
Almost Polynomial
Hardness of NDP-Grids
JULIA CHUZHOY DAVID KIM RACHIT NIMAVAT

Banff, Nov 2017

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Sources Destinations

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Sources Destinations

Goal: Route as many pairs as possible
via node-disjoint paths

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Sources Destinations

Goal: Route as many pairs as possible
via node-disjoint paths

OPT: 2

Known Results

Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

𝑘 part of input ⇒ NP-Hard [Karp ’72]

Known Results

Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

𝑘 part of input ⇒ NP-Hard [Karp ’72]

𝑂 𝑛 −approx. [Kolliopoulos, Stein ‘98]

Roughly Ω log 𝑛 −hardness of approx. [Andrews, Zhang ‘05],

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

Known Results

Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

𝑘 part of input ⇒ NP-Hard [Karp ’72]

𝑂 𝑛 −approx. [Kolliopoulos, Stein ‘98]

Roughly Ω log 𝑛 −hardness of approx. [Andrews, Zhang ‘05],

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

What about simpler cases?

Known Results

NDP-Grid:

•𝑂(𝑛1/4) −approx. for NDP-Grid [Chuzhoy, Kim ‘15]

•APX-hardness [Chuzhoy, Kim ‘15]

Upper Bound Lower Bound

General NDP 𝑂 𝑛 Ω log 𝑛

Known Results

Upper Bound Lower Bound

General NDP 𝑂 𝑛 Ω log 𝑛

NDP-Grid 𝑂(𝑛1/4) APX-hardness

NDP-Planar:

•𝑂(𝑛9/19) −approx. for NDP-Planar [Chuzhoy, Kim, Li ‘16]

•2Ω log 𝑛 −hardness [Chuzhoy, Kim, N ‘16]

Known Results

Upper Bound Lower Bound

General NDP 𝑂 𝑛 2Ω log 𝑛

NDP-Grid 𝑂(𝑛1/4) APX-hardness

NDP-Planar 𝑂(𝑛9/19) 2Ω log 𝑛

“grids with holes”
are hard

(even with sources on top)

Matching Upper
Bound?

NDP-Grid with Sources on Boundary

2𝑂 log 𝑛 −approx. if sources on boundary [Chuzhoy, Kim, N ‘17]

◦ First sub-polynomial approx. algorithm!

2Ω log 𝑛 −hard 2O log 𝑛 −approx.

Generalize both
to NDP-Grid?

2 −hard assuming NP ⊈ RTIME(𝑛𝑝𝑜𝑙𝑦 log 𝑛)

𝑛 −hard assuming NP ⊈ RTIME(2𝑛
𝛿

)Ω(1/ log log 𝑛 2)

Ω(log1−𝜖 𝑛)

Main Theorem

For all
𝜖 > 0

NDP-Grid is

2 −hard assuming NP ⊈ RTIME(𝑛𝑝𝑜𝑙𝑦 log 𝑛)

𝑛 −hard assuming NP ⊈ RTIME(2𝑛
𝛿

)Ω(1/ log log 𝑛 2)

Ω(log1−𝜖 𝑛)

Main Theorem

For some
𝛿 > 0

For all
𝜖 > 0

Weaker than rETH

NDP-Grid is

The Updated Picture

Ω(1/ log log 𝑛 2)
Upper Bound Lower Bound

General NDP 𝑂 𝑛

NDP-Planar 𝑂(𝑛9/19)

NDP-Grid 𝑂(𝑛1/4)

