Almost Polynomial Hardness of NDP-Grids

JULIA CHUZHOY DAVID KIM RACHIT NIMAVAT

Banff, Nov 2017

Input: Graph and demand pairs $(s_1, t_1), \dots, (s_k, t_k)$

Input: Graph and demand pairs $(s_1, t_1), \dots, (s_k, t_k)$

Input: Graph and demand pairs $(s_1, t_1), \dots, (s_k, t_k)$

Goal: Route as many pairs as possible via node-disjoint paths

Input: Graph and demand pairs $(s_1, t_1), \dots, (s_k, t_k)$

Goal: Route as many pairs as possible via node-disjoint paths

Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90] k part of input \Rightarrow NP-Hard [Karp '72]

Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90] k part of input \Rightarrow NP-Hard [Karp '72]

 $O(\sqrt{n})$ -approx. [Kolliopoulos, Stein '98] Roughly $\Omega(\sqrt{\log n})$ -hardness of approx. [Andrews, Zhang '05], [Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang '10]

Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90] k part of input \Rightarrow NP-Hard [Karp '72]

$$O(\sqrt{n})$$
 -approx. [Kolliopoulos, Stein '98]
Roughly $\Omega(\sqrt{\log n})$ -hardness of approx. [Andrews, Zhang '05],
[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang '10]

What about *simpler* cases?

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$\Omega\left(\sqrt{\log n}\right)$

NDP-Grid: • $O(n^{1/4})$ —approx. for NDP-Grid [Chuzhoy, Kim '15] •APX-hardness [Chuzhoy, Kim '15]

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$\Omega\left(\sqrt{\log n}\right)$
NDP-Grid	$O(n^{1/4})$	APX-hardness

NDP-Planar:

• $O(n^{9/19})$ —approx. for NDP-Planar [Chuzhoy, Kim, Li '16] • $2^{\Omega(\sqrt{\log n})}$ —hardness [Chuzhoy, Kim, N '16]

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$2^{\Omega(\sqrt{\log n})}$
NDP-Grid	$O(n^{1/4})$	APX-hardness
NDP-Planar	$O(n^{9/19})$	$2^{\Omega(\sqrt{\log n})}$

"grids with holes" are hard (even with sources on top)

Matching Upper Bound?

NDP-Grid with Sources on Boundary

2^O(√log n) —approx. if sources on boundary [Chuzhoy, Kim, N '17] • First sub-polynomial approx. algorithm!

$$2^{O(\sqrt{\log n})} - \operatorname{approx}.$$

Generalize both to NDP-Grid?

Main Theorem

NDP-Grid is

Main Theorem

Weaker than rETH

 $\delta > 0$

NDP-Grid is

The Updated Picture

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$n^{\Omega(1/(\log\log n)^2)}$
NDP-Planar	$O(n^{9/19})$	$n^{\Omega(1/(\log\log n)^2)}$
NDP-Grid	$O(n^{1/4})$	$n^{\Omega(1/(\log\log n)^2)}$

A Proxy Problem

Part 1: Graph Partitioning \Rightarrow NDP-Grid

Part 2: 3COL \Rightarrow Graph Partitioning

How to Show Hardness? : The Karp Way

Suppose there is α -approx. algorithm for NDP-Grid

Graph Partitioning Problem

Bipartite graph B Parameters: p, r

Graph Partitioning Problem

Graph Partitioning Problem

Theorem: Can construct NDP-Grid instance *I* s.t

Partitioning with many surviving edges <=> Routing a large number of demand pairs

Step 1: Construction

Step 2: Partitioning \Rightarrow Routing [Skipped]

Step 3: Partitioning ← Routing

Box for each vertex of B in source/destination row

•Box for each vertex of B in source/destination row

- •Demand pair (s_e, t_e) for each edge e of B
- •Place s_e and t_e inside boxes of endpoints of e

