Delineating the mode and tempo of human tumor evolution

Christina Curtis Departments of Medicine & Genetics Stanford University med.stanford.edu/curtislab

Intra-tumor heterogeneity is pervasive

Genetic reconstruction of individual colorectal tumor histories

Jen-Lan Tsao[†], Yasushi Yatabe[†], Reijo Salovaara^{‡§}, Heikki J. Järvinen[¶], Jukka-Pekka Mecklin^{||}, Lauri A. Aaltonen[§], Simon Tavaré^{††}, and Darryl Shibata^{†,‡‡} Feb 1, 2000

[†]Department of Pathology, University of Southern California School of Medicine, Los Angeles, CA 90033; Departments of [‡]Pathology and [§]Medical Genetics, Haartman Institute, FIN-00014, University of Helsinki, Finland; [¶]Second Department of Surgery, Helsinki University Central Hospital, FIN-00029, Helsinki, Finland; [¶]Jyvaskyla Central Hospital, FIN-40620, Jyvaskyla, Finland; and ^{††}Departments of Biological Sciences, Mathematics, and Preventive Medicine, University of Southern California, Los Angeles, CA 90089

Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation

Cristian Tomasetti^{a,b,1}, Bert Vogelstein^{c,d,1}, and Giovanni Parmigiani^{a,b,1} Feb 5, 2013

^aDepartment of Biostatistics, Harvard School of Public Health, Boston, MA 02115; ^bDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115; and ^cLudwig Center for Cancer Genetics and Therapeutics and ^dHoward Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231

Inferring tumor dynamics

- Clonal diversification and selection are critical to tumor progression, but their *dynamics* are poorly understood
- What happens during the first cell divisions may provide clues as how to better detect and treat cancers
- While this process cannot be directly observed, patterns of somatic alterations faithfully report on tumor ancestry
- Interpretation of these processes has been hindered by the lack of a *quantitative evolutionary framework*

Clonal evolution in the colon

Patient Age (vr)

Fearon and Vogelstein, Science 1990

The sequential clonal expansion model

- The classic view of tumor progression involves the stepwise accumulation of alterations leading to the sequential expansion of cells (clones) with a growth advantage
- The fittest cells expand and come to dominate the tumor population through selective sweeps and clonal expansions
 Sampled at

A Big Bang model of colorectal tumor growth

- Once the tumor is *established*, rapid growth occurs in the absence of *stringent* selection; compatible with effectively neutral evolution
- This terminal expansion is populated by many heterogeneous subclones
- The timing of a mutation is the primary determinant of its frequency
- Both public and the majority of *detectable* private alterations occur very early

Multi-region & multi-scale profiling of CRC

- Pure glands/crypts can readily be isolated from colorectal cancers (CRC)
- Gland fission most likely mechanism of expansion
- Facilitates inference of clonal dynamics
- A small selective advantage in a single cell should homogenize the gland population

- Isolated ~350 *individual* glands, bulks, single cells and normal tissue from 11 carcinomas and 4 adenomas for multi-scale (epi)genomic profiling
- Characterized the phylogenetic relationship between glands & the topographical distribution of *public* and *private* alterations

Single gland copy number profiling reveals variegation and sub-clone mixing

carcinoma M

- Public/clonal: found in all glands
- **Side-specific:** found in all glands from one side only
- Side-variegated: found in all glands from one side and a subset from the opposite side
- Variegated: found in a subset of glands from one side and a subset from the opposite side
- **Regional:** found in a subset of glands from one side only
- Unique: found in only one gland

Single gland sequencing reveals sub-clone mixing in carcinomas but not adenomas

Genomic data summary

The genomic data are congruent with the predictions of the Big Bang model

- Uniformly high ITH at all scales implies the absence of a dominant population and that recent large-scale clonal expansions are rare
- Private mutations were clonal within the gland, reflecting their *early acquisition* and sufficient time for loss or fixation via turnover or neutral drift
- Molecular clock analysis similarly reveals a complex hierarchy of distinct clones within each gland; suggesting relatively old clonal expansions

Quantifying patient-specific tumor dynamics

Approximate Bayesian Computing (ABC)

[Beaumont, 2002; Marjoram & Tavaré, 2006]

- Sample from approximation of $P(\theta|\rho(S(D),S(D')) < \epsilon)$
- Obtain posterior probability estimates for mutation rate (μ), subclone fitness (σ), timeline (t) given the data and model of reference

3-D model of tumor growth

- Spatial agent-based tumor model (8M glands)
- Simulate data D' from the computational model under θ'=(μ, σ)
- Generate virtual gland profiles

