

Mika Göös Harvard & Simons Institute

Query vs. Communication

Decision trees

Communication protocols

Examples:

- Set-disjointness: $OR \circ AND^n$
- Inner-product: $XOR \circ AND^n$
- Equality: $AND \circ \neg XOR^n$

In general:
$$g: \{0,1\}^m \times \{0,1\}^m \rightarrow \{0,1\}$$
 is a small gadget

- Alice holds $x \in (\{0,1\}^m)^n$
- **Bob** holds $y \in (\{0,1\}^m)^n$

Lifting Theorem Template

$$\mathsf{M}^{\mathsf{cc}}(f \circ g^n) \approx \mathsf{M}^{\mathsf{dt}}(f)$$

Lifting Theorem Template

$$\mathsf{M}^{\mathsf{cc}}(f \circ g^n) \approx \mathsf{M}^{\mathsf{dt}}(f)$$

М	Query	Communication	
Р	deterministic	deterministic	[RM99, GPW15, dRNV16, HHL16, WYY17, CKLM17]
NP	nondeterministic poly degree conical junta deg.	nondeterministic	[GLM ⁺ 15, G15]
many		rank	[SZ09, She11, RS10, RPRC16]
many		nonnegative rank	[GLM ⁺ 15, KMR17]
	Sherali–Adams	LP complexity	[CLRS16, KMR17]
	sum-of-squares	SDP complexity	[LRS15]
BPP	randomised	randomised	new, [AGJKM17]
P ^{NP}	decision list	rectangle overlay	new

Lifting Theorem Template

$$\mathsf{M}^{\mathsf{cc}}(f \circ g^n) \approx \mathsf{M}^{\mathsf{dt}}(f)$$

Lifting for BPP

with Toniann Pitassi & Thomas Watson

Lifting theorem for BPP

Index gadget
$$g: [m] \times \{0,1\}^m \rightarrow \{0,1\}$$

$$g(x,y) = y_x$$

 $\mathsf{BPP}^{\mathsf{dt}}(f) = \mathsf{randomised}$ query complexity of f $\mathsf{BPP}^{\mathsf{cc}}(F) = \mathsf{randomised}$ communication complexity of F

Our result

also [AGJKM17]

For $m = n^{100}$ and every function $f: \{0,1\}^n \to \{0,1\}$,

$$\mathsf{BPP}^\mathsf{cc}(f \circ g^n) = \mathsf{BPP}^\mathsf{dt}(f) \cdot \Theta(\log n)$$

New applications

$$\mathsf{BPP}^{\mathsf{dt}}(f) \, \gg \, \mathsf{M}^{\mathsf{dt}}(f)$$

$$\qquad \qquad \mathsf{BPP^{\mathsf{cc}}}(f \circ g^n) \, \gg \, \mathsf{M^{\mathsf{cc}}}(f \circ g^n)$$

$$\mathsf{BPP}^{\mathsf{dt}}(f) \,\gg\, \mathsf{M}^{\mathsf{dt}}(f)$$

$$\qquad \qquad \qquad \qquad \qquad \\ \mathsf{BPP}^{\mathsf{cc}}(f \circ g^n) \,\gg\, \mathsf{M}^{\mathsf{cc}}(f \circ g^n)$$

Classical vs. Quantum

- 2.5-th power total function gap
- *Conjecture*: 2.5 improves to 3
- exponential partial function gap

[ABK16,ABB⁺16] [AA15]

[Raz99,KR11]

BPP vs. Partition numbers

- 1-sided (= Clique vs. Independent Set) [GJPW15]
- 2-sided [AKK16,ABB+16]

Approximate Nash equilibria

[BR17]

$$\mathsf{BPP}^{\mathsf{cc}}(f \circ g^n) \geq \mathsf{BPP}^{\mathsf{dt}}(f) \cdot \Omega(\log n)$$

...how to begin?

What we actually prove

Input domain partitioned into **slices**

$$[m]^n \times (\{0,1\}^m)^n = \bigcup_{z \in \{0,1\}^n} (g^n)^{-1}(z)$$

What we actually prove

Simulation

- \forall deterministic protocol Π
- \exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

What we actually prove

Simulation

- \forall deterministic protocol Π
- \exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $\boxed{1} \approx \boxed{2}$
 - 1 output of randomised decision tree on input z
 - 2 transcript generated by Π on input $(x,y) \sim (g^n)^{-1}(z)$

Main theorem: 1. pick $\Pi \sim \Pi$

- 2. simulate Π via query access to z
- 3. output value of leaf

$$\mathbb{E}_{\substack{(x,y)\sim(g^n)^{-1}(z)}} \ \widetilde{\Pr[\Pi(x,y) \text{ correct}]} \ = \ \mathbb{E}_{\substack{\Pi\sim\Pi \ (\boldsymbol{x},\boldsymbol{y})\sim(g^n)^{-1}(z)}} \Pr[\Pi(\boldsymbol{x},\boldsymbol{y}) \text{ correct}]$$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

- Goal: $1 \approx 2$
 - 1 output of randomised decision tree on input z
 - **2** transcript generated by Π on input $(x, y) \sim (g^n)^{-1}(z)$

Idea:

Pretend marginals are uniform!

