Almost Polynomial
Hardness of NDP-Grids

JULIA CHUZHOY DAVID KIM RACHIT NIMAVAT

T TOYOTA
I st Banff, Nov 2017

AT CHICAGO

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs (s, t1), ..., (Sg, tx)

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs (s, t1), ..., (Sg, tx)

tz Sources Destinations

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs (s, t1), ..., (Sg, tx)

tz Sources Destinations

52 Goal: Route as many pairs as possible
via node-disjoint paths

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs (s, t1), ..., (Sg, tx)

Sl tl
tz Sources Destinations
52 Goal: Route as many pairs as possible
t3 . L
via node-disjoint paths
S3

Known Results

Constant k = Efficient algorithm [Robertson, Seymour '90]
k part of input = NP-Hard [Karp’72]

Known Results

Constant k = Efficient algorithm [Robertson, Seymour '90]

k part of input = NP-Hard [Karp’72]

0(\/%) —approx. [Kolliopoulos, Stein ‘98]

Roughly () (,/log n) —hardness of approx. [Andrews, Zhang ‘05],

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

Known Results

Constant k = Efficient algorithm [Robertson, Seymour '90]

k part of input = NP-Hard [Karp’72]

0(\/%) —approx. [Kolliopoulos, Stein ‘98]

Roughly () (,/log n) —hardness of approx. [Andrews, Zhang ‘05],

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

What about simpler cases?

Known Results

___________UpperBound

General NDP 0(+/n) 0 (Jlogn)

NDP-Grid:

0 (n'/*) —approx. for NDP-Grid [Chuzhoy, Kim ‘15]

*APX-hardness [Chuzhoy, Kim ‘15]

Known Results

___________UpperBound

General NDP 0(+/n) 0 (Jlogn)

NDP-Grid 0(nt/*) APX-hardness

NDP-Planar:
*0(n%19) —approx. for NDP-Planar [Chuzhoy, Kim, Li ‘16]

:29(/1081) _hardness [Chuzhoy, Kim, N “16]

Known Results

___________UpperBound

General NDP 0(\/%) 20(,/logn)
NDP-Grid 0(nt/*) APX-hardness
NDP-Planar 0 (n°/19) 20(,/Tog n)

“grids with holes” Matching Upper
are hard el Bound?

(even with sources on top)

NDP-Grid with Sources on Boundary

20(Jlogn) —approx. if sources on boundary [Chuzhoy, Kim, N “17]
° First sub-polynomial approx. algorithm!

99 - Ty '}

Generalize both

_Grid?
20108 7) _hard 20(/T9E™) _approx. | L5 NDP-Grid:

Main Theorem

NDP-Grid is

] 1-€
28 pard assuming NP & RTIME(nPoty logn)

Main Theorem

Weaker than rETH
NDP-Grid is

O(1 1—€
28 pard assuming NP & RTIME(nPoty logn)

nQ(1/(oglogm)® _hard assuming NP & RTIME(2™)

For some
o >0

The Updated Picture

General NDP 0(v/n) nﬂ(l/(loglogn)z)
NDP-Planar 0(n°/1%) nﬂ(l/(loglogn)z)

NDP-Grid 0 (n/%) nﬂ(l/ (loglogn)?)

A Proxy Problem

Graph

Partitioning
Problem

Hard
Problem

3COL

C Part 1: Graph Partitioning = NDP-Grid)
Part 2: 3COL = Graph Partitioning

How to Show Hardness? : The Karp Way

= a-hardness for NDP-Grid

OPT = X Yes Instance
Hard N
Problem =
P ae No Instance
Graph T'<x/q No Instance

Partitioning Problem NDP-Grid

Graph Partitioning Problem

Bipartite graph B
Parameters: p,r

Graph Partitioning Problem

Maximize:
=T # surviving edges
Allow edge edges
deletlon
<r
<7r edges
edges

Bipartite graph B p Pieces
Parameters: p,r

Graph Partitioning Problem

Maximize:
=T # surviving edges
Allow edge edges
a

deletion

) <
<r edges

Looks like

Bipartite graph B p Pieces Densest k-Subgraph
Parameters: p, 7 Problem...