Ω(1/ log log 𝑛 2)
𝑛

Ω(1/ log log 𝑛 2)
𝑛

Ω(1/ log log 𝑛 2)
𝑛

A Proxy Problem

Part 1: Graph Partitioning ⇒ NDP-Grid

Part 2: 3COL ⇒ Graph Partitioning

Hard
Problem

NDP-Grid

𝐼

Graph
Partitioning

Problem
3COL

𝛼

How to Show Hardness? : The Karp Way

Hard
Problem

Yes Instance

No Instance

⇒ 𝛼-hardness for NDP-Grid

𝐼

NDP-Grid
Graph

Partitioning Problem

Suppose there is 𝛼-approx. algorithm for NDP-Grid

Graph Partitioning Problem

…
…

…
…

…
…

…
…

Bipartite graph B
Parameters: p, 𝑟

Graph Partitioning Problem

…
…

…
…

…
…

…
…

≤ 𝑟
edges

𝑝 Pieces

≤ 𝑟
edges

≤ 𝑟
edges

Maximize:
surviving edges

Allow edge
deletion

Bipartite graph B
Parameters: p, 𝑟

Graph Partitioning Problem

…
…

…
…

…
…

…
…

≤ 𝑟
edges

𝑝 Pieces

≤ 𝑟
edges

≤ 𝑟
edges

Looks like
Densest k-Subgraph

Problem…

Maximize:
surviving edges

Allow edge
deletion

Bipartite graph B
Parameters: p, 𝑟

Graph Partitioning ⇒ NDP on Grids

Theorem: Can construct NDP-Grid instance 𝐼 s.t

Step 1: Construction

Step 2: Partitioning ⇒ Routing [Skipped]

Step 3: Partitioning ⇐ Routing

Partitioning with many surviving edges <=>
Routing a large number of demand pairs

