Almost Polynomial Hardness of NDP-Grids

JULIA CHUZHOY DAVID KIM RACHIT NIMAVAT

$\begin{array}{r}1 T \\ \hline 1\end{array}$
TOYOTA
TECHNOLOGICAL
INSTITUTE
AT CHICAGO

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$

Destinations

Goal: Route as many pairs as possible via node-disjoint paths

Node-Disjoint Paths (NDP)

Input: Graph and demand pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$

Sources
Destinations

Goal: Route as many pairs as possible via node-disjoint paths

OPT: 2

Known Results

Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90] k part of input \Rightarrow NP-Hard $\quad[$ Karp '72]

Known Results

Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90] k part of input \Rightarrow NP-Hard $\quad\left[\right.$ Karp $\left.{ }^{\prime} 72\right]$
$O(\sqrt{n})$-approx. [Kolliopoulos, Stein ‘98]
Roughly $\Omega(\sqrt{\log n})$-hardness of approx. [Andrews, Zhang '05],
[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang '10]

Known Results

Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90] k part of input \Rightarrow NP-Hard $\quad[$ Karp '72]
$O(\sqrt{n})$-approx. [Kolliopoulos, Stein '98]
Roughly $\Omega(\sqrt{\log n})$-hardness of approx. [Andrews, Zhang '05],
[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang '10]

What about simpler cases?

Known Results

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$\Omega(\sqrt{\log n})$

NDP-Grid:

- $O\left(n^{1 / 4}\right)$ - approx. for NDP-Grid [Chuzhoy, Kim '15]
-APX-hardness [Chuzhoy, Kim '15]

Known Results

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$\Omega(\sqrt{\log n})$
NDP-Grid	$O\left(n^{1 / 4}\right)$	APX-hardness

NDP-Planar:

- O ($n^{9 / 19}$) -approx. for NDP-Planar [Chuzhoy, Kim, Li '16]
- $2^{\Omega(\sqrt{\log n})}$-hardness [Chuzhoy, Kim, N '16]

Known Results

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$2^{\Omega(\sqrt{\log n})}$
NDP-Grid	$O\left(n^{1 / 4}\right)$	APX-hardness
NDP-Planar	$O\left(n^{9 / 19}\right)$	$2^{\Omega(\sqrt{\log n})}$

"grids with holes" are hard
(even with sources on top)

Matching Upper Bound?

NDP-Grid with Sources on Boundary

$2^{O(\sqrt{\log n})}$-approx. if sources on boundary [Chuzhoy, Kim, $\mathrm{N}^{\text {'17] }}$

- First sub-polynomial approx. algorithm!

$2^{\Omega(\sqrt{\log n})}$-hard

$$
2^{\mathrm{O}(\sqrt{\log n})} \text {-approx. }
$$

Main Theorem

NDP-Grid is

$2^{\Omega\left(\log ^{1-\epsilon} n\right)}$-hard assuming NP $\nsubseteq \operatorname{RTIME}\left(n^{p o l y \log n}\right)$
For all
$\epsilon>0$

Main Theorem

Weaker than rETH

NDP-Grid is

The Updated Picture

	Upper Bound	Lower Bound
General NDP	$O(\sqrt{n})$	$n^{\Omega\left(1 /(\log \log n)^{2}\right)}$
NDP-Planar	$O\left(n^{9 / 19}\right)$	$n^{\Omega\left(1 /(\log \log n)^{2}\right)}$
NDP-Grid	$O\left(n^{1 / 4}\right)$	$n^{\Omega\left(1 /(\log \log n)^{2}\right)}$

A Proxy Problem

Part 1: Graph Partitioning \Rightarrow NDP-Grid
Part 2: 3COL \Rightarrow Graph Partitioning

How to Show Hardness? : The Karp Way

Suppose there is α-approx. algorithm for NDP-Grid

NDP-Grid

Graph Partitioning Problem

Bipartite graph B
Parameters: p,r

Graph Partitioning Problem

Bipartite graph B
p Pieces

Graph Partitioning Problem

Bipartite graph B Parameters: p,r

p Pieces

Maximize: \# surviving edges

$\leq r$ edges

Looks like Densest k-Subgraph Problem...

Graph Partitioning \Rightarrow NDP on Grids

Theorem: Can construct NDP-Grid instance I s.t
Partitioning with many surviving edges <=> Routing a large number of demand pairs

Step 1: Construction
Step 2: Partitioning \Rightarrow Routing [Skipped]
Step 3: Partitioning \Leftarrow Routing

1

NDP-Grid I

Constructing NDP-Grid

1

NDP-Grid I

Constructing NDP-Grid

NDP-Grid I

Constructing NDP-Grid

-Box for each vertex of B in source/destination row

- Demand pair $\left(s_{e}, t_{e}\right)$ for each edge e of B
- Place s_{e} and t_{e} inside boxes of endpoints of e
Source Row $\frac{\#+\Delta y}{\square} \square$
Destination Row
\qquad

