
Non-Adaptive	Data	Structure	
Bounds	for	Dynamic	
Predecessor	Search
Joe	Boninger,	Joshua	Brody,	Owen	Kephart

Swarthmore	College

Cell	Probe	Model	[Yao81]

• Memory	consists	of	w-bit cells

• Updates/queries	charged	for	#	probes

• All	other	computation	for	free

• Cell	Probe	Complexity:	#	probes	

required	to	maintain	DS.

Dynamic	data	structures

• Maintain	a	set	of	data	S,	support	
updates	and	queries.		e.g.
• 𝐒 ⊆ 𝟏,… ,𝐦
• Updates:	insert/delete	element
• Query(x):		is	𝐱 ∈ 𝐒?
• tu,tq:	update/query	time

• Goal:		show	max{tu,tq}	>=	poly(m)

Current	State	of	the	art:		𝒎𝒂𝒙 𝒕𝒖, 𝒕𝒒 = 	𝛀 234 𝒎
234 234 5

𝟐 [Larsen12]		

Previous	results/hard	problems

• [Larsen	12a,	12b]: 𝛀 234𝒎
234 234 5

𝟐 for	2D-range	counting,	polynomial	

evaluation

• [CGL15,	WY16]:	𝛀 𝐥𝐨𝐠 𝐦
𝐥𝐨𝐠 𝐥𝐨𝐠 𝐦

𝟐 amortized	bounds

• [Patrascu10]:	polynomial	lower	bounds	from	CC	of	Multiphase
• [CEEP12]:	strongest	Multiphase	conjecture	false,	but	weaker	version	still	
shows	polynomial	DDS	lower	bounds
• [BL15]:		polynomial	lower	bounds	for	non-adaptive	DS

Non-Adaptive	Data	Structures
• Non-Adaptive	Queries:		cells	probed	by	query	algorithm	chosen	in	advance
• Non-Adaptive	Updates:	cells	probed	by	update	algorithm	chosen	in	
advance
• Memoryless	Updates:		non-adaptive,	plus	contents	of	each	write	depend	
only	on	update,	prev.	contents.

Non-Adaptive	Data	Structure:		non-adaptive	queries,	updates
Memoryless	Data	Structure:		non-adaptive	queries,	memoryless	updates

Predecessor	Search

Maintain set	𝑇	 ⊆ 𝑚 	of ≤ 𝑛	𝑖𝑡𝑒𝑚𝑠,
support

• Insert(j)
• Delete(j)
• Pred(i)	=	𝐦𝐚𝐱	{𝒋 ≤ 𝒊 ∶ 𝒋 ∈ 𝑻}

Our	Results

• Adaptive	DS	for	Pred with	tu,tq =	O(log	log	m)																							[van	Emde Boas	75]

• Non-Adaptive:			𝒕𝒖, 𝒕𝒒 = 𝑶 𝒎𝒊𝒏 𝒏 𝐥𝐨𝐠 𝒎
𝒘

, 𝐥𝐨𝐠 𝒎
𝐥𝐨𝐠 𝒘

𝐥𝐨𝐠 𝒎S

• Non-Adaptive:	𝐦𝐚𝐱 𝒕𝒖, 𝒕𝒒 = 	𝜴 𝒎𝒊𝒏 𝒏 𝐥𝐨𝐠 𝒎
𝒘 𝐥𝐨𝐠 𝒘

, 𝐥𝐨𝐠 𝒎
𝐥𝐨𝐠 𝒘

• Memoryless:	𝐦𝐚𝐱 𝐭𝐮, 𝐭𝐪 ≥ 𝐦/𝐰
Recent	independent	work	[Rao,	Ramamoorthy 17]:	

• Either	𝑡[= 	Ω 234 5
234 234 5]234 ^

or 𝑡_ = 	Ω `a 5b/c(befa)

234	(5)
• Only	requires	non-adaptive	queries

Theorem:		Let	𝛼 = 	min{𝑛, 𝑤/2}.		Then,	any	non-adaptive	data	structure	solving	
dynamic	predecessor	with	𝑡_ 	= 	𝑂(log𝑚)must	have	