Pseudorandomness

Uniform Marginals Lemma:

Suppose
$$X \subseteq [m]^n$$
 is **dense** $Y \subseteq (\{0,1\}^m)^n$ is "large"

Then $\forall z \in \{0,1\}^n$ the uniform distribution on $(g^n)^{-1}(z) \cap X \times Y$ has both marginal distributions close to uniform on X and Y

Dense:
$$\mathbf{H}_{\infty}(\mathbf{X}_I) \geq 0.9 \cdot |I| \log m$$
 for all $I \subseteq [n]$

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and dense on \overline{I}
- 2 Update $X \leftarrow X^i$ with probability $|X^i|/|X|$
- 3 Query $z_I \in \{0,1\}^I$
- 4 Restrict Y so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
- 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is dense)

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and dense on \overline{I}
 - 2 Update $X \leftarrow X^i$ with probability $|X^i|/|X|$
 - 3 Query $z_I \in \{0,1\}^I$
 - 4 Restrict Y so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
 - 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is dense)

When density is lost, restore it!

Density-restoring partition

[GLMWZ15]

While X is nonempty:

1 Let $I \subseteq [n]$ be **maximal** such that for some α

$$\Pr[\mathbf{X}_I = \alpha] > 2^{-0.9|I| \log m}$$

- 2 Output part $X' = \{x \in X : x_I = \alpha\}$
- 3 Update $X \leftarrow X \setminus X'$

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and dense on \overline{I}
 - 2 Update $X \leftarrow X^i$ with probability $|X^i|/|X|$
 - 3 Query $z_I \in \{0,1\}^I$
 - 4 Restrict Y so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
 - 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and dense on \overline{I}
- ▶ 2 Update $X \leftarrow X^i$ with probability $|X^i|/|X|$
 - 3 Query $z_I \in \{0,1\}^I$
 - 4 Restrict Y so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
 - 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and **dense** on \overline{I}
- 2 Update $X \leftarrow X^i$ with probability $|X^i|/|X|$
- 3 Query $z_I \in \{0,1\}^I$
- Restrict Y so that $g^I(X_I, Y_I) = z_I$
 - 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

When **density** is lost, restore it!

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and **dense** on \overline{I}
- 2 Update $X \leftarrow X^i$ with probability $|X^i|/|X|$
- 3 Query $z_I \in \{0,1\}^I$
- 4 Restrict Y so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
- 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

Correctness

- 1 #queries $\leq |\Pi|$ (whp)
- Resulting transcript is close to that generated by random input from $(g^n)^{-1}(z)$

Application (via PNP lifting)

with Pritish Kamath, Toniann Pitassi & Thomas Watson

Monochromatic rectangles

$$mon(F) := \min_{R \text{ mono}} \log \frac{1}{\mu(R)}$$

1	0	0	1	1	1
0	1	0	1	1	1
0	0	1	1	1	1
0	1	1	0	0	0
0	0	1	1	1	1
1	0	1	1	0	1

Monochromatic rectangles

$$mon(F) := \max_{\mu \text{ product}} \min_{R \text{ mono}} \log \frac{1}{\mu(R)}$$

1	0	0	1	1	1
0	1	0	1	1	1
0	0	1	1	1	1
0	1	1	0	0	0
0	0	1	1	1	1
1	0	1	1	0	1

Monochromatic rectangles

$$mon(F) := \max_{\mu \text{ product}} \min_{R \text{ mono}} \log \frac{1}{\mu(R)}$$

Basic questions

- Log-rank conjecture? $\iff \forall F \colon \mathsf{mon}(F) \leq \log^{O(1)} \mathsf{rk}(F)$
- Protocols from mon? $\iff \forall F$: PSPACE^{cc} $(F) \leq \text{mon}(F)^{O(1)}$

Monochromatic rectangles

$$mon(F) := \max_{\mu \text{ product}} \min_{R \text{ mono}} \log \frac{1}{\mu(R)}$$

Basic questions

- Log-rank conjecture? $\iff \forall F : \mathsf{mon}(F) \leq \log^{O(1)} \mathsf{rk}(F)$
- Protocols from mon? $\iff \forall F \colon \mathsf{PSPACE^{cc}}(F) \leq \mathsf{mon}(F)^{O(1)}$

