# Post hoc inference via multiple testing

Pierre Neuvial

Institut de Mathématiques de Toulouse

Joint work with Gilles Blanchard and Etienne Roquain

Banff, 2017-03-27

# Outline

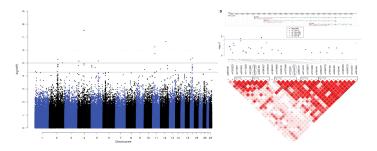
## Post hoc inference

- Introduction
- Objective

Joint Family-Wise Error Rate control for post hoc inference

- A novel risk measure: JER
- JER control based on Simes' inequality
- 3 Adaptive Joint Family-Wise Error Rate control
  - Calibration of a rejection kernel
  - Numerical experiments: known dependence, linear kernel

# Genome-Wide Association Studies



## Typical analysis steps

- define a list of candidates using a multiple testing procedure
- In this list based on prior knowledge (genome regions)

## Limitations

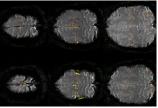
- Initial selection does not take advantage of available prior knowledge
- No formal risk assessment can be made on the resulting candidate sets

# Other motivating examples

# Cancer studies

Differential gene expression analyses

## Neuroimaging



Activation of brain regions

## Typical analysis steps

- define a list of candidates using a multiple testing procedure
- In this list based on prior knowledge (gene pathways, brain regions)

## Limitations

- Initial selection does not take advantage of available prior knowledge
- No formal risk assessment can be made on the resulting candidate sets

# Multiple testing: notations

- $\mathcal{H} = \{1, \dots m\}$  *m* null hypotheses to be tested
- $\mathcal{H}_0 \subset \mathcal{H}$ : true null hypotheses,  $\mathcal{H}_1 = \mathcal{H} \setminus \mathcal{H}_0$
- $(p_i)_{1 \le i \le m}$ : *p*-values

## Multiple testing procedures

Aim at building from the data a set R of rejected hypotheses satisfying a statistical guarantee, e.g. controlling:

- (k-)Family-Wise Error Rate: k-FWER =  $\mathbb{P}(|R \cap \mathcal{H}_0| > k 1)$
- False Discovery Rate:  $FDR = \mathbb{E}\left(\frac{|R \cap \mathcal{H}_0|}{|R| \vee 1}\right)$

Most procedures used in applications are thresholding procedures:

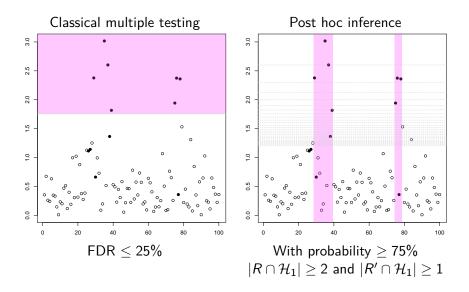
$$R = \{i \in \mathcal{H}, p_i \leq \hat{t}\}$$

# Post hoc inference

Goal: Confidence statements for the number of true/false positives on any number of arbitrary rejection sets, possibly selected after data analysis

# Formal objective Find $\overline{V}_{\alpha}, \overline{S}_{\alpha}$ such that $\forall R \subset \{1 \dots m\},$ $\mathbb{P}(|R \cap \mathcal{H}_0| \ge \overline{V}_{\alpha}(R)) \ge 1 - \alpha$ $\mathbb{P}(|R \cap \mathcal{H}_1| \le \overline{S}_{\alpha}(R)) \ge 1 - \alpha$

# Post hoc inference in a nutshell



# State of the art: Goeman and Solari (2011)

Existing post hoc procedures  $^1$  are based on  $\mathit{closed}\ \mathit{testing}^2$ 

- Require testing all  $2^m 1$  possible intersections between the *m* original hypotheses!
- Not feasible for  $m \ge 20$  or 30.

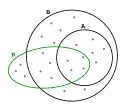
## In practice: "shortcuts"

- computationally efficient procedures (complexity  $\sim m \log(m)$ )
- increased conservativeness and/or narrower applicability:
- Simes' shortcut: valid under positive dependence between hypotheses (PRDS)

<sup>&</sup>lt;sup>1</sup>Multiple testing for exploratory research. *Stat. Science* (2011) <sup>2</sup>Marcus, Peritz and Gabriel, *Biometrika* (1976).