…
…

…
…

…
…

…
…

B

NDP-Grid 𝐼

Constructing NDP-Grid

NDP-Grid 𝐼

B

Constructing NDP-Grid

•Box for each vertex of B in source/destination row

Source Row

Destination Row

NDP-Grid 𝐼

B

Constructing NDP-Grid

•Box for each vertex of B in source/destination row

•Demand pair (𝑠𝑒 , 𝑡𝑒) for each edge 𝑒 of B

•Place 𝑠𝑒 and 𝑡𝑒 inside boxes of endpoints of 𝑒

Source Row

Destination Row

NDP-Grid 𝐼

B

Constructing NDP-Grid

•Box for each vertex of B in source/destination row

•Demand pair (𝑠𝑒 , 𝑡𝑒) for each edge 𝑒 of B

•Place 𝑠𝑒 and 𝑡𝑒 inside boxes of endpoints of 𝑒

Source Row

Destination Row

NDP-Grid 𝐼

B

Constructing NDP-Grid

•Box for each vertex of B in source/destination row

•Demand pair (𝑠𝑒 , 𝑡𝑒) for each edge 𝑒 of B

•Place 𝑠𝑒 and 𝑡𝑒 inside boxes of endpoints of 𝑒

Source Row

Destination Row

NDP-Grid 𝐼

B

Constructing NDP-Grid

•Box for each vertex of B in source/destination row

•Demand pair (𝑠𝑒 , 𝑡𝑒) for each edge 𝑒 of B

•Place 𝑠𝑒 and 𝑡𝑒 inside boxes of endpoints of 𝑒

Source Row

Destination Row

NDP-Grid 𝐼

B

Constructing NDP-Grid

•Box for each vertex of B in source/destination row

•Demand pair (𝑠𝑒 , 𝑡𝑒) for each edge 𝑒 of B

•Place 𝑠𝑒 and 𝑡𝑒 inside boxes of endpoints of 𝑒

Source Row

Destination Row

NDP-Grid 𝐼

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

Source Row

Destination Row

NDP-Grid 𝐼

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

•Contract the blocks

Source Row

Destination Row

NDP-Grid 𝐼

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

•Contract the blocks

Source Row

Destination Row

NDP-Grid 𝐼

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

•Contract the blocks

Source Row

Destination Row

NDP-Grid 𝐼

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

•Contract the blocks

Source Row

Destination Row

NDP-Grid 𝐼

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

•Contract the blocks

NDP-Grid 𝐼

Drawing with low
crossing number

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

•Contract the blocks

NDP-Grid 𝐼

Good balanced cut

Almost planar

Drawing with low
crossing number

B

Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of
demand pairs

•Contract the blocks

NDP-Grid 𝐼

Good balanced cut

Almost planar

Drawing with low
crossing number

B

Good partitioning

A Proxy Problem

Part 1: Graph Partitioning ⇒ NDP-Grid

Part 2: 3COL ⇒ Graph Partitioning

Hard
Problem

NDP-Grid

𝐼

Graph
Partitioning

Problem
3COL

𝛼

How to Show Hardness? : The Cook Way

Hard
Problem

3COL

𝐼1

Graph
Partitioning Problem

Suppose there is 𝛼-approx.
algorithm for NDP-Grid

𝛼

How to Show Hardness? : The Cook Way

Hard
Problem

3COL

…
…

𝐼1

𝐼2

𝐼𝑗

Graph
Partitioning Problem

Suppose there is 𝛼-approx.
algorithm for NDP-Grid

𝛼

How to Show Hardness? : The Cook Way

Hard
Problem

Yes Instance

No Instance

⇒ 𝛼-hardness for Graph
Partitioning Problem

3COL

…
…

𝐼1

𝐼2

𝐼𝑗

Graph
Partitioning Problem

Suppose there is 𝛼-approx.
algorithm for NDP-Grid

3COL5

Graph G: 𝑛 vertices, 𝑚 edges

Each vertex degree is exactly 5

Color vertices by {𝑅𝐺𝐵} such that no
edge connects a pair of same color

Coloring Possible

Every coloring
violates at least

𝜖- fraction of edges

NP-Hard

3COL5

Graph G: 𝑛 vertices, 𝑚 edges

Each vertex degree is exactly 5

Color vertices by {𝑅𝐺𝐵} such that no
edge connects a pair of same color

NP-Hard

Coloring Possible

Every coloring
violates at least

𝜖- fraction of edges

3COL5

Graph G: 𝑛 vertices, 𝑚 edges

Each vertex degree is exactly 5

Color vertices by {𝑅𝐺𝐵} such that no
edge connects a pair of same color

NP-Hard

1 legal coloring ⇒ 6 legal colorings!

Coloring Possible

Every coloring
violates at least

𝜖- fraction of edges

3COL5

1 legal coloring ⇒ 6 legal colorings!

𝑢

𝑣

Global
Coloring #1

Global
Coloring #3

Global
Coloring #5

Global
Coloring #6

Global
Coloring #4

Global
Coloring #2

2 Prover Protocol

Edge-Player, Vertex-Player Verifier

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
𝑢, 𝑣 ∈𝑟 𝐸 𝐺

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
𝑢, 𝑣 ∈𝑟 𝐸 𝐺
𝑢 ∈𝑟 {𝑢, 𝑣}

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player

Edge
Player

Vertex
Player

𝑢
(𝑢, 𝑣)

Verifier
𝑢, 𝑣 ∈𝑟 𝐸 𝐺
𝑢 ∈𝑟 {𝑢, 𝑣}

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player

Edge
Player

Vertex
Player

𝑢
(𝑢, 𝑣)

(𝑅, 𝐺) 𝑅

Verifier
𝑢, 𝑣 ∈𝑟 𝐸 𝐺
𝑢 ∈𝑟 {𝑢, 𝑣}

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player

Verifier accepts iff colors match

Edge
Player

Vertex
Player

𝑢
(𝑢, 𝑣)

(𝑅, 𝐺) 𝑅

Verifier
𝑢, 𝑣 ∈𝑟 𝐸 𝐺
𝑢 ∈𝑟 {𝑢, 𝑣}

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player

Verifier accepts iff colors match

G=YI ⇒ 6 prover strategies where Verifier
always accepts

G=NI ⇒ For any strategy of provers,
Verifier accepts with probability ≤ 1 −

𝜖

2

Edge
Player

Vertex
Player

𝑢
(𝑢, 𝑣)

