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Geometric Inverse Problems governed by PDEs
Motivation: Elastography

We consider: Geometric inverse problems for wave equation and Lamé
system: the unknown is the spatial domain

• Motivation: Elastrography is noninvasive technique of imaging by
ultrasound or MRI, allowing to detect elastic properties of a tissue in real time

• It is based on the fact that soft tissues are more deformable than stiff
matter. When mechanical compression is applied, the stress in the tumor is
less than into the surrounding tissue and the difference can be captured by
images (a tumor tissue is 5–28 times stiffer than normal tissue, then the
deformation after a mechanical action is smaller)

• It is used in various fields of Medicine (detection and description of bread,
liver, prostate and other cancers, fibrosis, . . . )
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Wave equation
N-dimensional wave equation (N = 2 or 3)

(a) Direct problem:

Data: Ω, D, T > 0, ϕ = ϕ(x , t) and γ ⊂ ∂Ω
Result: the solution u

(1)


utt −∆u = 0 in (Ω \ D)× (0,T )
u = ϕ on ∂Ω× (0,T )
u = 0 on ∂D × (0,T )
u(x , 0) = u0, ut (x , 0) = u1 in Ω

Information:

(2)
∂u
∂n

:= α̃ on γ × (0,T )

(b) Inverse problem:

(Partial) data: Ω, T , ϕ and γ ⊂ ∂Ω
(Additional) information: α̃ = α̃(x , t)
Goal: Find D such that the solution to (1) satisfies (2)

Lamé vibrations are much greater in one direction than the other, then neglecting small terms, one

component of the displacement field approximately satisfies a wave equation. . .
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Elasticity systems: isotropic case, constant Lamé coefficients
Similar inverse problem

(b) Inverse problem: given α̃ = α̃(x , t), ϕ = ϕ(x , t), µ, λ > 0, find D such that
utt − µ∆u + (µ+ λ)∇(∇ · u) = 0 in Ω \ D × (0,T )
u = ϕ on ∂Ω× (0,T )
u = 0 on ∂D × (0,T )

u(0) = u0, ut (0) = u1 in Ω \ D

satisfies

σ(u) · n =
(
µ(∇u +∇ut ) + λ(∇ · u)Id.

)
· n := α̃(x , t) on γ × (0,T )

Explanations:

u = (u1, u2, u3) is the displacement vector

σ(u) · n is normal stress

Small displacements, hence linear elasticity

The tissue is described by the Lamé coefficients λ and µ
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Inverse problems: main questions

Uniqueness u0 and u1 solutions corresponding to D0 and D1 resp. and
α̃0 ≡ α̃1 on γ × (0,T ). Then, do we have D0 = D1?

N-dimensional wave equation: OK

N-dimensional isotropic Lamé system with constant coefficients: OK

Here we need only Unique Continuation, then no geometrical condition on γ

Stability Find an estimate of the “size” of (D0 \ D1) ∪ (D1 \ D0) in terms of
the “size” of α̃0 − α̃1:

Size
(

(D0 \ D1) ∪ (D1 \ D0)
)
≤ CF

(
‖α̃0 − α̃1‖A(γ×(0,T ))

)
for all D1 “close” to D0, for some F : R+ 7→ R+ with F (s)→ 0 as s → 0,
some suitable space A(γ × (0,T )) and C = C(D0,Ω, γ,T , ϕ0)

Reconstruction Devise iterative algorithms to compute D from α̃

1 Method 1: Optimization Problem, FEM, FreeFem++
2 Method 2: Mesh-less method, MFS, Optimization Problem, MATLAB
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Method 1: Optimization problem, FEM, FreeFem++. . . I
Augmented Lagrangian method (ff-NLopt - AUGLAG)

Assume: N = 2, D = B(x0, y0; r)

Inverse problem: given α̃ = α̃(x , t), find x0, y0, r such that D ⊂ Ω and the
solution u to the Lamé system satisfies

σ[x0, y0; r ] :=
(
µ(x)(∇u +∇ut ) +λ(x)(∇ · u)Id.

)
· n = α̃(x , t) on γ× (0,T )

Constrained optimization problem (case of a ball)

Find x0, y0 and r such that (x0, y0, r) ∈ Xb and

J(x0, y0, r) ≤ J(x ′0, y
′
0, r
′) ∀ (x ′0, y

′
0, r
′) ∈ Xb

the function J : Xb 7→ R is defined by

J(x0, y0, r) :=
1
2

∫ T

0
‖σ[x0, y0, r ]− α̃‖2

H−1/2(γ) dt

Xb := { (x0, y0, r) ∈ R3 : B(x0, y0; r) ⊂ Ω }
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Method 1: Optimization problem, FEM, FreeFem++. . . II
Augmented Lagrangian method (ff-NLopt - AUGLAG)

The problem formulation contains inequality constraints
Minimize f (x)

