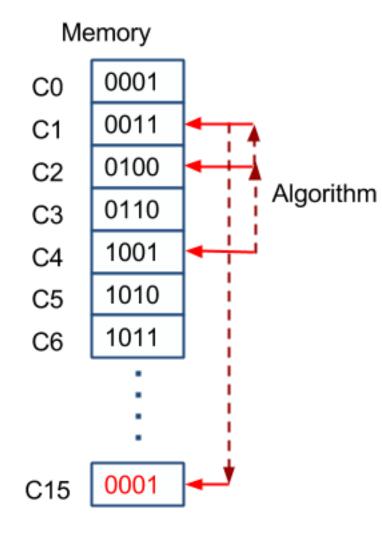
Non-Adaptive Data Structure Bounds for Dynamic Predecessor Search

Joe Boninger, Joshua Brody, Owen Kephart

Swarthmore College

Cell Probe Model [Yao81]

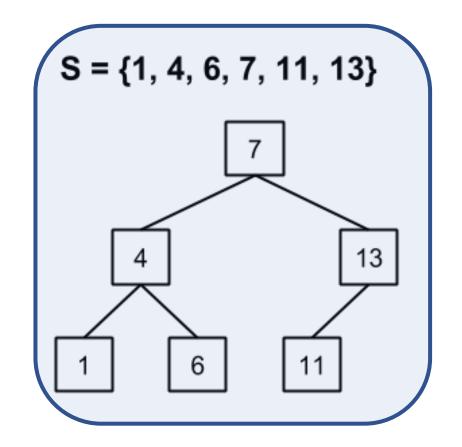


- Memory consists of **w-bit** cells
- Updates/queries charged for **# probes**
- All other computation *for free*
- Cell Probe Complexity: **# probes**

required to maintain DS.

Dynamic data structures

- Maintain a set of data S, support updates and queries. e.g.
 - $S \subseteq \{1, \dots, m\}$
 - Updates: insert/delete element
 - Query(x): is $x \in S$?
 - t_u,t_q: update/query time
- Goal: show max{t_u,t_q} >= poly(m)



Current State of the art:
$$max\{t_u, t_q\} = \Omega\left(\left(\frac{\log m}{\log \log m}\right)^2\right)$$
 [Larsen12]

Previous results/hard problems

• [Larsen 12a, 12b]:
$$\Omega\left(\left(\frac{\log m}{\log \log m}\right)^2\right)$$
 for 2D-range counting, polynomial

evaluation

• [CGL15, WY16]:
$$\Omega\left(\left(\frac{\log m}{\log \log m}\right)^2\right)$$
 amortized bounds

- [Patrascu10]: polynomial lower bounds from CC of Multiphase
- [CEEP12]: strongest Multiphase conjecture false, but weaker version still shows polynomial DDS lower bounds
- [BL15]: polynomial lower bounds for non-adaptive DS

Non-Adaptive Data Structures

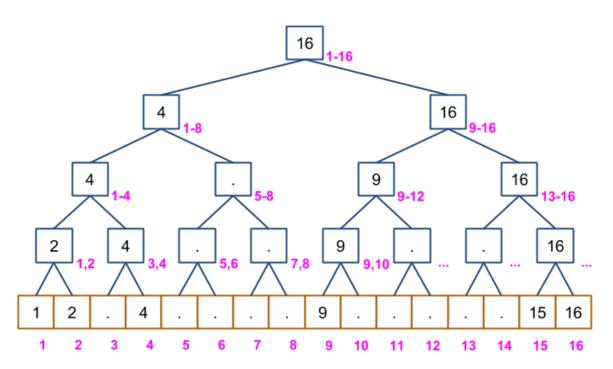
- Non-Adaptive Queries: cells probed by query algorithm chosen in advance
- Non-Adaptive Updates: cells probed by update algorithm chosen in advance
- Memoryless Updates: non-adaptive, plus contents of each write depend only on update, prev. contents.

