

Query-to-Communication Lifting

Mika Göös
Harvard \& Simons Institute

Query vs. Communication

Decision trees

$$
F(x, y)
$$

Communication protocols

Composed functions $f \circ g^{n}$

Examples: - Set-disjointness: OR $\circ \mathrm{AND}^{n}$

- Inner-product: XOR $\circ \mathrm{AND}^{n}$
- Equality: AND $\circ \neg \mathrm{XOR}^{n}$

Composed functions $f \circ g^{n}$

In general: $g:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow\{0,1\}$ is a small gadget

- Alice holds $x \in\left(\{0,1\}^{m}\right)^{n}$

■ Bob holds $y \in\left(\{0,1\}^{m}\right)^{n}$

Composed functions $f \circ g^{n}$

Lifting Theorem Template

$$
\mathrm{M}^{\mathrm{cc}}\left(f \circ g^{n}\right) \approx \mathrm{M}^{\mathrm{dt}}(f)
$$

Composed functions $f \circ g^{n}$

Lifting Theorem Template

$$
\mathrm{M}^{\mathrm{cc}}\left(f \circ g^{n}\right) \approx \mathrm{M}^{\mathrm{dt}}(f)
$$

Composed functions $f \circ g^{n}$

M	Query	Communication	
P	deterministic	deterministic	[RM99, GPW15, dRNV16, HHL16, WYY17, CKLM17]
NP many many	nondeterministic poly degree conical junta deg.	nondeterministic rank nonnegative rank	[GLM $\left.{ }^{+} 15, \mathrm{G15}\right]$
			[SZ09, She11, RS10, RPRC16]
			[GLM ${ }^{+} 15, \mathrm{KMR17]}$
	Sherali-Adams sum-of-squares	LP complexity	[CLRS16, KMR17]
		SDP complexity	[LRS15]
BPP $P^{N P}$	randomised decision list	randomised rectangle overlay	new, [AGJKM17] new
Lifting Theorem Template			
$\mathrm{M}^{\mathrm{cc}}\left(f \circ g^{n}\right) \approx \mathrm{M}^{\mathrm{dt}}(f)$			

Lifting for BPP

with Toniann Pitassi \& Thomas Watson

Lifting theorem for BPP

$$
\text { Index gadget } g:[m] \times\{0,1\}^{m} \rightarrow\{0,1\}
$$

$$
g(x, y)=y_{x}
$$

$\operatorname{BPP}^{\mathrm{dt}}(f)=$ randomised query complexity of f
$\operatorname{BPP}^{\mathrm{cc}}(F)=$ randomised communication complexity of F

Our result

also [AGJKM17]

For $m=n^{100}$ and every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$,
$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right)=\operatorname{BPP}^{\mathrm{dt}}(f) \cdot \Theta(\log n)$

New applications

$\operatorname{BPP}^{\mathrm{dt}}(f) \gg \mathrm{M}^{\mathrm{dt}}(f)$

$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right) \gg \mathrm{M}^{c c}\left(f \circ g^{n}\right)$

Wapplications

$\operatorname{BPP}^{\mathrm{dt}}(f) \gg \mathrm{M}^{\mathrm{dt}}(f)$

$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right) \gg M^{c c}\left(f \circ g^{n}\right)$

Classical vs. Quantum

■ 2.5-th power total function gap
$\left[\mathrm{ABK} 16, \mathrm{ABB}^{+} 16\right]$
■ Conjecture: 2.5 improves to 3

- exponential partial function gap
[AA15]
[Raz99,KR11]

BPP vs. Partition numbers

■ 1-sided (= Clique vs. Independent Set) [GJPW15]

- 2-sided
[AKK16,ABB ${ }^{+}$16]
Approximate Nash equilibria

$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right) \geq \operatorname{BPP}^{\mathrm{dt}}(f) \cdot \Omega(\log n)$
 . . . how to begin?

What we actually prove

Input domain partitioned into slices

$$
[m]^{n} \times\left(\{0,1\}^{m}\right)^{n}=\bigcup_{z \in\{0,1\}^{n}}\left(g^{n}\right)^{-1}(z)
$$

What we actually prove

Simulation

\forall deterministic protocol Π
\exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $\mathbf{1} \approx \mathbf{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

What we actually prove

Simulation

\forall deterministic protocol Π
\exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $\mathbb{1} \approx \mathbf{2}$

11 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Main theorem: 1. pick $\Pi \sim \Pi$

2. simulate Π via query access to z
3. output value of leaf

$$
\underset{(x, y) \sim\left(g^{n}\right)^{-1}(z)}{\mathbb{E}} \overbrace{\underset{\Pi}{\operatorname{Pr}[\Pi(x, y) \text { correct }]}}^{>2 / 3}=\underset{\Pi \sim \boldsymbol{\Pi}}{\mathbb{E}} \operatorname{Pr}_{(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)}[\Pi(\boldsymbol{x}, \boldsymbol{y}) \text { correct }]
$$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $1 \approx 2$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $1 \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $1 \approx 2$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Idea:

Pretend marginals are uniform!