Subject to x ∈ X0 = {x ∈ Rm : x j ≤ xj ≤ x j , 1 ≤ j ≤ m}
ci (x) ≥ 0, 1 ≤ i ≤ I

We need numerical solution of PDE: FreeFem++ (ff-NLopt- AUGLAG)
Slack variables si : ci (x) ≥ 0 rewired as ci (x)− si = 0, si ≥ 0, 1 ≤ i ≤ I

Optimization problem: augmented Lagrangian Minimize LA(x , λk ;µk ) := f (x)−
I∑

i=1

λk
i (ci (x)− si ) +

1
2µk

I∑
i=1

(ci (x)− si )
2

Subject to x ∈ X0; si ≥ 0, 1 ≤ i ≤ I
λk

i : multipliers, µk : penalty parameters

Subsidiary unconstrained optimization algorithms (among others):

CRS2 is a gradient-free algorithm a version of Controlled Random
Search (CRS) for global optimization
DIRECTNoScal is variant of the DIviding RECTangles algorithm for
global optimization
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Numerical results: 2-D Lamé system I
D is a ball

Test 1: N = 2, Ω = B(0; 10), D = B(x0, y0; r), T = 5

u01 = 10x , u02 = 10y , u11 = 0, u12 = 0, ϕ1 = 10x , ϕ2 = 10y

x0ini = 0, y0ini = 0, rini = 0.6

x0des = -3, y0des = 0, rdes = 0.4

NLopt (AUGLAG + DIRECTNoScal), No Iter = 1001, FreeFem++

x0cal = -3.000224338
y0cal = -0.0005268693985
rcal = 0.4000228624

Figure: Test 1 – The initial geometrical configuration, the
initial triangulation and the target D. Number of
triangles: 992; number of vertices: 526.
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Numerical results: 2-D Lamé system II
D is a ball

Figure: Computed center and radius
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Numerical results: 2-D Lamé system III
D is a ball
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Figure: Test 1 – The evolution of the cost along the first 1001 iterations of
DIRECTNoScal (Left) and a detail (Right).
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Numerical results: 2-D Lamé system I
D is the interior of an ellipse

Assume: N = 2, D = E(x0, y0, θ, a, b)

Inverse problem: given α̃ = α̃(x , t), find x0, y0, θ, a, b such that D ⊂ Ω and
the solution u to the Lamé system satisfies

σ[x0, y0, θ, a, b] :=
(
µ(x)(∇u+∇ut )+λ(x)(∇·u)Id.

)
·n = α̃(x , t) on γ×(0,T )

Optimization problem: case of an ellipse

Find x0, y0 and θ and a, b such that (x0, y0, θ, a, b) ∈ Xe and

K (x0, y0, θ, a, b) ≤ K (x ′0, y
′
0, θ
′, a′, b′) ∀ (x ′0, y

′
0, θ
′, a′, b′) ∈ Xe,

the function K : Xe 7→ R is defined by

K (x0, y0, θ, a, b) :=
1
2

∫ T

0
‖σ[x0, y0, θ, a, b]− α̃‖2

H−1/2(γ) dt

Xe := { (x0, y0, θ, a, b) ∈ R5 : a, b > 0, θ ∈ [0, π], E(x0, y0, θ, a, b) ⊂ Ω }
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Numerical results: 2-D Lamé system II
D is the interior of an ellipse

Test 2: Ω = B(0; 10), T = 5, u01 = 10x , u02 = 10y , u11 = 0,
u12 = 0, ϕ1 = 10x , ϕ2 = 10y

x0des=-3, y0des=0, sin(thetades)=0, ades=0.8, bdes=0.4

x0ini=-1, y0ini=-1, sin(thetaini)=0, aini=0.5, bini=0.5

NLopt (AUGLAG + DIRECTNoScal), No Iter = 2002, FreeFem++:

x0cal =-3.002591068
y0cal =-3.001574963
sin(thetacal)=0.00548696845
acal =0.8036351166
bcal =0.400617284

Figure: Test 2 – The initial geometrical configuration, the
initial triangulation and the target D. Number of
triangles: 1206; number of vertices: 633.
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Numerical results: 3-D Lamé system I
Case of a sphere

Test 3: N = 3, Ω is a sphere centered at (0, 0, 0) and radius R = 10, T = 5,

u01 = 10x , u02 = 10y u03 = 10z, u11 = 0, u12 = 0 u13 = 0
ϕ1 = 10x , ϕ2 = 10y ϕ3 = 10z

x0des = -2, y0des = -2, z0des = -2, rdes = 1

x0ini = 0, y0ini = 0, z0ini = 0, rini = 0.6

NLopt (AUGLAG + DIRECTNoScal), FreeFem++:

x0cal = -1.981405274
y0cal = -2.225232904
z0cal = -2.148084171
rcal = 0.9504115226
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Numerical results: 3-D Lamé system II
Case of a sphere

Figure: Test 3 – The initial mesh and the target
D. Number of tetrahedra: 4023; number of
vertices: 829; number of faces: 8406.