NDP-Grid I

Constructing NDP-Grid

-Box for each vertex of B in source/destination row

- Demand pair $\left(s_{e}, t_{e}\right)$ for each edge e of B
- Place s_{e} and t_{e} inside boxes of endpoints of e

Destination Row

$$
1
$$

NDP-Grid I

Constructing NDP-Grid

-Box for each vertex of B in source/destination row

- Demand pair $\left(s_{e}, t_{e}\right)$ for each edge e of B
- Place s_{e} and t_{e} inside boxes of endpoints of e

NDP-Grid I

Constructing NDP-Grid

-Box for each vertex of B in source/destination row

- Demand pair $\left(s_{e}, t_{e}\right)$ for each edge e of B
- Place s_{e} and t_{e} inside boxes of endpoints of e

NDP-Grid I

Constructing NDP-Grid

-Box for each vertex of B in source/destination row

- Demand pair $\left(s_{e}, t_{e}\right)$ for each edge e of B
- Place s_{e} and t_{e} inside boxes of endpoints of e

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs

-Contract the blocks

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs
-Contract the blocks

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs
-Contract the blocks

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs
-Contract the blocks

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs
-Contract the blocks

Drawing with low crossing number

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs
-Contract the blocks

Drawing with low crossing number

NDP-Grid I

Graph Partitioning \Leftarrow NDP on Grids

-Consider routing of a large subset of demand pairs
-Contract the blocks

Drawing with low crossing number

A Proxy Problem

Part 1: Graph Partitioning \Rightarrow NDP-Grid
Part 2: 3COL \Rightarrow Graph Partitioning

How to Show Hardness? : The Cook Way

How to Show Hardness? : The Cook Way

How to Show Hardness? : The Cook Way

3COL5

Graph G: n vertices, m edges
Each vertex degree is exactly 5
Color vertices by $\{R G B\}$ such that no edge connects a pair of same color

3COL5

Graph G: n vertices, m edges
Each vertex degree is exactly 5
Color vertices by $\{R G B\}$ such that no edge connects a pair of same color

3COL5

Graph G: n vertices, m edges
Each vertex degree is exactly 5
Color vertices by $\{R G B\}$ such that no edge connects a pair of same color

1 legal coloring $\Rightarrow 6$ legal colorings!

3COL5

1 legal coloring $\Rightarrow 6$ legal colorings!

2 Prover Protocol

Edge-Player, Vertex-Player

2 Prover Protocol

Edge-Player, Vertex-Player

Verifier

$$
(u, v) \in_{r} E(G)
$$

2 Prover Protocol

Edge-Player, Vertex-Player

Verifier

$$
\begin{gathered}
(u, v) \epsilon_{r} E(G) \\
u \in_{r}\{u, v\}
\end{gathered}
$$

2 Prover Protocol

Edge-Player, Vertex-Player

2 Prover Protocol

Edge-Player, Vertex-Player

2 Prover Protocol

Edge-Player, Vertex-Player

2 Prover Protocol

Edge-Player, Vertex-Player

$\mathrm{G}=\mathrm{NI} \Rightarrow$ For any strategy of provers, Verifier accepts with probability $\leq 1-\frac{\epsilon}{2}$

Parallel Repetition

l rounds
Think of l as $\log ^{100} n$

$$
\left(e_{1}, e_{2}, \ldots, e_{l}\right) \longrightarrow \begin{gathered}
\text { Edge } \\
\text { Player }
\end{gathered} \longrightarrow(R B, G R, \ldots, R B)
$$

$$
\left(v_{1}, v_{2}, \ldots, v_{l}\right) \longrightarrow \begin{gathered}
\text { Vertex } \\
\text { Player }
\end{gathered} \longrightarrow(B, R, \ldots, B)
$$

Parallel Repetition

l rounds
Think of l as $\log ^{100} n$

$$
\left(e_{1}, e_{2}, \ldots, e_{l}\right) \longrightarrow \begin{gathered}
\text { Edge } \\
\text { Player }
\end{gathered} \longrightarrow(R B, G R, \ldots, R B)
$$

Accept iff all answers match

$$
\left(v_{1}, v_{2}, \ldots, v_{l}\right) \longrightarrow \begin{gathered}
\text { Vertex } \\
\text { Player }
\end{gathered} \longrightarrow(B, R, \ldots, B)
$$

Parallel Repetition

l rounds
Think of l as $\log ^{100} n$
Accept iff all answers match

$\mathrm{G}=\mathrm{Y} \mid \Rightarrow 6^{l}$ prover strategies where Verifier always accepts

Parallel Repetition

l rounds
Think of l as $\log ^{100} n$

$$
\left(e_{1}, e_{2}, \ldots, e_{l}\right) \longrightarrow \begin{gathered}
\text { Edge } \\
\text { Player }
\end{gathered} \rightarrow(R B, G R, \ldots, R B)
$$

