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𝑡1

Sources Destinations

Goal: Route as many pairs as possible 
via node-disjoint paths

OPT: 2
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𝑘 part of input ⇒ NP-Hard       [Karp ’72]

𝑂 𝑛 −approx. [Kolliopoulos, Stein ‘98]

Roughly Ω log 𝑛 −hardness of approx. [Andrews, Zhang ‘05], 

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

What about simpler cases?



Known Results

NDP-Grid:

•𝑂(𝑛1/4) −approx. for NDP-Grid [Chuzhoy, Kim ‘15]

•APX-hardness [Chuzhoy, Kim ‘15]

Upper Bound Lower Bound

General NDP 𝑂 𝑛 Ω log 𝑛



Known Results

Upper Bound Lower Bound

General NDP 𝑂 𝑛 Ω log 𝑛

NDP-Grid 𝑂(𝑛1/4) APX-hardness

NDP-Planar:

•𝑂(𝑛9/19) −approx. for NDP-Planar [Chuzhoy, Kim, Li ‘16]

•2Ω log 𝑛 −hardness [Chuzhoy, Kim, N ‘16]



Known Results

Upper Bound Lower Bound

General NDP 𝑂 𝑛 2Ω log 𝑛

NDP-Grid 𝑂(𝑛1/4) APX-hardness

NDP-Planar 𝑂(𝑛9/19) 2Ω log 𝑛

“grids with holes”
are hard

(even with sources on top)

Matching Upper 
Bound?



NDP-Grid with Sources on Boundary

2𝑂 log 𝑛 −approx. if sources on boundary  [Chuzhoy, Kim, N ‘17]

◦ First sub-polynomial approx. algorithm!

2Ω log 𝑛 −hard 2O log 𝑛 −approx.

Generalize both 
to NDP-Grid?
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𝑛 −hard assuming NP ⊈ RTIME(2𝑛
𝛿

)Ω(1/ log log 𝑛 2)

Ω(log1−𝜖 𝑛)

Main Theorem

For some 
𝛿 > 0

For all 
𝜖 > 0

Weaker than rETH

NDP-Grid is



The Updated Picture

Ω(1/ log log 𝑛 2)
Upper Bound Lower Bound

General NDP 𝑂 𝑛

NDP-Planar 𝑂(𝑛9/19)

NDP-Grid 𝑂(𝑛1/4)

Ω(1/ log log 𝑛 2)
𝑛

Ω(1/ log log 𝑛 2)
𝑛

Ω(1/ log log 𝑛 2)
𝑛



A Proxy Problem

Part 1: Graph Partitioning ⇒ NDP-Grid

Part 2: 3COL ⇒ Graph Partitioning

Hard 
Problem

NDP-Grid

𝐼

Graph
Partitioning 

Problem
3COL



𝛼

How to Show Hardness? : The Karp Way

Hard 
Problem

Yes Instance

No Instance

⇒ 𝛼-hardness for NDP-Grid

𝐼

NDP-Grid
Graph

Partitioning Problem

Suppose there is 𝛼-approx. algorithm for NDP-Grid
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Graph Partitioning Problem

…
…

…
…

…
…

…
…

≤ 𝑟
edges

𝑝 Pieces

≤ 𝑟
edges

≤ 𝑟
edges

Looks like
Densest k-Subgraph 

Problem…

Maximize:
# surviving edges

Allow edge 
deletion

Bipartite graph B
Parameters: p, 𝑟



Graph Partitioning ⇒ NDP on Grids

Theorem: Can construct NDP-Grid instance 𝐼 s.t

Step 1: Construction

Step 2: Partitioning ⇒ Routing [Skipped]

Step 3: Partitioning ⇐ Routing

Partitioning with many surviving edges <=>        
Routing a large number of demand pairs

…
…

…
…

…
…

…
…

B

NDP-Grid 𝐼
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Graph Partitioning ⇐ NDP on Grids

•Consider routing of a large subset of 
demand pairs

•Contract the blocks

NDP-Grid 𝐼

Good balanced cut

Almost planar

Drawing with low 
crossing number

B

Good partitioning



A Proxy Problem

Part 1: Graph Partitioning ⇒ NDP-Grid

Part 2: 3COL ⇒ Graph Partitioning

Hard 
Problem

NDP-Grid

𝐼

Graph
Partitioning 

Problem
3COL
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𝛼

How to Show Hardness? : The Cook Way

Hard 
Problem

Yes Instance

No Instance

⇒ 𝛼-hardness for Graph 
Partitioning Problem

3COL

…
…

𝐼1

𝐼2

𝐼𝑗

Graph
Partitioning Problem

Suppose there is 𝛼-approx. 
algorithm for NDP-Grid
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Graph G: 𝑛 vertices, 𝑚 edges

Each vertex degree is exactly 5

Color vertices by {𝑅𝐺𝐵} such that no 
edge connects a pair of same color

NP-Hard

1 legal coloring ⇒ 6 legal colorings!

Coloring Possible

Every coloring 
violates at least

𝜖- fraction of edges



3COL5

1 legal coloring ⇒ 6 legal colorings!