Figure: Test 3 – The computed first component
of the observation at final time and the final
mesh.

Similar results for the wave equation. . .

AD, E. Fernández-Cara, Some geometric inverse problems for the linear
wave equation, Inverse Problems and Imaging, 9 (2015), no. 2, 371–393

AD, E. Fernández-Cara, Some geometric inverse problems for the Lamé
system with application in elastography, submitted
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Method 2 of reconstruction
Method of fundamental solutions (MFS), meshless,. . .

MFS is meshless method developed for solving N dimensional wave
equations (direct problem), based on:

1 Wave equation is considered as Poisson equation with time-dependent
source term: −∆u = −utt

2 Houbolt finite difference, then Poisson problem
3 Method of particular solutions (MPS)- fundamental solutions (MFS):

u(x) = uP(x) + uH(x) =
Nf∑
j=1

βjF (|x − ηj |) +
Nb∑

k=1

αk G(|x − ξk |), where

uP is particular solution of nonnhomogeneous equation
uH is homogeneous solution of Laplace equation
F is integrated radial basis function: ∆F (r) = f (r), f (r) is radial basis func.
βj coefficients of the basis function, αk intensity of the source points
G is fundamental solution of the Laplace equation
Nf is number of the field points
Nb is number of the source points

4 PDE+BC+IC⇒ resolution of linear system: M
(
β
α

)
= Z for βj , αk

For Inverse Problem: for simplicity, we consider Poisson equation. . .
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Method 2 of reconstruction: Poisson equation
Numerical results

Inverse problem: (Partial) data: Ω, T , ϕ, f and γ ⊂ ∂Ω
(Additional) information: α̃ = α̃(x)
Goal: Find D such that the solution u to (3) satisfies (4)

(3)

 −∆u + au = f in Ω \ D (PDE)
u = ϕ on ∂Ω (BC on ∂Ω )
u = 0 on ∂D (BC on ∂D )

(4)
∂u
∂n

= α̃ on γ (BC on γ )

We take

u(x) = uP(x) + uH(x) =
Nf∑
j=1

βjF (|x − ηj |) +
Nb∑

k=1

αk G(|x − ξk |)

Assume: Ω = B(0, 10), D is a ball: D = B(x0, y0; rho)
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Method 2 of reconstruction: Poisson equation I
Numerical results: D is a ball

Ω = B(0, 10), ϕ(x) = 10x , f (x) = 0, a = 1

Nb0 = 60 : Nb of boundary points on ∂Ω

Nb00 = 10 : Nb. of boundary points on γ

Nd = 12 : Nb. of boundary points on ∂D

Nb = Nb0 + Nd : Nb. of source points

x0ini = 0, y0ini = 0, rho0ini = 1.5

x0des = -6, y0des = 0, rhodes = 1.2
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u(x) = uP(x) + uH(x) =
Nf∑
j=1

βjF (|x − ηj |) +
Nb∑

k=1

αk G(|x − ξk |),

PDE + BC’s on ∂Ω, ∂D, γ yield to nonlinear system of equations

M(x0, y0, rho)

(
β
α

)
= Z ⇒ Last square formulation fmincon, MATLAB. . .

x0cal = -5.999991, y0cal = 0, rhocal = 1.199999
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Method 2 of reconstruction: Poisson equation II
Numerical results: D is a ball

x0cal = -5.999991, y0cal = 0, rhocal = 1.199999

x0des = -6, y0des = 0, rhodes = 1.2
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Figure: Desired configuration
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Method 2 of reconstruction: Poisson equation III
Numerical results: D is a ball
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Figure: The evolution of the cost along 114 iterations of fmincon

Joint work with:

AD, E. Fernández-Cara, J. Rocha de Faria, P. de Carvalho
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Work in progress
Open problems

1 With the Method 2: Formulation + Numerical results for wave equation
2 With the Method 1: numerical results for general elasticity system:

−utt −∇ · σ(u) = 0 in Ω \ D × (0,T )
u = ϕ on ∂Ω× (0,T )
u = 0 on ∂D × (0,T )

u(0) = u0, ut (0) = u1 in Ω \ D

σkl (u) =
N∑

i,j,k,l=1

aijklεij (u), εij (u) =
1
2

(∂iuj + ∂jui )

aijkl = aklij = aijlk ∈ L∞(Ω) 1 ≤ i , j , k , l ≤ 3
N∑

i,j,k,l=1

aijklξijξkl ≥ α
N∑

i,j=1

|ξij |2, ∀ {ξij} ∈ RN×N
sym

3 Ellipsoids, other more complicated geometries ?

4 Internal observations ?
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