Hidden Partition Problem

player 0 dominates communication!
K.-Khanna-Sudan’15

Player 0

$$
\text { Player } 1 \longrightarrow m_{1}
$$

$$
\text { graph } G_{1} \text {, labels }
$$

$$
w^{1}=M^{1} X \text { on edges }
$$

Player 3
 graph G_{3}, labels $w^{3}=M^{3} X$ on edges

Our approach: Implicit Hidden Partition Problem

> Player $1 \longrightarrow m_{1}$ graph G_{1}, labels
> $w^{1}=M^{1} X$ on edges

Player $3 \longrightarrow m_{3}$ graph G_{3}, labels
$w^{3}=M^{3} X$ on edges

Our approach: Implicit Hidden Partition Problem

information about X revealed implicitly!

> Player $1 \longrightarrow m_{1}$ graph G_{1}, labels
> $w^{1}=M^{1} X$ on edges

Player $3 \longrightarrow m_{3}$ graph G_{3}, labels
$w^{3}=M^{3} X$ on edges

Communication complexity of D-IHP

Theorem
Any one-way protocol with communication o(n) achieves at most o(1) advantage over random guessing for D-IHP.

Fourier analysis (convolution theorem) and graph theoretic considerations.

Conditioned on messages of player 1 and player 2, is distribution of $M_{3} X$ close to uniform?

Conditioned on messages of player 1 and player 2, is distribution of $M_{3} X$ close to uniform?

$\left|A_{1}\right| \approx 2^{n-s},\left|A_{2}\right| \approx 2^{n-s}$
$f_{1}(x)$:=indicator of A_{1}
$f_{2}(x)$:=indicator of A_{2}

The indicator of $A_{1} \cap A_{2}$ is $f_{1} \cdot f_{2}$.

Conditioned on messages of player 1 and player 2, is distribution of $M_{3} X$ close to uniform?

The indicator of $A_{1} \cap A_{2}$ is $f_{1} \cdot f_{2}$. Will prove that for $k \geq 1$

$$
\frac{2^{2 n}}{\left|A_{1} \cap A_{2}\right|^{2}} \sum_{\substack{v \in\{0,1\}^{n} \\|v|=2 k}} \widehat{f_{1} \cdot f_{2}}(v)^{2} \leq(O(s) / k)^{\mathbf{k}}
$$

Players only access X via $M_{i} X$, so \widehat{f}_{i} is supported on edges and has strong spectral properties:

$$
2^{2 s} \sum_{|v|=2 k} \widehat{f}_{i}(v)^{2} \leq(O(s) / k)^{k}
$$

$\left|A_{1}\right| \approx 2^{n-s},\left|A_{2}\right| \approx 2^{n-s}$
$f_{1}(x)$:=indicator of A_{1} $f_{2}(x)$:=indicator of A_{2}

Players only access X via $M_{i} X$, so \widehat{f}_{i} is supported on edges and has strong spectral properties:

$$
2^{2 s} \sum_{|v|=2 k} \widehat{f}_{i}(v)^{2} \leq(O(s) / k)^{k}
$$

Intuition: with s space can only learn about $\approx s$ pairs
Prior work, with player 0 : with s space can only learn about $\approx s^{2}$ pairs

$\left|A_{1}\right| \approx 2^{n-s},\left|A_{2}\right| \approx 2^{n-s}$

$$
\begin{aligned}
& f_{1}(x):=\text { indicator of } A_{1} \\
& f_{2}(x):=\text { indicator of } A_{2}
\end{aligned}
$$

Players only access X via $M_{i} X$, so \widehat{f}_{i} is supported on edges and has strong spectral properties:

$$
2^{2 s} \sum_{|v|=2 k} \widehat{f}_{i}(v)^{2} \leq(O(s) / k)^{k}
$$

The indicator of $A_{1} \cap A_{2}$ is $f_{1} \cdot f_{2}$, so by the convolution theorem

$$
\widehat{f_{1} \cdot f_{2}}=\widehat{f_{1}} * \widehat{f_{2}}
$$

Hidden partition $X \in\{0,1\}^{n}$

Intuition: $\widehat{f}_{1}(a, b, c, d)^{2} \approx$ how much information player 1 transmits about parity $X_{a}+X_{b}+X_{c}+X_{d}$

$$
\widehat{f}_{2}(b, c)^{2} \approx \text { how much information player } 2 \text { transmits }
$$ about parity $X_{b}+X_{c}$

$$
\widehat{f_{1} \cdot f_{2}}(a, d)^{2}=\widehat{f_{1}}(a, b, c, d)^{2} \cdot \widehat{f_{2}}(b, c)^{2} \approx \text { how much }
$$

information players 1 and 2 transmit about parity $X_{a}+X_{d}$

For any $\ell \geq 0$,

$$
\sum_{\substack{v \in\{0,1\}^{n},|V|=2 \ell}} \widehat{f_{1} \cdot f_{2}}(v)^{2}=\sum_{k \geq 0} \sum_{\underbrace{}_{\text {large for } k>\{0,1\}^{n},|w|=2 k} \widehat{f}_{1}(w)^{2}} \cdot \underbrace{\left(\sum_{v \in\{0,1\}^{n},|v|=2 \ell} \widehat{f}_{2}(w+v)^{2}\right)}_{\text {small for } k \gg l ?}
$$

For any $\ell \geq 0$,

$$
\sum_{\substack{v \in\{0,1\}^{n},|v|=2 \ell}} \widehat{f_{1} \cdot f_{2}}(v)^{2}=\sum_{k \geq 0} \sum_{\underbrace{}_{\text {large for } k>0,1\}^{n},|w|=2 k} \widehat{f}_{1}(w)^{2}} \cdot \underbrace{\left(\sum_{v \in\{0,1\}^{n},|v|=2 \ell} \hat{f}_{2}(w+v)^{2}\right)}_{\text {small for } k \gg l ?}
$$

Show that the last term decays for $k>l$?

For any $\ell \geq 0$,
$\sum_{\substack{v \in\{0,1\}^{n},|v|=2 \ell}} \widehat{f_{1} \cdot f_{2}}(v)^{2}=\sum_{k \geq 0} \underbrace{}_{\text {large for } k \gg \ell!} \hat{f}_{1}(w)^{2}) \cdot \underbrace{\left(\sum_{v \in\{0,1\}^{n},|w|=2 k} \widehat{f}_{2}(w+v)^{2}\right)}_{\text {small for } k \gg \mid \text { ? ? }}$
Show that the last term decays for $k>l$?

Hidden partition
$X \in\{0,1\}^{n}$

$$
\begin{gathered}
w=\{a, b, c, d\},|w|=4 \\
v=\{a, d\},|v|=2
\end{gathered}
$$

Hidden partition $X \in\{0,1\}^{n}$

Hidden partition

$$
X \in\{0,1\}^{n}
$$

Open problems
Any improvement over factor 2 requires $\Omega(n)$ space?
($2-\varepsilon_{*}$)-approximation in $n^{1-\delta}$ space?
Analyze $\widehat{f}_{1} * \widehat{f}_{2} * \cdots * \widehat{f}_{T}$ for large T ?

Hidden partition

$$
X \in\{0,1\}^{n}
$$

Open problems
Any improvement over factor 2 requires $\Omega(n)$ space?
($2-\varepsilon_{*}$)-approximation in $n^{1-\delta}$ space?
Analyze $\widehat{f}_{1} * \widehat{f}_{2} * \cdots * \widehat{f}_{T}$ for large T ?
Thank you!