Graph Partitioning = NDP on Grids

Theorem: Can construct NDP-Grid instance [s.t

Partitioning with many surviving edges <=>

Routing a large number of demand pairs

Step 1: Construction

Step 2: Partitioning = Routing [Skipped]

Step 3: Partitioning < Routing NDP-Grid I

Constructing NDP-Grid

Y X |o

NDP-Grid [

Constructing NDP-Grid

B
*Box for each vertex of B in source/destination row :><

Source Row

Destination Row

NDP-Grid [

Constructing NDP-Grid

B
*Box for each vertex of B in source/destination row :><
*Demand pair (s, t,) for each edge e of B

*Place s, and t, inside boxes of endpoints of e

Source Row

Destination Row

NDP-Grid [

Constructing NDP-Grid

*Box for each vertex of B in source/destination row
*Demand pair (s, t,) for each edge e of B

*Place s, and t, inside boxes of endpoints of e

Source Row

Destination Row

—e

=
!

NDP-Grid [

Constructing NDP-Grid

*Box for each vertex of B in source/destination row
*Demand pair (s, t,) for each edge e of B

*Place s, and t, inside boxes of endpoints of e

Source Row

Destination Row

—e

;

P
!

NDP-Grid [

Constructing NDP-Grid

*Box for each vertex of B in source/destination row
*Demand pair (s, t,) for each edge e of B

*Place s, and t, inside boxes of endpoints of e

Source Row

Destination Row

—e

;

>
!

NDP-Grid [

Constructing NDP-Grid

*Box for each vertex of B in source/destination row
*Demand pair (s, t,) for each edge e of B

*Place s, and t, inside boxes of endpoints of e

Source Row

Destination Row

—e

;

w

>=
!

NDP-Grid [

Graph Partitioning &< NDP on Grids
B

*Consider routing of a large subset of

demand pairs

Source Row Qe—@

Destination Row

NDP-Grid [

Graph Partitioning &< NDP on Grids

B
*Consider routing of a large subset of
demand pairs

*Contract the blocks

Source Row -

Destination Row

NDP-Grid [

Graph Partitioning &< NDP on Grids

B
*Consider routing of a large subset of
demand pairs

*Contract the blocks

Source Row /

Destination Row

NDP-Grid [

Graph Partitioning &< NDP on Grids

B
*Consider routing of a large subset of
demand pairs

*Contract the blocks

Source Row /

Destination Row

NDP-Grid [

Graph Partitioning &< NDP on Grids

B
*Consider routing of a large subset of
demand pairs

*Contract the blocks

Source Row /

Destination Row

NDP-Grid [

Graph Partitioning & NDP on Grids

*Consider routing of a large subset of

demand pairs
Drawing with low

*Contract the blocks crossing number

Y X |o

NDP-Grid [

Graph Partitioning & NDP on Grids

Drawing with low
*Contract the blocks crossing

Almost planar

B
*Consider routing of a large subset of
demand pairs

Good balanced cut

\Q/\ NDP-Grid I

Graph Partitioning & NDP on Grids

B
*Consider routing of a large subset of
demand pairs

Drawing with low
*Contract the blocks crossing

Almost planar

Good balanced cut

Good partitioning

NDP-Grid [

A Proxy Problem

Graph

Partitioning
Problem

Hard
Problem

3COL

Q(rt 1: Graph Partitioning = NDP-Grid
(" Part 2: 3COL = Graph Partitioning)

How to Show Hardness? : The Cook Way

Suppose there is a-approx.
algorithm for NDP-Grid

3COL Graph

Partitioning Problem

How to Show Hardness? : The Cook Way

Suppose there is a-approx.
algorithm for NDP-Grid

3COL

Partitioning Problem

How to Show Hardness? : The Cook Way

- Suppose there is a-approx.
. Q,\

= a-hardness for Graph

L algorithm for NDP-Grid
Partitioning Problem

- PR Ves Instance.
Problem |- - Ij —~
No Instance

3COL Graph

Partitioning Pro

3COLS

Graph G: n vertices, m edges

Each vertex degree is exactly 5

Color vertices by {RGB} such that no
edge connects a pair of same color

Coloring Possible

Every coloring
violates at least
e- fraction of edges

3COLS

Graph G: n vertices, m edges

Each vertex degree is exactly 5

Color vertices by {RGB} such that no
edge connects a pair of same color

Coloring Possible

Every coloring
violates at least
e- fraction of edges

3COLS

Graph G: n vertices, m edges

Each vertex degree is exactly 5

Color vertices by {RGB} such that no
edge connects a pair of same color

Coloring Possible

Every coloring
violates at least 1 legal coloring = 6 legal colorings!