𝑢

𝑣

Global 
Coloring #1

Global 
Coloring #3

Global 
Coloring #5

Global 
Coloring #6

Global 
Coloring #4

Global 
Coloring #2
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2 Prover Protocol

Edge-Player, Vertex-Player

Verifier accepts iff colors match

G=YI ⇒ 6 prover strategies where Verifier 
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G=NI ⇒ For any strategy of provers, 
Verifier accepts with probability ≤ 1 −

𝜖

2
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Parallel Repetition

Edge 
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex 
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)

𝑙 rounds
Think of 𝑙 as log100 𝑛

Accept iff all answers match

G=YI ⇒ 6𝑙 prover strategies where Verifier always accepts

G=NI ⇒ Verifier accepts with prob. ≤ 2− 𝛾𝑙 Parallel Repetition 
Theorem [Raz ‘98]

Good prover strategy 
certifies that G is YI
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The Constraint Graph

•Bipartite graph

•Edge-Player queries on one side

•Vertex-Player queries on other

•Edge iff compatible queries

Q

…
…

Edge 
Player

Vertex 
Player

H

Q’

…
…

Verifier asks that 
pair of queries
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The Reduction

G is NI whp

Good Strategy for H’

Break H’
into small pieces by 
cutting few edges

H’

H’

H’
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Eventually….

Either:

Or:

G is YI
Good Strategy for most 
query-pairs to provers

G is NI whp



Core Algorithm

Constraint 
graph H

3COL(5) - G

H’

Subgraph

G is NI whp

Good Strategy for H’

Break H’
into small pieces by 
cutting few edges



Core Algorithm: Simplified

Constraint 
graph H

3COL(5) - G

G is NI whp

Good Strategy for H’

Break H’
into small pieces by 
cutting few edges

Assume 𝐻′ = 𝐻
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H
…
…

…
…

Edge 
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The Constraint Graph

•Only 6𝑙 responses of edge-player

•Only 3𝑙 responses of vertex-player

Edge 
Player

Vertex 
Player

H
…
…

…
…

Edge 
Player

(𝑒1, 𝑒2, … , 𝑒𝑙)

Vertex 
Player

𝑣1, 𝑣2, … , 𝑣𝑙

(𝑅𝐵, 𝐺𝑅,… , 𝑅𝐵)

(𝐵, 𝑅,… , 𝐵)



The Cover Graph

•Query-vertices ⇒ (Query, Answer)-vertices

Edge 
Player

Vertex 
Player

H

Q

…
…

…
…

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

𝐻

Q’



The Cover Graph

•Query-vertices ⇒ (Query, Answer)-vertices

•Edge iff answers match

Edge 
Player

Vertex 
Player

H
…
…

…
…

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

Verifier 
accepts

𝐻
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…
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…
…

…
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…
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The Cover Graph 

What if G is YI?
◦6𝑙 strategies for H

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

Answers coming 
from the same 
strategy for all 

queries 

6𝑙 pieces

𝐻
A labelling 

of H



G is YI 

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

6𝑙 pieces

Partitioning 
Problem!

…
…
…
…

…
…

…
…

𝑝 = 6𝑙 ,
𝑟 = |𝐸(𝐻)|

≤ 𝑟
edges

𝑝 pieces

≤ 𝑟
edges

≤ 𝑟
edges

A labelling 
of H𝐻



G is YI 

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
…

6𝑙 pieces

Partitioning 
Problem!

Best possible 
partition!

…
…
…
…

…
…

…
…

𝑝 = 6𝑙 ,
𝑟 = |𝐸(𝐻)|

≤ 𝑟
edges

𝑝 pieces

≤ 𝑟
edges

≤ 𝑟
edges

A labelling 
of H𝐻
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Partitioning Problem

G is YI Good Strategy for H
Partitioning with 

Many Surviving Edges 

𝑄, 𝐴

…
…

𝑄′, 𝐴′

…
…

…
…

…
… …
…

…
…

…
…

Few queries, but 
answers from all 
strategies

Cheating partition  
must exploit the 
structure of 𝐻…

Leverage it to break 
H into pieces! 



Partitioning Problem : Main Theorem

Good Strategy for H

Break H
into small pieces by 
cutting few edges

Partitioning 
with Many 

Surviving Edges 

Truthful 
Partition
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Partitioning Problem

Good Strategy for H

Break H
into small pieces by 
cutting few edges

Partitioning 
with Many 

Surviving Edges 

G is YI

G is NI
Partitioning 

with Few 
Surviving Edges

Return: G is NI

𝛼



The Core Algorithm

Constraint 
graph H

3COL(5) - G

H’

Subgraph

G is NI

Good Strategy 
for H’

Break H’
into small pieces by 
cutting few edges

Cover Graph

Partitioning 
with Many 

Surviving Edges 

Partitioning 
with Few 

Surviving Edges

H’



Result

Size of 3COL5: 𝑛

Parallel repetition parameter: 𝑙

Size of the constraint graph: 𝑛𝑂 𝑙



Result

Size of 3COL5: 𝑛

Parallel repetition parameter: 𝑙

Size of the constraint graph: 𝑛𝑂 𝑙

Setting parameters, 

2 −hard assuming NP ⊈ RTIME(𝑛𝑝𝑜𝑙𝑦 log 𝑛)

𝑛 −hard assuming NP ⊈ RTIME(2𝑛
𝛿

)Ω(1/ log log 𝑛 2)

log1−𝜖 𝑛

For some 
𝛿 > 0

For all 
𝜖 > 0



Conclusion

•Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

•Polynomial hardness for general-NDP?

•Congestion minimization?
When paths are allowed to share nodes

•Can get something for Densest k-Subgraph from this 
approach?



Conclusion

•Upper and lower bounds for both, general-NDP and NDP-
Grids are now either polynomial or near polynomial

•Polynomial hardness for general-NDP?

•Congestion minimization?
When paths are allowed to share nodes

•Can get something for Densest k-Subgraph from this 
approach?

Thank You!