- Box for each vertex of B in source/destination row
- •Demand pair (s_e, t_e) for each edge e of B
- •Place s_e and t_e inside boxes of endpoints of e

- •Box for each vertex of B in source/destination row
- •Demand pair (s_e, t_e) for each edge e of B
- •Place s_e and t_e inside boxes of endpoints of e

- Box for each vertex of B in source/destination row
- •Demand pair (s_e, t_e) for each edge e of B
- •Place s_e and t_e inside boxes of endpoints of e

- •Box for each vertex of B in source/destination row
- •Demand pair (s_e, t_e) for each edge e of B
- •Place s_e and t_e inside boxes of endpoints of e

•Consider routing of a large subset of demand pairs

R

- •Consider routing of a large subset of demand pairs
- Contract the blocks

- •Consider routing of a large subset of demand pairs
- Contract the blocks

- •Consider routing of a large subset of demand pairs
- Contract the blocks

- •Consider routing of a large subset of demand pairs
- Contract the blocks

- •Consider routing of a large subset of demand pairs
- Contract the blocks

R

- •Consider routing of a large subset of demand pairs
- Contract the blocks

NDP-Grid I

R

- •Consider routing of a large subset of demand pairs
- Contract the blocks

Drawing with low crossing number

A Proxy Problem

How to Show Hardness? : The Cook Way

How to Show Hardness? : The Cook Way

How to Show Hardness? : The Cook Way

Graph G: *n* vertices, *m* edges

Each vertex degree is exactly 5

Color vertices by {*RGB*} such that no edge connects a pair of same color

Graph G: *n* vertices, *m* edges

Each vertex degree is exactly 5

Color vertices by {*RGB*} such that no edge connects a pair of same color

Graph G: *n* vertices, *m* edges

Each vertex degree is exactly 5

Color vertices by {*RGB*} such that no edge connects a pair of same color

Coloring PossibleNP-HardEvery coloring
violates at least
 ϵ - fraction of edges1 legal coloring \Rightarrow 6 legal colorings!

Edge-Player, Vertex-Player

Vertex Player

Edge-Player, Vertex-Player

Verifier $(u, v) \in_r E(G)$

Vertex Player

Edge-Player, Vertex-Player

Verifier $(u, v) \in_r E(G)$ $u \in_r \{u, v\}$

Edge-Player, Vertex-Player

Edge-Player, Vertex-Player

Edge-Player, Vertex-Player

Verifier accepts iff colors match

Edge-Player, Vertex-Player

Verifier accepts iff colors match

 $G=YI \Rightarrow 6$ prover strategies where Verifier always accepts

G=NI \Rightarrow For any strategy of provers, Verifier accepts with probability $\leq 1 - \frac{\epsilon}{2}$

l roundsThink of l as $\log^{100} n$ $(e_1, e_2, \dots, e_l) \longrightarrow \begin{bmatrix} \mathsf{Edge} \\ \mathsf{Player} \end{bmatrix} \longrightarrow (RB, GR, \dots, RB)$ $(v_1, v_2, \dots, v_l) \longrightarrow \begin{bmatrix} \mathsf{Vertex} \\ \mathsf{Player} \end{bmatrix} \longrightarrow (B, R, \dots, B)$

l rounds Think of *l* as $\log^{100} n$

$$(e_1, e_2, \dots, e_l) \longrightarrow \begin{bmatrix} \mathsf{Edge} \\ \mathsf{Player} \end{bmatrix} \longrightarrow (RB, GR, \dots, RB)$$

Accept iff all answers match $(v_1, v_2, ..., v_l) \rightarrow$

$$v_2, \dots, v_l) \longrightarrow$$
 Vertex $\longrightarrow (B, R, \dots, B)$ Player

 $G=YI \Rightarrow 6^l$ prover strategies where Verifier always accepts

l rounds Think of *l* as $\log^{100} n$ $(e_1, e_2, \dots, e_l) \longrightarrow (RB, GR, \dots, RB)$