e- fraction of edges

3COLS

)) E I

Coloring #1 Coloring #3 Coloring #5
v ‘

[Global] [Global J [Global J
Coloring #2 Coloring #4 Coloring #6 1 legal coloring = 6 legal colorings!

2 Prover Protocol

Edge-Player, Vertex-Player

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)
u €, {u, v}

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)
u €, {u, v}

(u,) \
u

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)
u €, {u, v}

(u, v)
(R,;) R\ \u

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)
u €, {u, v}

Verifier accepts iff colors match (w,v)
(RG) R\

Edge
Player

Vertex
Player

Common Knowledge: G

2 Prover Protocol

Edge-Player, Vertex-Player Verifier
(w,v) € E(G)
u €, {u, v}

Verifier accepts iff colors match (u,)

oo A\
G=Y| = 6 prover strategies where Verifier

Edge Vertex

always accepts

G=NI = For any strategy of provers,
Verifier accepts with probability < 1 — S

Parallel Repetition

[rounds

Think of [as log*?° n .., RB)

) B)

Parallel Repetition

[rounds

Think of [as log*?° n (e, €2, 1) — .., RB)

Accept iff all answers match
(v, vy, ..., V]) —

- B)

Parallel Repetition

[rounds

6 6 6
Think of [as log'%° n o [B2) s L) —> .., RB)
Accept iff all answers match Vertex
[\vo o)) — —+(B,R,...,B)
Player

= 6' prover strategies where Verifier always accepts

Parallel Repetition

[rounds

Think of [as log*?° n (e, €2, 1) — .., RB)

Accept iff all answers match

(v, vy, ..., V]) — ..., B)

G=YI = 6' prover strategies where Verifier always accepts

_ e : — yl Parallel Repetition
G=NI| = Verifier accepts with prob. < 2

Parallel Repetition

[rounds
Think of [as 10g100 n (81, €2, «iv) el) —_— ...,RB)
Accept iff all answers match
(v, vy, ..., V]) — ..., B)

G=Y1 = 6! prover strategies where Verifier always accepts
Good prover strategy

certifies that G is YI

_ : — vyl Parallel Repetition
G=NI| = Verifier accepts with prob. < 2 Theorem [Raz ‘98

The Constraint Graph .

*Bipartite graph ‘
*Edge-Player queries on one side

*\Vertex-Player queries on other

Edge Vertex
Player Player

The Constraint Graph

*Bipartite graph
*Edge-Player queries on one side

*Vertex-Player queries on other

*Edge iff compatible queries

Verifier asks that
pair of queries

The Reduction

Constraint
Graph

The Reduction

3COL(5)- G

Constraint
Graph

The Reduction

3COL(5)- G

e Gis Nlwhp @

The Reduction

3COL(5) - G

> Good Strategy for H |amend @
_ "

O BN G is Nl whp @

The Reduction

3COL(5)- G

Break H

into small pieces by
cutting few edges

Good Strategy for H |amend @
e Gis Nlwhp @

The Reduction

3COL(5) - G Break H

into small pieces by
cutting few edges

Good Strategy for H |amend @
e Gis Nlwhp @

The Reduction

4)
Break H’
into small pieces by — *
cutting few edges I

Good Strategy for H’ —

= Gis Nl whp @

Eventually....

Either:

Or: G is NIl whp @

Eventually....

Either:

Good Stra.tegy for most
query-pairs to provers

Or: G is Nl whp @

Eventually....

