Non-Adaptive Data Structure Bounds for Dynamic Predecessor Search

Joe Boninger, Joshua Brody, Owen Kephart

Swarthmore College

Cell Probe Model [Yao81]

- Memory consists of w-bit cells
- Updates/queries charged for \# probes
- All other computation for free
- Cell Probe Complexity: \# probes required to maintain DS.

Dynamic data structures

- Maintain a set of data S, support updates and queries. e.g.
- $S \subseteq\{1, \ldots, m\}$
- Updates: insert/delete element
- Query(x): is $x \in S$?
- $\mathrm{t}_{\mathrm{u}} \mathrm{t}_{\mathrm{q}}$: update/query time
- Goal: show max\{ $\left.\mathrm{t}_{\mathrm{u}} \mathrm{t}_{\mathrm{q}}\right\}>=\operatorname{poly}(\mathrm{m})$

$$
S=\{1,4,6,7,11,13\}
$$

Current State of the art: $\max \left\{t_{u}, t_{q}\right\}=\Omega\left(\left(\frac{\log m}{\log \log m}\right)^{2}\right)$

Previous results/hard problems

- [Larsen 12a, 12b]: $\Omega\left(\left(\frac{\log m}{\log \log m}\right)^{2}\right)$ for 2D-range counting, polynomial evaluation
- [CGL15, WY16]: $\Omega\left(\left(\frac{\log m}{\log \log m}\right)^{2}\right)$ amortized bounds
- [Patrascu10]: polynomial lower bounds from CC of Multiphase
- [CEEP12]: strongest Multiphase conjecture false, but weaker version still shows polynomial DDS lower bounds
- [BL15]: polynomial lower bounds for non-adaptive DS

Non-Adaptive Data Structures

- Non-Adaptive Queries: cells probed by query algorithm chosen in advance
- Non-Adaptive Updates: cells probed by update algorithm chosen in advance
- Memoryless Updates: non-adaptive, plus contents of each write depend only on update, prev. contents.

Non-Adaptive Data Structure: non-adaptive queries, updates
Memoryless Data Structure: non-adaptive queries, memoryless updates

Predecessor Search

Maintain set $T \subseteq[m]$ of $\leq n$ items, support

- Insert(j)
- Delete(j)
- $\operatorname{Pred}(\mathrm{i})=\max \{j \leq i: j \in T\}$

Our Results

- Adaptive DS for Pred with $\mathrm{t}_{\mathrm{u}} \mathrm{t}_{\mathrm{q}}=\mathbf{O}(\log \log \mathrm{m})$
- Non-Adaptive: $t_{u}, t_{q}=O\left(\min \left\{\frac{n \log m}{w}, \frac{\log m}{\operatorname{lom}(w)}\right\}\right)$
- Non-Adaptive: $\max \left\{\boldsymbol{t}_{u}, \boldsymbol{t}_{q}\right\}=\Omega\left(\min \left\{\frac{n \log m}{w \log w}, \frac{\log m}{\log w}\right\}\right)$

Recent independent work [Rao, Ramamoorthy 17]:

- Either $t_{q}=\Omega\left(\frac{\log m}{\log \log m+\log w}\right)$ or $t_{u}=\Omega\left(\frac{t_{q} m^{1 / 2\left(1+t_{q}\right)}}{\log (m)}\right)$
- Only requires non-adaptive queries

Theorem: Let $\alpha=\min \{n, w / 2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_{u}=O(\log m)$ must have

$$
t_{q} \geq \frac{\alpha \log m}{2 w \log \left(w \cdot t_{u}\right)}
$$

Theorem: Let $\alpha=\min \{n, w / 2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_{u}=O(\log m)$ must have

$$
t_{q} \geq \frac{\alpha \log m}{2 w \log \left(w \cdot t_{u}\right)}
$$

Idea: grow set of cells C, maintain query set A such that each query in A probes every cell in C

Setup: • Predecessor w/wraparound: $\operatorname{Pred}^{*}(i)=\min (\operatorname{Pred}(i), \operatorname{Pred}(m))$

- Q_{i} : cells probed by Pred(i)
- U_{j} : cells probed by Insert(j)

Theorem: Let $\alpha=\min \{n, w / 2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_{u}=O(\log m)$ must have

$$
t_{q} \geq \frac{\alpha \log m}{2 w \log \left(w \cdot t_{u}\right)}
$$

Main Technical Lemma: Let C be a set of cells in the data structure and $A \subseteq[m]$. If

1. $|A| \geq \sqrt{m}$
2. $|C| \leq \frac{\alpha \log m}{5 w}$, and
3. For all $i \in A$, Pred(i) probes each cell in C, then

There is $j \in A$ and subset $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \frac{|A|}{w^{2}}$ such that for all $i \in A^{\prime}$,
U_{i} and Q_{i} intersect outside of C.