Accept iff all answers match $(v_1, v_2, ..., v_l) \rightarrow Vertex$ Player $\rightarrow (B, R, ..., B)$

 $G=YI \Rightarrow 6^l$ prover strategies where Verifier always accepts

G=NI \Rightarrow Verifier accepts with prob. $\leq 2^{-\gamma l}$

l rounds Think of *l* as $\log^{100} n$ $(e_1, e_2, \dots, e_l) \longrightarrow (RB, GR, \dots, RB)$

Accept iff all answers match $(v_1, v_2, \dots, v_l) \longrightarrow (B, R, \dots, B)$ Player

 $G=YI \Rightarrow 6^{l}$ prover strategies where Verifier always accepts Good prover strategy certifies that G is YI

G=NI \Rightarrow Verifier accepts with prob. $\leq 2^{-\gamma l}$

The Constraint Graph

- •Bipartite graph
- •Edge-Player queries on one side
- •Vertex-Player queries on other

The Constraint Graph

- •Bipartite graph
- •Edge-Player queries on one side
- •Vertex-Player queries on other

•Edge iff compatible queries

Verifier asks that pair of queries

Eventually....

Either:

Eventually....

Either:

Good Strategy for most query-pairs to provers

Eventually....

Either:

Good Strategy for most query-pairs to provers

Core Algorithm

Core Algorithm: Simplified

The Constraint Graph

The Constraint Graph

$$(e_1, e_2, \dots, e_l) \longrightarrow \begin{bmatrix} \mathsf{Edge} \\ \mathsf{Player} \end{bmatrix} \longrightarrow (RB, GR, \dots, RB)$$
$$(v_1, v_2, \dots, v_l) \longrightarrow \begin{bmatrix} \mathsf{Vertex} \\ \mathsf{Player} \end{bmatrix} \longrightarrow (B, R, \dots, B)$$

The Constraint Graph

$$(e_1, e_2, \dots, e_l) \longrightarrow \begin{bmatrix} \mathsf{Edge} \\ \mathsf{Player} \end{bmatrix} \longrightarrow (RB, GR, \dots, RB)$$
$$(v_1, v_2, \dots, v_l) \longrightarrow \begin{bmatrix} \mathsf{Vertex} \\ \mathsf{Player} \end{bmatrix} \longrightarrow (B, R, \dots, B)$$

Only 6^l responses of edge-player
Only 3^l responses of vertex-player

•Query-vertices \Rightarrow (Query, Answer)-vertices

What if G is YI? 6^l strategies for H

Good Strategy for H

Partitioning with

Many Surviving Edges

Extract strategy from partitioning with many surviving edges?

G is YI

Partitioning Problem : Main Theorem

The Core Algorithm

Result

Size of 3COL5: *n*

Parallel repetition parameter: lSize of the constraint graph: $n^{O(l)}$

Result

For all

 $\epsilon > 0$

Size of 3COL5: *n*

Parallel repetition parameter: *l*

Size of the constraint graph: $n^{O(l)}$

Setting parameters,

 $2^{\log^{1-\epsilon}n}$ —hard assuming NP \nsubseteq RTIME($n^{poly \log n}$) $n^{\Omega(1/(\log \log n)^2)}$ —hard assuming NP \nsubseteq RTIME($2^{n^{\delta}}$)

For some

 $\delta > 0$

Conclusion

•Upper and lower bounds for both, general-NDP and NDP-Grids are now either polynomial or near polynomial

- •Polynomial hardness for general-NDP?
- •Congestion minimization? When paths are allowed to share nodes
- Can get something for Densest k-Subgraph from this approach?

Conclusion

•Upper and lower bounds for both, general-NDP and NDP-Grids are now either polynomial or near polynomial

- •Polynomial hardness for general-NDP?
- •Congestion minimization? When paths are allowed to share nodes
- Can get something for Densest k-Subgraph from this approach?

Thank You!