Known

- $\forall F$: non-product-mon $(F) = \mathsf{P^{cc}}(F)^{\Theta(1)}$ [AUY83,KKN95]
- $\blacksquare \ \forall F \colon \ \mathsf{mon}(F) \le \mathsf{P}^{\mathsf{NPcc}}(F)$ [IW10,PSS14]
- $\exists F : \mathsf{P}^{\mathsf{NPcc}}(F) \leq \log n \ll n^{\Omega(1)} \leq \mathsf{PP^{cc}}(F)$ [BVdW07]

Monochromatic rectangles

$$mon(F) := \max_{\mu \text{ product}} \min_{R \text{ mono}} \log \frac{1}{\mu(R)}$$

Lifting application:

$$\exists F: \mod(F) \leq \log^{O(1)} n \ll n^{\Omega(1)} \leq \mathsf{P}^{\mathsf{NP^{cc}}}(F)$$

Known

- $\forall F$: non-product-mon $(F) = \mathsf{P^{cc}}(F)^{\Theta(1)}$ [AUY83,KKN95]
- $\blacksquare \ \forall F \colon \ \mathsf{mon}(F) \le \mathsf{P}^{\mathsf{NPcc}}(F)$ [IW10,PSS14]
- $\exists F: \mathsf{P}^{\mathsf{NPcc}}(F) \leq \log n \ll n^{\Omega(1)} \leq \mathsf{PP^{cc}}(F)$ [BVdW07]

P^{NP} decision trees / protocols

Oracle query cost:

 $NP^{dt} = DNF$ width

vs. $NP^{cc} = \log \# rectangles$

Decision lists: DL^{dt} and DL^{cc}

Equivalent (up to quadratic factors):

[Riv87,PSS14]

$$(x,y) \in R_1? \xrightarrow{1} \mathbf{0}$$

$$(x,y) \in R_2? \xrightarrow{1} \mathbf{1}$$

$$(x,y) \in R_3? \xrightarrow{1} \mathbf{0}$$

$$\downarrow 0$$

$$\uparrow \qquad \downarrow 0$$

$$\uparrow \qquad \downarrow 1$$

Conjunction width

vs.

log #rectangles

Lifting theorems

Lifting for P^{NP}

For poly-size index gadget g and every $f: \{0,1\}^n \to \{0,1\}$,

$$\mathsf{P}^{\mathsf{NPcc}}(f \circ g^n) \geq \sqrt{\mathsf{P}^{\mathsf{NPdt}}(f) \cdot \Omega(\log n)}$$

Lifting for decision lists

For poly-size index gadget g and every $f: \{0,1\}^n \to \{0,1\}$,

$$\mathsf{DL^{cc}}(f \circ g^n) = \mathsf{DL^{dt}}(f) \cdot \Theta(\log n)$$

Construction

Lifting application:

$$\exists F = f \circ g^n \colon \mod(F) \iff \mathsf{P}^{\mathsf{NP}^{\mathsf{cc}}}(F)$$

 \forall · US-complete f

Input:

$$M \in \{0,1\}^{\sqrt{n} \times \sqrt{n}}$$

Output:

yes iff

∀ row has unique 1

 $F \in \forall \cdot \mathsf{US}^{\mathsf{cc}}$

 $F \in \forall \cdot \mathsf{US}^{\mathsf{cc}}$

$mon(F) \le \log^{O(1)} n$

$$F \in \forall \cdot \mathsf{US^{cc}}$$

$$\downarrow \mathsf{[IW10,PSS14]}$$

$$F|_{\mu} \in \forall \cdot \mathsf{UP^{cc}}$$

$mon(F) \le \log^{O(1)} n$

$mon(F) \le \log^{O(1)} n$

Some problems

Problems

- Exhibit F with $mon(F) \ll UPP^{cc}(F)$
- Lifting using **constant-size** gadgets?
- Lifting for BQP?

 $[ABG^+17]$

Challenges

■ Disprove the log-rank conjecture <a> €

■ Explicit lower bounds against PH^{cc}? Or even $SZK^{cc} \subset AM^{cc} \subset \Pi_2P^{cc}$?

[BCHTV16]

Problems

- Exhibit F with mon(F) \ll UPP $^{cc}(F)$
- Lifting using **constant-size** gadgets?
- Lifting for BQP?

[ABG⁺17]

Challenges

Disprove the log-rank conjecture

■ Explicit lower bounds against PH^{cc}? Or even $SZK^{cc} \subset AM^{cc} \subset \Pi_2P^{cc}$?

[BCHTV16]

Cheers!