Non-Adaptive Data Structure: non-adaptive queries, updates Memoryless Data Structure: non-adaptive queries, memoryless updates

Predecessor Search

Maintain set $T \subseteq [m]$ of $\leq n$ *items*, support

- Insert(j)
- Delete(j)
- **Pred(i)** = $\max\{j \le i : j \in T\}$



Our Results

• Adaptive DS for Pred with $t_u, t_q = O(\log \log m)$ [van Emde Boas 75]

105

• Non-Adaptive: $t_u, t_q = O\left(\min\left\{\frac{n \log m}{w}, \frac{\log m}{\log w}\right\}\right)$

• Non-Adaptive:
$$\max\{t_u, t_q\} = \Omega\left(\min\left\{\frac{n\log m}{w\log w}, \frac{\log m}{\log w}\right\}\right)$$

Recent independent work [Rao, Ramamoorthy 17]:

• Either
$$t_q = \Omega\left(\frac{\log m}{\log\log m + \log w}\right)$$
 or $t_u = \Omega\left(\frac{t_q m^{1/2(1+t_q)}}{\log(m)}\right)$

• Only requires non-adaptive queries

Theorem: Let $\alpha = \min\{n, w/2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_u = O(\log m)$ must have

$$t_q \ge \frac{\alpha \log m}{2w \log(w \cdot t_u)}$$

Theorem: Let $\alpha = \min\{n, w/2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_u = O(\log m)$ must have

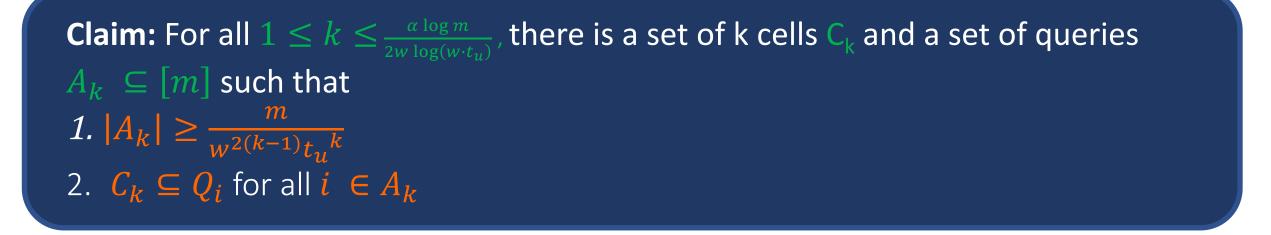
 $t_q \ge \frac{\alpha \log m}{2w \log(w \cdot t_u)}$

- Idea: grow set of cells C, maintain query set A such that each query in A probes every cell in C
- Setup: Predecessor w/wraparound: Pred*(i) = min(Pred(i), Pred(m))
 - **Q**_i: cells probed by **Pred(i)**
 - **U**_j: cells probed by **Insert(j)**

Theorem: Let $\alpha = \min\{n, w/2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_u = O(\log m)$ must have

 $t_q \ge \frac{\alpha \log m}{2w \log(w \cdot t_u)}$

Main Technical Lemma: Let C be a set of cells in the data structure and $A \subseteq [m]$. If 1. $|A| \ge \sqrt{m}$ 2. $|C| \le \frac{\alpha \log m}{5w}$, and 3. For all $i \in A$, Pred(i) probes each cell in C, then There is $j \in A$ and subset $A' \subseteq A$ with $|A'| \ge \frac{|A|}{w^2}$ such that for all $i \in A'$, U_j and Q_i intersect *outside of C*.



Proof: *induction*

Base Case:

- Q_i, U_i intersect for each i,j
- *Pigeonhole Principle:* there is cell **c** probed by **Insert(j)** and **m/t**_u **Pred(i)**
- **C**₁ = {c}, A₁ = {i: Pred(i) probes c}

Claim: For all
$$1 \le k \le \frac{a \log m}{2w \log(w \cdot t_u)}$$
, there is a set of k cells C_k and a set of queries $A_k \subseteq [m]$ such that
 $1. |A_k| \ge \frac{m}{w^{2(k-1)}t_u^k}$
2. $C_k \subseteq Q_i$ for all $i \in A_k$

Induction Hypothesis: There is A_k , C_k such that $C_k \subseteq Q_i$ for all $i \in A_k$

Induction Step:

- MTL: there is Insert(j), subset $A_k' \subseteq Ak$ with $|A_k'| \ge \frac{|A_k|}{w^2}$ s.t. for all $i \in A'$, U_j and Q_i intersect outside of C_k .
- *Pigeonhole:* there is cell $\mathbf{c} \in \mathbf{U}_j \setminus \mathbf{C}_k$ probed by $\frac{|\mathbf{A}_k'|}{t} \ge \frac{|\mathbf{A}_k|}{w^2 t}$ queries
- $C_{k+1} = \{c\} \cup Ck, A_{k+1} = \{i \in A_k': Pred(i) \text{ probes } c\}$

Main Technical Lemma: Let C be a set of cells in the data structure and $A \subseteq [m]$. If