Pseudorandomness

Uniform Marginals Lemma:

Suppose $X \subseteq[m]^{n}$ is dense $Y \subseteq\left(\{0,1\}^{m}\right)^{n}$ is "large"
Then $\forall z \in\{0,1\}^{n}$ the uniform distribution on $\left(g^{n}\right)^{-1}(z) \cap X \times Y$ has both marginal distributions close to uniform on X and Y

Dense: [GLMWZ15]

$$
\mathbf{H}_{\infty}\left(\boldsymbol{X}_{I}\right) \geq 0.9 \cdot|I| \log m \text { for all } I \subseteq[n]
$$

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1. Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
[GLMWZ15] is fixed on some $I \subseteq[n]$ and dense on \bar{I}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

Density-restoring partition

While X is nonempty:
1 Let $I \subseteq[n]$ be maximal such that for some α

$$
\operatorname{Pr}\left[\boldsymbol{X}_{I}=\alpha\right]>2^{-0.9|I| \log m}
$$

2 Output part $X^{\prime}=\left\{x \in X: x_{I}=\alpha\right\}$
3 Update $X \leftarrow X \backslash X^{\prime}$

Simulation

When density is lost, restore it!

1. Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
[GLMWZ15] is fixed on some $I \subseteq[n]$ and dense on \bar{I}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
[GLMWZ15] is fixed on some $I \subseteq[n]$ and dense on \bar{I}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
[GLMWZ15] is fixed on some $I \subseteq[n]$ and dense on \bar{I}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Correctness

1 \#queries $\leq|\Pi|$ (whp)
2 Resulting transcript is close to that generated by random input from $\left(g^{n}\right)^{-1}(z)$

Application (via P^{NP} lifting)

with Pritish Kamath, Toniann Pitassi \& Thomas Watson

Monochromatic rectangles

$$
\operatorname{mon}(F):=\quad \min _{R \operatorname{mono}} \log \frac{1}{\mu(R)}
$$

1	0	0	1	1	1
0	1	0	1	1	1
0	0	1	1	1	1
0	1	1	0	0	0
0	0	1	1	1	1
1	0	1	1	0	1

Monochromatic rectangles

$\operatorname{mon}(F):=\max _{\mu \text { product }} \min _{R \text { mono }} \log \frac{1}{\mu(R)}$

1	0	0	1	1	1
0	1	0	1	1	1
0	0	1	1	1	1
0	1	1	0	0	0
0	0	1	1	1	1
1	0	1	1	0	1

Monochromatic rectangles

$\operatorname{mon}(F):=\max _{\mu \text { product }} \min _{R \text { mono }} \log \frac{1}{\mu(R)}$

Basic questions

■ Log-rank conjecture? $\Longleftrightarrow \forall F: \operatorname{mon}(F) \leq \log ^{O(1)} \operatorname{rk}(F)$
$■$ Protocols from mon? $\Longleftrightarrow \forall F: \operatorname{PSPACE}^{c c}(F) \leq \operatorname{mon}(F)^{O(1)}$

Monochromatic rectangles

$$
\operatorname{mon}(F):=\max _{\mu \text { product }} \min _{R \text { mono }} \log \frac{1}{\mu(R)}
$$

Basic questions

■ Log-rank conjecture $? \Longleftrightarrow \forall F: \operatorname{mon}(F) \leq \log ^{O(1)} \operatorname{rk}(F)$
■ Protocols from mon? $\Longleftrightarrow \forall F: \operatorname{PSPACE}^{c c}(F) \leq \operatorname{mon}(F)^{O(1)}$
Known

- $\forall F$: non-product-mon $(F)=\mathrm{P}^{c c}(F)^{\Theta(1)} \quad$ [AUY83,KKN95]

■ $\forall F: \operatorname{mon}(F) \leq \mathrm{P}^{\mathrm{NPcc}}(F) \quad$ [IW10,PSS14]
■ $\exists F: \mathrm{P}^{\mathrm{NPcc}}(F) \leq \log n \lll n^{\Omega(1)} \leq \mathrm{PP}^{\mathrm{cc}}(F) \quad[B V d W 07]$

Monochromatic rectangles

$$
\operatorname{mon}(F):=\max _{\mu \text { product }} \min _{R \text { mono }} \log \frac{1}{\mu(R)}
$$

Lifting application:

$\exists F: \quad \operatorname{mon}(F) \leq \log ^{O(1)} n \lll n^{\Omega(1)} \leq \mathrm{P}^{\mathrm{NPcc}}(F)$

Known

■ $\forall F$: non-product-mon $(F)=\mathrm{P}^{\mathrm{cc}}(F)^{\Theta(1)} \quad$ [AUY83,KKN95]
■ $\forall F: \operatorname{mon}(F) \leq \mathrm{P}^{\mathrm{NPcc}}(F)$
■ $\exists F: \mathrm{P}^{\mathrm{NPcc}}(F) \leq \log n \lll n^{\Omega(1)} \leq \mathrm{PP}^{c c}(F) \quad[B V d W 07]$