Accept iff all answers match

$$
\left(v_{1}, v_{2}, \ldots, v_{l}\right) \longrightarrow \begin{aligned}
& \text { Vertex } \\
& \text { Player }
\end{aligned} \longrightarrow(B, R, \ldots, B)
$$

$\mathrm{G}=\mathrm{Y} \mid \Rightarrow 6^{l}$ prover strategies where Verifier always accepts
$\mathrm{G}=\mathrm{NI} \Rightarrow$ Verifier accepts with prob. $\leq 2^{-\gamma l}$

Parallel Repetition

l rounds
Think of l as $\log ^{100} n$

$$
\left(e_{1}, e_{2}, \ldots, e_{l}\right) \longrightarrow \begin{gathered}
\text { Edge } \\
\text { Player }
\end{gathered} \longrightarrow(R B, G R, \ldots, R B)
$$

Accept iff all answers match

$$
\left(v_{1}, v_{2}, \ldots, v_{l}\right) \longrightarrow \begin{array}{|}
\text { Vertex } \\
\text { Player }
\end{array} \longrightarrow(B, R, \ldots, B)
$$

$\mathrm{G}=\mathrm{Y} \mid \Rightarrow 6^{l}$ prover strategies where Verifier always accepts

Good prover strategy
 certifies that G is YI

$\mathrm{G}=\mathrm{NI} \Rightarrow$ Verifier accepts with prob. $\leq 2^{-\gamma l}$

The Constraint Graph

-Bipartite graph
-Edge-Player queries on one side

- Vertex-Player queries on other

The Constraint Graph

-Bipartite graph

-Edge-Player queries on one side

- Vertex-Player queries on other
-Edge iff compatible queries

Verifier asks that
pair of queries

The Reduction

Eventually....

Eventually....

Or:

Eventually....

Or:

Core Algorithm

Core Algorithm: Simplified

The Constraint Graph

The Constraint Graph

$$
\begin{aligned}
& \left(e_{1}, e_{2}, \ldots, e_{l}\right) \longrightarrow \begin{array}{c}
\text { Edge } \\
\text { Player }
\end{array} \longrightarrow(R B, G R, \ldots, R B) \\
& \left(v_{1}, v_{2}, \ldots, v_{l}\right) \longrightarrow \begin{array}{c}
\text { Vertex } \\
\text { Player }
\end{array} \longrightarrow(B, R, \ldots, B)
\end{aligned}
$$

The Constraint Graph

$$
\begin{aligned}
& \left(e_{1}, e_{2}, \ldots, e_{l}\right) \longrightarrow \begin{array}{c}
\text { Edge } \\
\text { Player }
\end{array} \longrightarrow(R B, G R, \ldots, R B) \\
& \left(v_{1}, v_{2}, \ldots, v_{l}\right) \longrightarrow \begin{array}{c}
\text { Vertex } \\
\text { Player }
\end{array} \longrightarrow(B, R, \ldots, B)
\end{aligned}
$$

- Only 6^{l} responses of edge-player -Only 3^{l} responses of vertex-player

The Cover Graph
-Query-vertices \Rightarrow (Query, Answer)-vertices

The Cover Graph

-Query-vertices \Rightarrow (Query, Answer)-vertices
-Edge iff answers match

Verifier accepts

H

Edge
Vertex Player

The Cover Graph

What if G is YI?
${ }^{\circ} 6^{l}$ strategies for H

The Cover Graph

The Cover Graph

What if G is YI?
${ }^{\circ} 6^{l}$ strategies for H
Answers coming from the same strategy for all queries

A labelling of H

Partitioning Problem

Partitioning with Many Surviving Edges

Partitioning Problem

G is $\mathrm{YI} \quad \longleftrightarrow$

Extract strategy from
partitioning with many
surviving edges?

Partitioning Problem

Partitioning Problem

G is YI

Good Strategy for H

Cheating partition must exploit the structure of \widehat{H}...

Partitioning Problem

G is YI

Good Strategy for H

Cheating partition must exploit the structure of \widehat{H}...

Leverage it to break H into pieces!

Partitioning Problem : Main Theorem

Partitioning Problem

G is NI

Partitioning Problem

Partitioning Problem

Partitioning Problem

The Core Algorithm

Result

Size of 3COL5: n
Parallel repetition parameter: l
Size of the constraint graph: $n^{O(l)}$

Result

Size of 3COL5: n
Parallel repetition parameter: l
Size of the constraint graph: $n^{O(l)}$
Setting parameters,

Conclusion

- Upper and lower bounds for both, general-NDP and NDPGrids are now either polynomial or near polynomial
-Polynomial hardness for general-NDP?
-Congestion minimization?
When paths are allowed to share nodes
-Can get something for Densest k-Subgraph from this approach?

Conclusion

- Upper and lower bounds for both, general-NDP and NDPGrids are now either polynomial or near polynomial
-Polynomial hardness for general-NDP?
-Congestion minimization?
When paths are allowed to share nodes
-Can get something for Densest k-Subgraph from this approach?

Thank You!