Either:

Good Stra.tegy for most @
query-pairs to provers

Or: G is Nl whp @

Core Algorithm

Break H’

into small pieces by
Subgraph cutting few edges

Constraint
graph H

HI

Good Strategy for H’

e G is Nl whp

Core Algorithm: Simplified

Assume H' = H

Break H’

into small pieces by

cutting few edges
/ Good Strategy for H’

Constraint
graph H

e G is Nl whp

The Constraint Graph

Edge Vertex
Player Player

The Constraint Graph

Vertex
Player

The Constraint Graph

., RB)

Edge Vertex
Player Player

Only 6' responses of edge-player

*Only 3! responses of vertex-player

The Cover Graph

*Query-vertices = (Query, Answer)-vertices .
® ©
Player Player

The Cover Graph
*Query-vertices = (Query, Answer)-vertices
*Edge iff answers match ——— .

accepts
Edge Vertex
Player Player

P

The Cover Graph

What if G is YI?
- 6! strategies for H

The Cover Graph (e.4,@) (@' A4:(@))

P
What if G is YI? All Queries \
o l I
6" strategies for H Answers
from Single
Strategy

61

SE a strategies

The Cover Graph

What if G is YI? Answers coming
- 6! strategies for H

from the same
strategy for all

gueries
é@ I A labelling
of H
N _/
VT

6! pieces

GIsY]

Partitioning
Problem!

A labelling
of H

/

~

6! pieces

GISY] E = Problem!

Best possible
partition!

A labelling
of H

/

~

6! pieces

Partitioning Problem

Partitioni ith
<> Good Strategy for H > artitioning wi

Many Surviving Edges

Partitioning Problem

Partitioni ith
GisYl <> Good Strategy for H —> art! |on.|r?g e
«— Many Surviving Edges

o

Extract strategy from
partitioning with many
surviving edges?

Partitioning Problem

Partitioni ith
GisYl <> Good Strategy for H —> artitioning wi
(_ Many Surviving Edges

o 5%

Few queries, but
answers from all
strategies

Extract strategy from
partitioning with many
surviving edges?

Partitioning Problem

Partitioni ith
GisYl <> Good Strategy for H —> artitioning wi
<_ Many Surviving Edges

o 5%

Few queries, but
answers from all
strategies

Cheating partition
must exploit the
structure of H...

Partitioning Problem

Partitioni ith
GisYl <—> Good Strategy for H —> artitioning wi
<_ Many Surviving Edges

o 5%

Few queries, but
answers from all
strategies

Cheating partition
must exploit the
structure of H...

Leverage it to break
H into pieces!

Partitioning Problem : Main Theorem

.. Cheating : Break.H
Partitioning Partition into small pieces by

with Many cutting few edges
Surviving Edges

Truthful Good Strategy for H
Partition

Partitioning Problem

Break H
Pa rtitigning into small pieces by

with Ma ny cutting few edges

Surviving Edges

Good Strategy for H

Partitioning Problem

Break H
Pa rtitigning into small pieces by

with Many
Surviving Edges

cutting few edges

Good Strategy for H

Partitioning
with Few
Surviving Edges

Partitioning Problem

Break H
Pa rtitioning into small pieces by

with Many
Surviving Edges

cutting few edges

Good Strategy for H

Partitioning

with Few Return: G is NI

Surviving Edges

Partitioning Problem

Partitioning
with Many
Surviving Edges

Partitioning
with Few
Surviving Edges

Break H

into small pieces by
cutting few edges

Good Strategy for H

Return: G is NI

The Core Algorithm

Break H’

into small pieces by
/ cutting few edges

Subgraph

Partitioning

Constraint
graph H

i with Many

Surviving Edges N Good Strategy

for H’

Cover Graph Partitioning

Surviving Edges

Result

Size of 3COL5: n

Parallel repetition parameter: [

Size of the constraint graph: n°®

Result

Size of 3COL5: n

Parallel repetition parameter: [

Size of the constraint graph: n¢W

Setting parameters,

1—€

|
°® " _hard assuming NP & RTIME(nPoW log)

2

n@(1/0oglogn)®) _hard assuming NP & RTIME(2™)

For some
o0 >0

Conclusion

*Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

*Polynomial hardness for general-NDP?

*Congestion minimization?
When paths are allowed to share nodes

*Can get something for Densest k-Subgraph from this
approach?

Conclusion

*Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

*Polynomial hardness for general-NDP?

*Congestion minimization?
When paths are allowed to share nodes

*Can get something for Densest k-Subgraph from this
approach?

Thank You!