𝑡[≥
q 234 5

r^ 234 ^s`t

Theorem:		Let	𝛼 = 	min{𝑛, 𝑤/2}.		Then,	any	non-adaptive	data	structure	solving	
dynamic	predecessor	with	𝑡_ 	= 	𝑂(log𝑚)must	have	

𝑡[≥
q 234 5

r^ 234 ^s`t

Idea: grow	set	of	cells	C,	maintain	query	set	A such		that	
each	query	in	A probes	every	cell	in	C

Setup: • Predecessor	w/wraparound:		Pred*(i)	=	min(Pred(i),	Pred(m))
• Qi:	cells	probed	by	Pred(i)
• Uj:	cells	probed	by	Insert(j)

Theorem:		Let	𝛼 = 	min{𝑛, 𝑤/2}.		Then,	any	non-adaptive	data	structure	solving	
dynamic	predecessor	with	𝑡_ 	= 	𝑂(log𝑚)must	have	

𝑡[≥
q 234 5

r^ 234 ^s`t

Main	Technical	Lemma:	Let	C	be	a	set	of	cells	in	the	data	structure	and	𝐴 ⊆ [𝑚].		If
1. 𝐴 ≥ 𝑚�

2. 𝐶 ≤ q 234 5
|^

,	and	
3. For	all	𝑖 ∈ 𝐴,	Pred(i)	probes	each	cell	in	C ,	then
There	is	𝑗 ∈ 𝐴	and	subset	𝐴~ ⊆ 𝐴 with	 𝐴′ ≥ �

^c such	that	for	all 𝑖 ∈ 𝐴′ ,	
Uj and	Qi intersect	outside	of	C.

Claim:	For	all	1 ≤ 𝑘 ≤ q 234 5
r^ 234 ^s`t

, there	is	a	set	of	k	cells	Ck and	a	set	of	queries	
𝐴� 	⊆ 𝑚 such	that	
1. 𝐴� ≥ 5

^c(��b)`t�

2. 𝐶� ⊆ 𝑄� for	all	𝑖	 ∈ 𝐴�

Proof:		induction
Base	Case:

• Qi,	Uj intersect	for	each	i,j

• Pigeonhole	Principle:	there	is	cell	c probed	by	Insert(j) and	m/tu Pred(i)

• C1 =	{c},		A1 =	{i:		Pred(i) probes	c}

Claim:	For	all	1 ≤ 𝑘 ≤ q 234 5
r^ 234 ^s`t

,	there	is	a	set	of	k	cells	Ck and	a	set	of	queries	
𝐴� 	⊆ 𝑚 such	that	
1. 𝐴� ≥ 5

^c(��b)`t�

2. 𝐶� ⊆ 𝑄� for	all	𝑖	 ∈ 𝐴�

Induction	Hypothesis:	There	is	Ak,	Ck such	that	𝐂𝐤 ⊆ 𝐐𝐢 for	all	𝐢	 ∈ 𝐀𝐤

• MTL:	there	is	Insert(j),	subset 𝑨𝒌~ ⊆ 𝑨𝒌 with	 𝐀𝐤′ ≥
𝐀𝐤
𝐰𝟐 s.t. for	all 𝒊 ∈ 𝑨′ ,						

Uj and	Qi intersect	outside	of	Ck.

• Pigeonhole:	there	is	cell	𝐜 ∈ 𝐔𝐣 ∖ 𝐂𝐤 probed	by	
𝐀𝐤~
𝐭𝐮

≥ 𝐀𝐤
𝐰𝟐𝐭𝐮

	queries	

• Ck+1 =	{c}	∪ 𝐂𝐤,		Ak+1 =	{i∈ 𝑨𝐤′:		Pred(i) probes	c}

Induction	Step:

Main	Technical	Lemma:	Let	C	be	a	set	of	cells	in	the	data	structure	and	𝐴 ⊆ [𝑚].		If
1. 𝐴 ≥ 𝑚�

2. 𝐶 ≤ q 234 5
|^

,	and	
3. For	all	𝑖 ∈ 𝐴,	Pred(i)	probes	each	cell	in	C ,	then
There	is	𝑗 ∈ 𝐴	and	subset	𝐴~ ⊆ 𝐴 with	 𝐴′ ≥ �

^c such	that	for	all 𝑖 ∈ 𝐴′ ,	
Uj and	Qi intersect	outside	of	C.

