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What about simpler cases?
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Known Results

___________UpperBound

General NDP 0(\/%) 20(,/logn)
NDP-Grid 0(nt/*) APX-hardness
NDP-Planar 0 (n°/19) 20(,/Tog n)

“grids with holes” Matching Upper
are hard el Bound?

(even with sources on top)




NDP-Grid with Sources on Boundary

20(Jlogn) —approx. if sources on boundary [Chuzhoy, Kim, N “17]
° First sub-polynomial approx. algorithm!

99 - Ty '}

Generalize both

_Grid?
20108 7) _hard 20(/T9E™) _approx. | L5 NDP-Grid:




Main Theorem

NDP-Grid is

] 1-€
28 pard assuming NP & RTIME(nPoty logn)




Main Theorem

Weaker than rETH
NDP-Grid is

O(1 1—€
28 pard assuming NP & RTIME(nPoty logn)

nQ(1/(oglogm)® _hard assuming NP & RTIME(2™)

For some
o >0




The Updated Picture

General NDP 0(v/n) nﬂ(l/(loglogn)z)
NDP-Planar 0(n°/1%) nﬂ(l/(loglogn)z)

NDP-Grid 0 (n/%) nﬂ(l/ (loglogn)?)



A Proxy Problem

Graph

Partitioning
Problem

Hard
Problem

3COL

C Part 1: Graph Partitioning = NDP-Grid )
Part 2: 3COL = Graph Partitioning




How to Show Hardness? : The Karp Way

= a-hardness for NDP-Grid

OPT = X Yes Instance
Hard N
Problem =
P ae No Instance
Graph T'<x/q No Instance

Partitioning Problem NDP-Grid
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Graph Partitioning Problem

Maximize:
=T # surviving edges
Allow edge edges
a

deletion

) <
<r edges

Looks like

Bipartite graph B p Pieces Densest k-Subgraph
Parameters: p, 7 Problem...




Graph Partitioning = NDP on Grids

Theorem: Can construct NDP-Grid instance [ s.t

Partitioning with many surviving edges <=>

Routing a large number of demand pairs

Step 1: Construction

Step 2: Partitioning = Routing [Skipped]

Step 3: Partitioning < Routing NDP-Grid I
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Constructing NDP-Grid

*Box for each vertex of B in source/destination row
*Demand pair (s, t,) for each edge e of B

*Place s, and t, inside boxes of endpoints of e

Source Row

Destination Row
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;

w
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Graph Partitioning & NDP on Grids

*Consider routing of a large subset of

demand pairs
Drawing with low

*Contract the blocks crossing number

Y X |o

NDP-Grid [
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Graph Partitioning & NDP on Grids

B
*Consider routing of a large subset of
demand pairs

Drawing with low
*Contract the blocks crossing

Almost planar

Good balanced cut

Good partitioning

NDP-Grid [




A Proxy Problem

Graph

Partitioning
Problem

Hard
Problem

3COL

Q(rt 1: Graph Partitioning = NDP-Grid
(" Part 2: 3COL = Graph Partitioning )
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How to Show Hardness? : The Cook Way

- Suppose there is a-approx.
. Q,\

= a-hardness for Graph

L algorithm for NDP-Grid
Partitioning Problem

- PR Ves Instance.
Problem |- - Ij —~
No Instance

3COL Graph

Partitioning Pro
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3COLS

Graph G: n vertices, m edges

Each vertex degree is exactly 5

Color vertices by {RGB} such that no
edge connects a pair of same color

Coloring Possible

Every coloring
violates at least 1 legal coloring = 6 legal colorings!

e- fraction of edges




3COLS

) ) E I

Coloring #1 Coloring #3 Coloring #5
v ‘

[ Global ] [ Global J [ Global J
Coloring #2 Coloring #4 Coloring #6 1 legal coloring = 6 legal colorings!
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2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)
u €, {u, v}

Verifier accepts iff colors match (w,v)
(RG) R\

Edge
Player

Vertex
Player

Common Knowledge: G



2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)
u €, {u, v}

Verifier accepts iff colors match (u, )

oo A\
G=Y| = 6 prover strategies where Verifier

Edge Vertex

always accepts

G=NI = For any strategy of provers,
Verifier accepts with probability < 1 — S
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Parallel Repetition

[ rounds
Think of [ as 10g100 n (81, €2, «iv) el) —_— ...,RB)
Accept iff all answers match
(v, vy, ..., V]) — ..., B)

G=Y1 = 6! prover strategies where Verifier always accepts
Good prover strategy

certifies that G is YI

_ : — vyl Parallel Repetition
G=NI| = Verifier accepts with prob. < 2 Theorem [Raz ‘98
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The Constraint Graph

*Bipartite graph
*Edge-Player queries on one side

*Vertex-Player queries on other

*Edge iff compatible queries

Verifier asks that
pair of queries
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The Reduction

4 )
Break H’
into small pieces by — *
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= Gis Nl whp @
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Core Algorithm

Break H’

into small pieces by
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Core Algorithm: Simplified

Assume H' = H

Break H’

into small pieces by

cutting few edges
/ Good Strategy for H’

Constraint
graph H

e G is Nl whp




The Constraint Graph

Edge Vertex
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The Constraint Graph

Vertex
Player




The Constraint Graph

., RB)

Edge Vertex
Player Player

Only 6' responses of edge-player

*Only 3! responses of vertex-player




The Cover Graph

*Query-vertices = (Query, Answer)-vertices .
® ©
Player Player




The Cover Graph
*Query-vertices = (Query, Answer)-vertices
*Edge iff answers match ——— .

accepts
Edge Vertex
Player Player

P
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The Cover Graph

What if G is YI? Answers coming
- 6! strategies for H

from the same
strategy for all

gueries
é@ I A labelling
of H
N _/
VT

6! pieces
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GISY] E = Problem!

Best possible
partition!

A labelling
of H

/

~

6! pieces
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Partitioning Problem

Partitioni ith
GisYl <—> Good Strategy for H —> artitioning wi
<_ Many Surviving Edges

o 5%

Few queries, but
answers from all
strategies

Cheating partition
must exploit the
structure of H...

Leverage it to break
H into pieces!




Partitioning Problem : Main Theorem

.. Cheating : Break.H
Partitioning Partition into small pieces by

with Many cutting few edges
Surviving Edges

Truthful Good Strategy for H
Partition
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Partitioning Problem

Partitioning
with Many
Surviving Edges

Partitioning
with Few
Surviving Edges

Break H

into small pieces by
cutting few edges

Good Strategy for H

Return: G is NI




The Core Algorithm

Break H’

into small pieces by
/ cutting few edges

Subgraph

Partitioning

Constraint
graph H

i with Many

Surviving Edges N Good Strategy

for H’

Cover Graph Partitioning

Surviving Edges
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Size of 3COL5: n

Parallel repetition parameter: [

Size of the constraint graph: n¢W

Setting parameters,

1—€

|
°® " _hard assuming NP & RTIME(nPoW log )

2

n@(1/0oglogn)®) _hard assuming NP & RTIME(2™)

For some
o0 >0
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*Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

*Polynomial hardness for general-NDP?

*Congestion minimization?
When paths are allowed to share nodes

*Can get something for Densest k-Subgraph from this
approach?
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*Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

*Polynomial hardness for general-NDP?

*Congestion minimization?
When paths are allowed to share nodes

*Can get something for Densest k-Subgraph from this
approach?

Thank You!