(𝑅, 𝐺) 𝑅

Verifier
𝑢, 𝑣 ∈𝑟 𝐸 𝐺
𝑢 ∈𝑟 {𝑢, 𝑣}

Common Knowledge: G

Parallel Repetition

Edge
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

𝑙 rounds
Think of 𝑙 as log100 𝑛

Parallel Repetition

Edge
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

𝑙 rounds
Think of 𝑙 as log100 𝑛

Accept iff all answers match

Parallel Repetition

Edge
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

𝑙 rounds
Think of 𝑙 as log100 𝑛

Accept iff all answers match

G=YI ⇒ 6𝑙 prover strategies where Verifier always accepts

6 6 6

Parallel Repetition

Edge
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

𝑙 rounds
Think of 𝑙 as log100 𝑛

Accept iff all answers match

G=YI ⇒ 6𝑙 prover strategies where Verifier always accepts

G=NI ⇒ Verifier accepts with prob. ≤ 2− 𝛾𝑙 Parallel Repetition
Theorem [Raz ‘98]

Parallel Repetition

Edge
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

𝑙 rounds
Think of 𝑙 as log100 𝑛

Accept iff all answers match

G=YI ⇒ 6𝑙 prover strategies where Verifier always accepts

G=NI ⇒ Verifier accepts with prob. ≤ 2− 𝛾𝑙 Parallel Repetition
Theorem [Raz ‘98]

Good prover strategy
certifies that G is YI

The Constraint Graph

•Bipartite graph

•Edge-Player queries on one side

•Vertex-Player queries on other

…
…

Edge
Player

Vertex
Player

H
…
…

The Constraint Graph

•Bipartite graph

•Edge-Player queries on one side

•Vertex-Player queries on other

•Edge iff compatible queries

Q

…
…

Edge
Player

Vertex
Player

H

Q’

…
…

Verifier asks that
pair of queries

The Reduction

3COL(5) - G

H

Constraint
Graph

The Reduction

3COL(5) - G

H

Hope

Constraint
Graph

The Reduction

G is NI whp

3COL(5) - G

H

Hope

The Reduction

G is NI whp

3COL(5) - G

H

Good Strategy for H G is YI

Hope

The Reduction

G is NI whp

3COL(5) - G

H

Good Strategy for H

Break H
into small pieces by
cutting few edges

G is YI

Hope

The Reduction

G is NI whp

3COL(5) - G

H

Good Strategy for H

Break H
into small pieces by
cutting few edges

G is YI

The Reduction

G is NI whp

Good Strategy for H’

Break H’
into small pieces by
cutting few edges

H’

H’

H’

Eventually….

Either:

Or: G is NI whp

Eventually….

Good Strategy for most
query-pairs to provers

Either:

Or: G is NI whp

Eventually….

Either:

Or:

G is YI
Good Strategy for most
query-pairs to provers

G is NI whp

Core Algorithm

Constraint
graph H

3COL(5) - G

H’

Subgraph

G is NI whp

Good Strategy for H’

Break H’
into small pieces by
cutting few edges

Core Algorithm: Simplified

Constraint
graph H

3COL(5) - G

G is NI whp

Good Strategy for H’

Break H’
into small pieces by
cutting few edges

Assume 𝐻′ = 𝐻

The Constraint Graph

Edge
Player

Vertex
Player

H
…
…

…
…

The Constraint Graph

Edge
Player

Vertex
Player

H
…
…

…
…

Edge
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

The Constraint Graph

•Only 6𝑙 responses of edge-player

•Only 3𝑙 responses of vertex-player

Edge
Player

Vertex
Player

H
…
…

…
…

Edge
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

The Cover Graph

•Query-vertices ⇒ (Query, Answer)-vertices

Edge
Player

Vertex
Player

H

Q

…
…

…
…

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

𝐻

Q’

The Cover Graph

•Query-vertices ⇒ (Query, Answer)-vertices

•Edge iff answers match

Edge
Player

Vertex
Player

H
…
…

…
…

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

Verifier
accepts

𝐻

The Cover Graph

What if G is YI?
◦6𝑙 strategies for H

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

𝐻

The Cover Graph

What if G is YI?
◦6𝑙 strategies for H

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

𝐻
…
…

…
…

…
…

…
…

…
…

𝑄, 𝐴1 𝑄 𝑄′, 𝐴1 𝑄′

All Queries

Answers
from Single

Strategy

6𝑙

strategies

The Cover Graph

What if G is YI?
◦6𝑙 strategies for H

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

Answers coming
from the same
strategy for all

queries

6𝑙 pieces

𝐻
A labelling

of H

G is YI

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

6𝑙 pieces

Partitioning
Problem!