# Joint Family-Wise Error Rate (JER)

## Intuition



Given A and B such that:

• 
$$|A \cap \mathcal{H}_0(P)| \leq 5$$

• 
$$|B \cap \mathcal{H}_0(P)| \leq 7$$

Then we can guarantee:

 $|R \cap \mathcal{H}_1(P)| \geq 1$ 

## Definition

Let  $\mathfrak{R} = (R_k)_{k=1...m}$  be a *reference family* of rejection sets. Then

$$\mathsf{JER}(\mathfrak{R}) = \mathbb{P}(\exists k \in \{1, \ldots, m\}, |R_k \cap \mathcal{H}_0| \ge k)$$

Consequently,  $\mathfrak{R}$  is said to control JER at level  $\alpha \in [0, 1]$  if:

$$\mathbb{P}(\forall k \in \{1,\ldots,m\}, |R_k \cap \mathcal{H}_0| \le k-1) \ge 1-\alpha$$

# Post hoc inference through JER control

## JER control

$$\mathbb{P}(\forall k \in \{1,\ldots,m\}, |R_k \cap \mathcal{H}_0| \le k-1) \ge 1-lpha$$

## Upper bound on the number of false positives

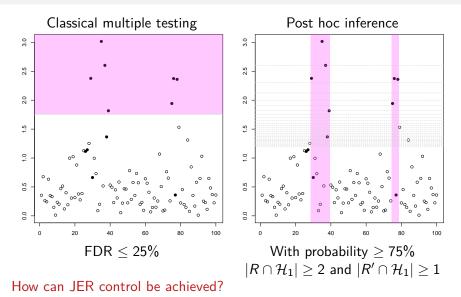
Given a JER controlling family  $(R_k)_{k=1...m}$ , with probability larger than  $1 - \alpha$ , for any rejection set R,

$$|R \cap \mathcal{H}_0| \leq |R| \wedge \min_{1 \leq k \leq |R|} \{|R \cap (R_k)^c| + k - 1\}$$

## Applicable to

- data-driven rejection sets
- any number of rejection sets

## Illustration



Pierre Neuvial (IMT)

#### JER control based on Simes' inequality

# Simes' inequality <sup>3</sup>

If the *p*-values  $(p_i)$ ,  $1 \le i \le m$ , are PRDS then

$$\mathbb{P}(\exists k \in \{1,\ldots,m_0\} : q_{(k)} \leq \alpha k/m_0) \leq \alpha,$$

where  $q_{(1)} \leq \cdots \leq q_{(m_0)}$  denote the ordered p-values under  $H_0$ 

<sup>3</sup>R. J. Simes. *Biometrika* 73.3 (1986), pp. 751–754.

Pierre Neuvial (IMT)

Post hoc inference via multiple testing

# Simes-based JER control

## Corollary of Simes' inequality

Under PRDS, JER control at level  $\alpha$  is achieved by the Simes reference family:

$$R_k = \{1 \le i \le m : p_i \le \alpha k/m\}, 1 \le k \le m$$

Proposition (Post hoc bound for the Simes family)

Under PRDS, with probability larger than 1 –  $\alpha,$  for any R,

$$|R \cap \mathcal{H}_0| \leq |R| \wedge \min_{1 \leq k \leq |R|} \left\{ \sum_{i \in R} \mathbf{1} \{ p_i > \alpha k/m \} + k - 1 \right\}.$$

- We recover the bound obtained by Goeman and Solari (2011)
- Easier to interpret: no closed testing or shortcuts
- JER: a generic device to build post hoc bounds

# Dependence-free JER control?

Under arbitrary dependence, with probability larger than  $1 - \alpha$ , for any R,

$$|R \cap \mathcal{H}_0| \leq |R| \wedge \min_{1 \leq k \leq |R|} \left\{ \sum_{i \in R} \mathbf{1} \left\{ p_i > \alpha / C_m k / m \right\} + k - 1 \right\} \,,$$

 $C_m = \sum_{k=1}^m k^{-1} \sim \log(m)$ : Hommel's correction factor for dependency<sup>4</sup>

## Dependence-free adjustment is not a sensible objective

- implies adjusting to a worst case dependency
- very conservative (cf Benjamini-Yekutieli for FDR control)

## We want to be adaptive to dependency

 $^4{\rm G}$  Hommel. "Tests of the overall hypothesis for arbitrary dependence structures". Biometrische Zeitschrift 25.5 (1983), pp. 423–430.

Pierre Neuvial (IMT)

# Sharpness and conservativeness of the Simes family

Simes' equality is sharp under independence, but conservative under positive dependence.

Conservativeness of JFWER control under PRDS

Toy example: Gaussian equi-correlation, white setting  $(m_0 = m = 1,000)$ : Test statistics  $\sim \mathcal{N}(0, \Sigma)$  with  $\Sigma_{ii} = 1$  and  $\Sigma_{ij} = \rho$  for  $i \neq j$ .

| Equi-correlation level: $\rho$      |      |      |      |      |      |
|-------------------------------------|------|------|------|------|------|
| Achieved JFWER $\times \alpha^{-1}$ | 0.99 | 0.85 | 0.72 | 0.42 | 0.39 |

Can we build a family achieving sharper JFWER control?