$P^{N P}$ decision trees / protocols

Oracle query cost:

$N P^{d t}=\mathrm{DNF}$ width \quad vs. $\quad N P^{c c}=\log$ \#rectangles

Decision lists: $\mathrm{DL}^{\mathrm{dt}}$ and $\mathrm{DL}^{\mathrm{cc}}$

Equivalent (up to quadratic factors):

[Riv87,PSS14]

Conjunction width

vs.
log \#rectangles

Lifting theorems

Lifting for P^{NP}

For poly-size index gadget g and every $f:\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
\mathrm{P}^{\mathrm{NPcc}}\left(f \circ g^{n}\right) \geq \sqrt{\mathrm{P}^{\mathrm{NPdt}}(f) \cdot \Omega(\log n)}
$$

Lifting for decision lists

For poly-size index gadget g and every $f:\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
\operatorname{DL}^{\mathrm{cc}}\left(f \circ g^{n}\right)=\mathrm{DL}^{\mathrm{dt}}(f) \cdot \Theta(\log n)
$$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

$\operatorname{mon}(F) \leq \mathrm{DL}^{\mathrm{cc}}(F)$

Construction

Lifting application:

$$
\exists F=f \circ g^{n}: \quad \operatorname{mon}(F) \lll \mathrm{P}^{N \mathrm{P}^{c c}}(F)
$$

$\forall \cdot$ US-complete f
Input:
$M \in\{0,1\}^{\sqrt{n} \times \sqrt{n}}$
Output:
yes iff
\forall row has unique 1

	1				
				1	
		1			
			1		
				1	
1					

$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$F \in \forall \cdot \mathrm{US}^{\mathrm{cc}}$

$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$F \in \forall \cdot U^{c c}$
[IW10,PSS14]
$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$F \in \forall \cdot \mathrm{US}^{\mathrm{cc}}$
 [IW10,PSS14]
 $\left.F\right|_{\mu}$

$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$F \in \forall \cdot \mathrm{US}^{\mathrm{cc}}$
 [IW10,PSS14]
 $\left.F\right|_{\mu} \in \forall \cdot U P^{c c}$

$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$F \in \forall \cdot \mathrm{US}^{\mathrm{cc}}$
 [IW10,PSS14]
 $\left.F\right|_{\mu} \in \forall \cdot U P P^{c c}$ $\downarrow^{\text {[Yan89] }}$
 $\left.F\right|_{\mu} \in \forall \cdot \mathrm{P}^{\mathrm{cc}}$

$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$F \in \forall \cdot \mathrm{US}^{\mathrm{cc}}$
 [IW10,PSS14]
 $\left.F\right|_{\mu} \in \forall \cdot U P^{c c}$ $\downarrow^{[Y a n 89]}$
 $\left.F\right|_{\mu} \in \forall \cdot \mathrm{P}^{\mathrm{cc}}$
 $=\mathrm{coNP}{ }^{c c}$

$\operatorname{mon}(F) \leq \log ^{O(1)} n$

$$
\begin{aligned}
& F \in \forall \cdot \mathrm{US}^{\mathrm{cc}} \\
& \downarrow^{[\text {[IW10,PSS14] }} \\
& \left.F\right|_{\mu} \in \forall \cdot \mathrm{UP}^{\mathrm{cc}} \\
& \downarrow^{[\text {Yan89] }} \\
& \left.F\right|_{\mu} \in \forall \cdot \mathrm{P}^{\mathrm{cc}} \\
& =\mathrm{coNP} \\
& \downarrow^{[\text {[IW10,PSS14] }} \\
& \text { done! }
\end{aligned}
$$

Some problems

Problems

■ Exhibit F with $\operatorname{mon}(F) \lll \operatorname{UPP}^{c c}(F)$
■ Lifting using constant-size gadgets?

- Lifting for BQP?
$\left[\mathrm{ABG}^{+} 17\right]$

Challenges

- Disprove the log-rank conjecture

■ Explicit lower bounds against $\mathrm{PH}^{\mathrm{cc}}$?
Or even $S Z K^{c c} \subseteq A^{c c} \subseteq \Pi_{2} P^{c c}$?

Problems

■ Exhibit F with $\operatorname{mon}(F) \lll \operatorname{UPP}^{c c}(F)$
■ Lifting using constant-size gadgets?

- Lifting for BQP?
$\left[\mathrm{ABG}^{+} 17\right]$

Challenges

- Disprove the log-rank conjecture

■ Explicit lower bounds against $\mathrm{PH}^{c c}$?
Or even $S Z K^{c c} \subseteq A M^{c c} \subseteq \Pi_{2} P^{c c}$?
[BCHTV16]

Cheers!