…
…
…
…

…
…

…
…

𝑝 = 6𝑙 ,
𝑟 = |𝐸(𝐻)|

≤ 𝑟
edges

𝑝 pieces

≤ 𝑟
edges

≤ 𝑟
edges

A labelling
of H𝐻

G is YI

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

6𝑙 pieces

Partitioning
Problem!

Best possible
partition!

…
…
…
…

…
…

…
…

𝑝 = 6𝑙 ,
𝑟 = |𝐸(𝐻)|

≤ 𝑟
edges

𝑝 pieces

≤ 𝑟
edges

≤ 𝑟
edges

A labelling
of H𝐻

Partitioning Problem

G is YI Good Strategy for H
Partitioning with

Many Surviving Edges

Partitioning Problem

G is YI Good Strategy for H
Partitioning with

Many Surviving Edges

Extract strategy from
partitioning with many

surviving edges?

Partitioning Problem

G is YI Good Strategy for H
Partitioning with

Many Surviving Edges

Extract strategy from
partitioning with many

surviving edges?

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
… …
…

…
…

…
…

Few queries, but
answers from all
strategies

NO!

Partitioning Problem

G is YI Good Strategy for H
Partitioning with

Many Surviving Edges

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
… …
…

…
…

…
…

Few queries, but
answers from all
strategies

Cheating partition
must exploit the
structure of 𝐻…

Partitioning Problem

G is YI Good Strategy for H
Partitioning with

Many Surviving Edges

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
… …
…

…
…

…
…

Few queries, but
answers from all
strategies

Cheating partition
must exploit the
structure of 𝐻…

Leverage it to break
H into pieces!

Partitioning Problem : Main Theorem

Good Strategy for H

Break H
into small pieces by
cutting few edges

Partitioning
with Many

Surviving Edges

Truthful
Partition

Cheating
Partition

Partitioning Problem

Good Strategy for H

Break H
into small pieces by
cutting few edges

Partitioning
with Many

Surviving Edges

G is YI

G is NI

Partitioning Problem

Good Strategy for H

Break H
into small pieces by
cutting few edges

Partitioning
with Many

Surviving Edges

G is YI

G is NI
Partitioning

with Few
Surviving Edges

Partitioning Problem

Good Strategy for H

Break H
into small pieces by
cutting few edges

Partitioning
with Many

Surviving Edges

G is YI

G is NI
Partitioning

with Few
Surviving Edges

Return: G is NI

Partitioning Problem

Good Strategy for H

Break H
into small pieces by
cutting few edges

Partitioning
with Many

Surviving Edges

G is YI

G is NI
Partitioning

with Few
Surviving Edges

Return: G is NI

𝛼

The Core Algorithm

Constraint
graph H

3COL(5) - G

H’

Subgraph

G is NI

Good Strategy
for H’

Break H’
into small pieces by
cutting few edges

Cover Graph

Partitioning
with Many

Surviving Edges

Partitioning
with Few

Surviving Edges

H’

Result

Size of 3COL5: 𝑛

Parallel repetition parameter: 𝑙

Size of the constraint graph: 𝑛𝑂 𝑙

Result

Size of 3COL5: 𝑛

Parallel repetition parameter: 𝑙

Size of the constraint graph: 𝑛𝑂 𝑙

Setting parameters,

2 −hard assuming NP ⊈ RTIME(𝑛𝑝𝑜𝑙𝑦 log 𝑛)

𝑛 −hard assuming NP ⊈ RTIME(2𝑛
𝛿

)Ω(1/ log log 𝑛 2)

log1−𝜖 𝑛

For some
𝛿 > 0

For all
𝜖 > 0

Conclusion

•Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

•Polynomial hardness for general-NDP?

•Congestion minimization?
When paths are allowed to share nodes

•Can get something for Densest k-Subgraph from this
approach?

Conclusion

•Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

•Polynomial hardness for general-NDP?

•Congestion minimization?
When paths are allowed to share nodes

•Can get something for Densest k-Subgraph from this
approach?

Thank You!