Claim: For all $1 \leq k \leq \frac{\alpha \log m}{2 w \log \left(\omega+t_{n}\right)}$, there is a set of k cells C_{k} and a set of queries $A_{k} \subseteq[m]$ such that

1. $\left|A_{k}\right| \geq \frac{m}{w^{2(k-1)} t_{u}{ }^{k}}$
2. $C_{k} \subseteq Q_{i}$ for all $i \in A_{k}$

Proof: induction
Base Case:

- $\mathrm{Q}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}$ intersect for each i, j
- Pigeonhole Principle: there is cell c probed by Insert(j) and $\mathrm{m} / \mathrm{t}_{\mathrm{u}} \operatorname{Pred}(\mathrm{i})$
- $C_{1}=\{c\}, A_{1}=\{i: \operatorname{Pred}(i)$ probes $c\}$

Claim: For all $1 \leq k \leq \frac{\alpha \log m}{2 w \log \left(\omega+t_{n}\right)}$, there is a set of k cells C_{k} and a set of queries $A_{k} \subseteq[m]$ such that

1. $\left|A_{k}\right| \geq \frac{m}{w^{2(k-1)} t_{u}^{k}}$
2. $C_{k} \subseteq Q_{i}$ for all $i \in A_{k}$

Induction Hypothesis: There is A_{k}, C_{k} such that $C_{k} \subseteq \mathbf{Q}_{\mathrm{i}}$ for all $\mathrm{i} \in \mathrm{A}_{\mathrm{k}}$ Induction Step:

- MTL: there is Insert (j), subset $\boldsymbol{A}_{\boldsymbol{k}}{ }^{\prime} \subseteq A \boldsymbol{k}$ with $\left|\mathrm{A}_{\mathbf{k}}{ }^{\prime}\right| \geq \frac{\left|\mathrm{A}_{\mathrm{k}}\right|}{\mathrm{w}^{2}}$ s.t. for all $\boldsymbol{i} \in \boldsymbol{A}^{\prime}$, $\mathbf{U}_{\mathbf{j}}$ and $\mathbf{Q}_{\mathbf{i}}$ intersect outside of C_{k}.
- Pigeonhole: there is cell $c \in U_{j} \backslash C_{k}$ probed by $\frac{\left|A_{k^{\prime}}\right|}{\mathrm{t}_{\mathrm{u}}} \geq \frac{\left|A_{\mathrm{k}^{\prime}}\right|}{w^{2} \mathrm{t}_{\mathrm{u}}}$ queries
- $\mathrm{C}_{\mathrm{k}+1}=\{\mathrm{c}\} \cup \mathrm{Ck}, \mathrm{A}_{\mathrm{k}+1}=\left\{i \in A_{\mathrm{k}}{ }^{\prime}\right.$: Pred(i) probes c$\}$

Main Technical Lemma: Let C be a set of cells in the data structure and $A \subseteq[m]$. If

1. $|A| \geq \sqrt{m}$
2. $|C| \leq \frac{\alpha \log m}{5 w}$, and
3. For all $i \in A$, $\operatorname{Pred}(\mathrm{i})$ probes each cell in C, then

There is $j \in A$ and subset $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \frac{|A|}{w^{2}}$ such that for all $i \in A^{\prime}$,
U_{j} and Q_{i} intersect outside of C.

Proof: suppose implication false. Then

- For every update $\mathbf{j}, \mathbf{U}_{\mathbf{j}} \cap \mathbf{Q i} \subseteq \mathbf{C}$ for all but $\frac{|A|}{w^{2}}$ queries
- For any set T of α updates, for all but $\frac{|A| \alpha}{w^{2}} \leq \frac{|A|}{2 w}$ queries,

$$
\mathbf{U}_{\mathbf{j}} \cap \mathbf{Q i} \subseteq \mathbf{C} \text { for all } \mathrm{j} \in \mathrm{~T}
$$

- When DS stores T, can use C to compute Pred(i) for most i.
- Use C to encode T.

Encode arbitrary spread out subset $T \subseteq A$ with

1. $|T|=\alpha$
2. $\left|j-j^{\prime}\right| \geq|A| / w$ for all $\mathrm{j}, \mathrm{j}^{\prime} \in \mathrm{T}$

Fact: There are $2^{\frac{\alpha \log m}{4}(1-o(1))}$ spread out T

\mathbf{X}	\mathbf{X}	\mathbf{X}	1	\ldots	1	\mathbf{X}	1	35	35	35	35	\ldots	$\mathbf{3}$				80	80	80	\ldots	80	80

Less than |A|/2w total errors \rightarrow Decoder recovers T

Theorem: Let $\alpha=\min \{n, w / 2\}$. Then, any non-adaptive data structure solving dynamic predecessor with $t_{u}=O(\log m)$ must have

$$
t_{q} \geq \frac{\alpha \log m}{2 w \log \left(w \cdot t_{u}\right)}
$$

Claim: For all there is a set of k cells C_{k} and a set of queries

such that

1. $\left|A_{k}\right| \geq \frac{m}{w^{2(k-1)} t_{u}^{k}}$
2. $C_{k} \subseteq Q_{i}$ for all $i \in A_{k}$

Main Technical Lemma: Let C be a set of cells in the data structure and $A \subseteq[\mathrm{~m}]$. If 1.
2. $|C| \leq \frac{\alpha \log m}{}$, and
3. For all $i \in A$, Pred(i) probes each cell in C, then

There is $j \in A$ and subset $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \frac{|A|}{w^{2}}$ such that for all $i \in A^{\prime}$,
U_{j} and Q_{i} intersect outside of C.

Acknowledgements

- Joe Boninger '16
- Highest Honors (top 2\% of Swarthmore students)
- Math/CS double major

- Owen Kephart '18
- CS/Engineering double major
- Honors candidate