Most detectable ITH arises before the lesion is clinically evident

Signals of selection are detectable ...

but fail to alter subclonal architecture

Carcinomas exhibit elevated subclone fitness differences and CNA rates, relative to adenomas

Implications of the Big Bang model

- In the Big Bang model, the tumor grows as a single terminal expansion, with selection uniformly conferred by drivers present in the first tumor cell
- Although selection is detectable, it is insufficient to alter subclonal architecture; compatible with *effectively neutral evolution*
- Most *detectable* ITH occurs early, whereas late arising, but potentially aggressive subclones may be undetected providing a heterogeneous substrate for resistance under treatment selective pressure
- Some tumors may be born to be bad, wherein invasive and metastatic potential is specified early; others may be evolutionarily stable

Big Bang model: Effectively neutral evolution Terminal expansion

Linear evolution: Ongoing selection Successive clonal expansions

Branched evolution: Ongoing selection Co-occurring clonal expansions

Hu et al., BBA Rev in Cancer 2017

Predicted variant allele frequency (VAF) distribution under effective neutrality vs. positive selection

An extensible framework to simulate spatial tumor growth under different modes of evolution

https://github.com/cancersysbio/VirtualTumorEvolution https://github.com/cancersysbio/VAP

Spatial tumor growth model overview

ITH metrics

- fHrs fraction of high frequency (VAF>0.2) region-specific subclonal SSNVs out of all region-specific subclonal SSNVs (VAF>0.08)
- fHsub fraction of subclonal SSNVs (VAF>0.08) with high frequency (VAF>0.2)
- FST (Fixation index) a measure of genetic divergence between regions
- KSD (Kolmogorov-Smirnov distance) dissimilarity of the SFS between regions
- rAUC ratio of the area under the cumulative SFS (pooled cumulative SFS for multiple regions) to the area under the theoretical neutral SFS

Patterns of subclonal diversity under different evolutionary modes

SFS under different evolutionary modes

Weak Selection (s=0.01) Moderate (s=0.05) Moderate (s=0.05) Strong (s=0.1) Strong (s=0.1) Distinguishing alternate models from theoretical neutral model rAUC rAUC 160X 2 samples

Neutral

Neutral (CSC)

Neutral

Neutral (CSC)

Weak Selection (s=0.01)

640X

8 samples

Distinguishing alternate models from the simulated neutral

The SFS reflects tumor dynamics

COAD M MA, 1023 SSNVs ۲ 250 $fH_{sub} = 0.097$ 150 FST = 0.094 # of Mutations KSD = 0.057 0 -Public (389) 150 Pvt-Shared Pvt-Site Specific 250 MB, 926 SSNVs 0 0.1 0.3 0.5 0.7 0.9 1 Allele Frequency **NNSs #** 1.0 Public Pvt-Shared Pvt-Site Specific 0.8 76431 VAF MB 0.4 0.6 2 1 130 95 64 33 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 VAF MA

MSS/CIN-

MSS/CIN+

MSI+

The SFS reflects tumor dynamics

Single gland sequencing reveals complex subclonal architecture

OA2

Variable modes of evolution in solid tumors

Variable modes of evolution in solid tumors

Distinguishing neutrality vs. positive selection

The mode of tumor growth informs 'drivers'

Towards predictive models and forecasting tumor trajectories

- Tumors are governed by evolutionary principles such that patterns of adaptation may be 'learned' and potentially exploited therapeutically
- The 'mode' of primary tumor evolution has implications for delineating the 'drivers' of progression and its future trajectory
- It is instructive to consider a 'null' (neutral) model which generates testable predictions; selection is more complex and its signal can be dampened
- Ongoing efforts are focused on developing predictive models informed by evolutionary dynamics and longitudinal 'omic' measurements

Curtis Lab Ruping Sun Zheng Hu Arbel Harpak Zhicheng Ma Jose Seoane Jennifer Caswell **Jie Ding** Katherine Pogrebniak **Joe Charalel Krystal Straessler Chris Probert** Kasper Karlsson Alexandra Sockell Katie Driest

American Association for Cancer Research

THE FOUNDAT for Cancer Research

Collaborators

Darryl Shibata (USC) Andrea Sottoriva (ICR) Trevor Graham (QMUL)

Heinz-Josef Lenz (USC) Matthias Preusser (Univ Vienna) Fotios Loupakis (Univ Pisa) Carlos Suarez (Stanford)

> Calvin Kuo (Stanford) Mike Bassik (Stanford)