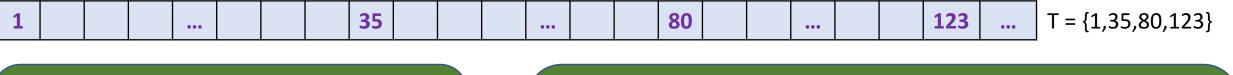
- $|1. |A| \ge \sqrt{m}$
- 2. $|C| \leq \frac{\alpha \log m}{5w}$, and
- 3. For all $i \in A$, Pred(i) probes each cell in C, then
- There is $j \in A$ and subset $A' \subseteq A$ with $|A'| \ge \frac{|A|}{w^2}$ such that for all $i \in A'$,

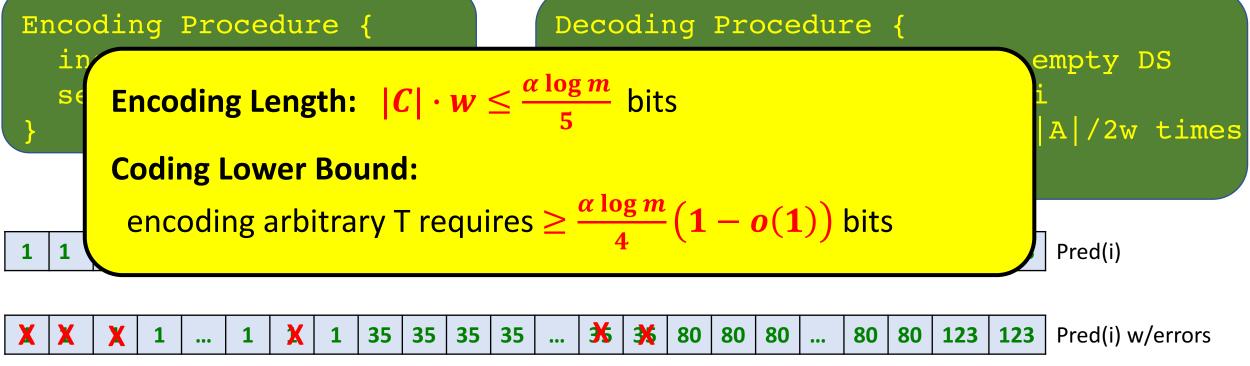
U_i and **Q**_i intersect *outside of C*.

Proof: suppose implication false. Then

- For every update j, $\mathbf{U}_{j} \cap \mathbf{Qi} \subseteq \mathbf{C}$ for all but $\frac{|A|}{w^{2}}$ queries
- For any set **T** of α updates, for all but $\frac{|A|\alpha}{w^2} \leq \frac{|A|}{2w}$ queries, $\mathbf{U_i} \cap \mathbf{Qi} \subseteq \mathbf{C}$ for all $\mathbf{j} \in \mathbf{T}$
- When DS stores T, can use C to compute Pred(i) for most i.
- Use C to encode T.

Encode arbitrary *spread out* subset $T \subseteq A$ with 1. $|T| = \alpha$ 2. $|j - j'| \ge |A|/w$ for all $j, j' \in T$ Fact: There are $2^{\frac{\alpha \log m}{4}(1-o(1))}$ spread out T





Less than |A|/2w total errors \rightarrow Decoder recovers T

Theorem: Let $\alpha = \min\{n, w/2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_{\mu} = O(\log m)$ must have $t_q \ge \frac{\alpha \log m}{2w \log(w \cdot t_u)}$ **Claim:** For all $1 \le k \le \frac{\alpha \log m}{2w \log(w \cdot t_n)}$, there is a set of k cells C_k and a set of queries $A_k \subseteq C_k$ m such that 1. $|A_k| \ge \frac{m}{w^{2(k-1)}t_w^k}$ 2. $C_k \subseteq Q_i$ for all $i \in A_k$ **Main Technical Lemma:** Let C be a set of cells in the data structure and $A \subseteq [m]$. If

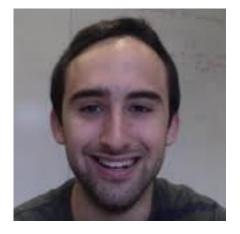
- 1. $|A| \ge \sqrt{m}$
- 2. $|C| \leq \frac{\alpha \log m}{5w}$, and
- 3. For all $i \in A$, Pred(i) probes each cell in C, then

There is $j \in A$ and subset $A' \subseteq A$ with $|A'| \ge \frac{|A|}{w^2}$ such that for all $i \in A'$,

U_i and **Q**_i intersect *outside* of C.

Acknowledgements

- Joe Boninger '16
 - Highest Honors (top 2% of Swarthmore students)
 - Math/CS double major



- Owen Kephart '18
 - CS/Engineering double major
 - Honors candidate