We want to be adaptive to dependency

# JER control with $\lambda$ adjustment

Rejection kernel

Consider the reference family:

$$R_k = \{1 \le i \le m : p_i \le t_k(\alpha)\}, 1 \le k \le m,$$

where  $t_k(0) = 0$  and  $t_k(\cdot)$  is non-decreasing and left-continuous on [0, 1]

• Example (Simes family):  $t_k(\alpha) = \alpha k/m$ 

The associated *rejection kernel* is the collection of  $(t_k(\lambda)_{k=1...m})$  for all  $0 \le \lambda \le 1$ 

Single-step  $\lambda$  adjustment

$$\lambda(\alpha) = \max\left\{\lambda \ge 0 \ : \ \mathbb{P}\bigg(\min_{1 \le k \le K} \left\{t_k^{-1}\left(p_{(k:\mathcal{H})}\right)\right\} \le \lambda\bigg) \le \alpha\right\}.$$

The family  $\mathfrak{R}_{\lambda(\alpha)}$  controls JER at level  $\alpha$ .

# Calculating the adjustment factor $\lambda(\alpha)$

$$\lambda(\alpha) = \max\left\{\lambda \ge 0 \ : \ \mathbb{P}\bigg(\min_{1 \le k \le K} \left\{t_k^{-1}\left(p_{(k:\mathcal{H})}\right)\right\} \le \lambda\bigg) \le \alpha\right\}$$

Calculating  $\lambda(\alpha)$  requires the knowledge of the distribution of  $(p_{(k:\mathcal{H})})_k!$ 

Using Monte-Carlo approximation if the joint null distribution is known

- see below example of Gaussian equi-correlation
- more in G. Blanchard, P. Neuvial, E. Roquain (2017), arxiv:1703.02307

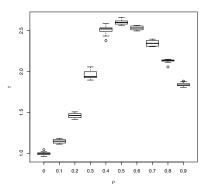
## Permutation testing is justified in some applications, including:

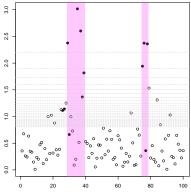
- differential expression analyses
- GWAS with discrete (case/control) or quantitative phenotype

(restriction: the reference thresholds t must be deterministic)

# JER control with $\lambda$ adjustment for the linear kernel





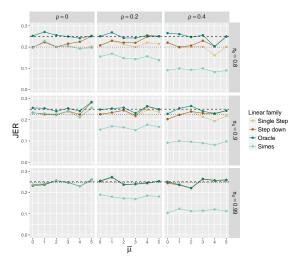


With probability  $\geq 1 - \alpha = 75\%$ :

 $t_k(\alpha)$ Lower bound on  $|R \cap \mathcal{H}_1|$  $\alpha k/m$   $|R \cap \mathcal{H}_1| \ge 2$  and  $|R' \cap \mathcal{H}_1| \ge 1$  $|R \cap \mathcal{H}_1| \geq 3$  and  $|R' \cap \mathcal{H}_1| \geq 2$  $\alpha\lambda(\alpha)k/m$ Post hoc inference via multiple testing

Pierre Neuvial (IMT)

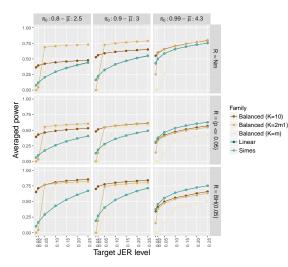
## JER control under Gaussian equi-correlation



•  $X_i \sim \mathcal{N}(0,1)$  under  $H_0$ 

- $X_i \sim \mathcal{N}(\bar{\mu}, 1)$  under  $H_1$
- $\operatorname{cor}(X_i, X_j) = \rho$  for  $i \neq j$

# Estimation power for under Gaussian equi-correlation



- $X_i \sim \mathcal{N}(0,1)$  under  $H_0$
- $X_i \sim \mathcal{N}(\bar{\mu}, 1)$  under  $H_1$
- $\operatorname{cor}(X_i, X_j) = \rho$  for  $i \neq j$
- $\bar{\mu} = 2$
- Estimation power:  $E(\overline{S}(\mathcal{H}_1))/m_1$

# Conclusions

## Summary

- JER: a new risk measure for multiple testing
- generalizes existing post hoc procedures
- can be used to build post hoc inference procedures

## Results not discussed here

- Other choices for the kernel
- Step-down procedures
- Control of  $\mathbb{P}(\forall k \in \{1, \dots, K\}, |R_k \cap \mathcal{H}_0| \leq \zeta_k)$
- Detection power: connection to "higher criticism" in a sparse setting

## Ongoing/future works

- Applications to GWAS, differential expression and neuro-imaging
- Structured rejection sets: algorithms and statistical results
- Software and visualization tools

# Thanks

- Etienne Roquain, Paris 6 University, France
- Gilles Blanchard, Potsdam University, Germany

## Reference

G. Blanchard, P. Neuvial, E. Roquain (2017), *Post hoc inference via joint family-wise error rate control* Arxiv preprint:1703.02307

## Funding

- CNRS PEPS FaSciDo (2015-2016)
- ANR project JCJC SansSouci (2016-2019)

## We are hiring a postdoc!