DNA methylation and chromatin accessibility in the normal human brain

Kasper Daniel Hansen

< khansen@jhsph.edu | www.hansenlab.org > McKusick-Nathans Institute of Genetic Medicine Department of Biostatistics Johns Hopkins University

Brain regions:

<u>BA9</u> (part of frontal cortex)
BA24 (part of anterior cingulate)
HC (hippocampus)
<u>NAcc</u> (nucleus accumbens)

Cell types: Bulk <u>Neurons</u> (NeuN+) <u>Glia</u> (NeuN-)

Assays: WGBS (everything), roughly 6 individuals <u>ATAC</u>+<u>RNA</u> on 6 separate individuals

Acknowledgements

Lindsay Rizzardi Pete Hickey

Andrew Feinberg

Preprint on bioRxiv:

Neuronal brain region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric disease heritability

Lindsay Rizzardi, Peter Hickey, Varenka Rodriguez, Rakel Tryggvadottir, Colin Callahan, Adrian Idrizi, Kasper Hansen, Andrew P Feinberg **doi:** https://doi.org/10.1101/120386

Jeff Leek

WGBS of bulk tissue (6 individuals)

(Bin genome in 1kb bins, discard bins with few CpGs, compute average methylation per bin)

WGBS of sorted tissue (6 individuals)

Substantial variation in proportion of neurons

Neurons: Cluster by brain region

Glial: Cluster by individual

Conclusions so far

- Substantial cell type heterogeneity between samples
- Flow sorting is critical
- Glial is similar between brain regions
- Neurons are different between brain regions

METHOD

BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions

Kasper D Hansen^{1*†}, Benjamin Langmead^{1,2*†} and Rafael A Irizarry^{1,2*}

Handles low coverage bisulfite sequencing We extend the two-group model to handle arbitrary designs Permutation approach controls FWER (conservative)

DMRs between brain regions, within cell type

Some (but not many) DMRs between BA9 / BA24 / HC

Differential expression between BA9 and NAcc

(RNA from nuclei)

Differential accessibility

Merge samples into one "meta" sample Call peaks on the meta sample -> regions (probably high FP) Count fragments in each sample and region Differential "expression"

Differential accessibility (DAPs)

DMRs vs DAPs: limited overlap

0.65

0.75

Are these regions genetically important

ReproGen Consortium¹⁴, Schizophrenia Working Group of the Psychiatric Genomics Consortium¹⁴, The RACI Consortium¹⁴, Shaun Purcell^{5,6,15}, Eli Stahl¹⁵, Sara Lindstrom², John R B Perry¹³, Yukinori Okada^{16,17}, Soumya Raychaudhuri^{5–8,18}, Mark J Daly^{3,4,8}, Nick Patterson⁸, Benjamin M Neale^{3,4,8,20} & Alkes L Price^{2,8,20}

Yes, they are important - for neurological traits

Former vs Curr. smoker

w/Expression in promoters and gene bodies

Many genes are differentially expressed without DMRs or DAPs.

FANTOM5 linked enhancers

TFs in promoters

(a)	Transcription	Bind mC?	Reference	(b)	Hyper DMR		Overlap Hypo DMR		DMR
	Factor				E-box			Δ Ρ _1	Homeobox
	FEV	NO	Cooper, 2015 ⁶⁷		BHLHE22 MN1	r)			
	ETV1	NO			HES2 MYC MAX MYCN MLXIP NEUROD2			FOS	MEIS2
	ETV4	NO						FOS::JUN	POU5F1B
	ETV5	NO						FOSL1 FOSL2 JDP2 JUN(var.2)	
	JUND	NO	Rishi, 2010 ⁶⁹		Circadian	Circadian CLOCK			MEF2
	CREM	NO			Nuclear ID2				MEF2A
	ATF1	NO			Factor	actor (NPAS2			MEF2C
	MEIS1	YES	Zhu, 2016 ⁷⁰ (c		NEIA MYB OLIG2			JUND	MEF2D
	RFX5	YES			NFIX OLIG1TCF21				FRE1
	DLX1	YES							
	DLX6	YES		(c)	Hypo DAI	Ρ	Overlap	Hyper	DAP
	ARID3B	YES	Hu, 2013 ⁶⁸		E-box				Homeobox
	CRX	YES			BHLHE22 NEUROD2				MEIGI
	E2F3	YES					FOS		MEIS2
	E2F6	YES				JUNB	FOS::JUN		MEIS2
	MEF2A	YES					FOSL1	FOSI 2	POU6F2
	NFATC1	YES				00112	JDP2		
	NPAS2	YES						J	PAR DZIP
					Nuclear		CONE		
								EGR	
					NFIX NR3C1		EGR2	MYB	
			OLIG2		NI NI	E2L2 DBP			