Proof:	suppose	implication	false.		Then

• For	every	update	j,	𝐔𝐣 ∩ 𝐐𝐢 ⊆ 𝐂 for	all	but	 �
^c queries	

• For	any	set	T of	𝛂	updates,	for	all	but	 � q
^c ≤

�
r^

queries,

𝐔𝐣 ∩ 𝐐𝐢 ⊆ 𝐂 for	all		𝐣 ∈ 𝐓
• When	DS	stores	T,	can	use	C to	compute	Pred(i) for	most i.
• Use	C to	encode	T.

Encode	arbitrary	spread	out	subset	𝑻 ⊆ 𝑨 with
1. 𝑻 = 𝜶
2. 𝒋 − 𝒋~ ≥ |𝑨|/𝒘 for	all	𝐣, 𝐣’ ∈ 𝐓

1 … 35 … 80 … 123 … T	=	{1,35,80,123}

1 1 1 1 … 1 1 1 35 35 35 35 … 35 35 80 80 80 … 80 80 123 123 Pred(i)

1 1 1 1 … 1 1 1 35 35 35 35 … 35 35 80 80 80 … 80 80 123 123 Pred(i)	w/errorsX X X XXX

Less	than	|A|/2w	total	errors	è Decoder	recovers	T	

Encoding Procedure {
insert each j into DS
send contents of C

}

Decoding Procedure {
Write contents of C into empty DS
Execute Pred(i) for each i
Output all j that appear |A|/2w times

}

Fact: There	are	2
� ��� �

� (¡¢)

spread	out	T

Encoding	Length:			|𝑪| s 𝒘 ≤ 𝜶 𝐥𝐨𝐠 𝒎
𝟓

bits

Coding	Lower	Bound:	
encoding	arbitrary	T	requires	≥ 𝜶 𝐥𝐨𝐠 𝒎

𝟒
𝟏 − 𝒐 𝟏 bits

Main	Technical	Lemma:	Let	C	be	a	set	of	cells	in	the	data	structure	and	𝐴 ⊆ [𝑚].		If
1. 𝐴 ≥ 𝑚�

2. 𝐶 ≤ q 234 5
|^

,	and	
3. For	all	𝑖 ∈ 𝐴,	Pred(i)	probes	each	cell	in	C ,	then
There	is	𝑗 ∈ 𝐴	and	subset	𝐴~ ⊆ 𝐴 with	 𝐴′ ≥ �

^c such	that	for	all 𝑖 ∈ 𝐴′ ,	
Uj and	Qi intersect	outside	of	C.

Claim:	For	all	1 ≤ 𝑘 ≤ q 234 5
r^ 234 ^s`t

, there	is	a	set	of	k	cells	Ck and	a	set	of	queries	𝐴� 	⊆
𝑚 such	that	
1. 𝐴� ≥ 5

^c(��b)`t�

2. 𝐶� ⊆ 𝑄� for	all	𝑖	 ∈ 𝐴�

Theorem:		Let	𝛼 = 	min{𝑛, 𝑤/2}.		Then,	any	non-adaptive	data	structure	solving	dynamic	
predecessor	with	𝑡_ 	= 	𝑂(log𝑚)must	have	

𝑡[≥
q 234 5

r^ 234 ^s`t

Acknowledgements

• Joe	Boninger ‘16
• Highest	Honors	(top	2%	of	Swarthmore	students)
• Math/CS	double	major

• Owen	Kephart ‘18
• CS/Engineering	double	major
• Honors	candidate

