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Fluid-Structure Interactions (FSI)

Interaction of some movable and/or deformable structure with

an internal or surrounding fluid flow

I industrial processes, aero-elasticity, and biomechanics

The boundary of the domain is not known in advance,

but has to be determined as part of the solution.

I Free boundary: steady-state problem.

I Moving boundary: time dependent problems and the position of the
boundary is a function of time and space.



Fluid-Elasticity Interactions - Kinematics

I Coupling of incompressible Navier-Stokes equations with
an elastic solid.

Motion of the 2 continuous media:

Mass + Momentum Balance
- same for solids and fluids.

Characterize how the media react internally to an exterior action
- behaviors of the 2 types of media diverge.

Computational Domain: reference vs. current configuration?
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Deformation and Motion

Reference configuration: Ω̂ ⊂ R3 be bounded, open, simply connected
set, with smooth boundary, filled by a continuum media.

A deformation is a smooth, 1-1 map:

φ̂ : Ω̂→ Ω, x̂ → x = φ̂(x̂)

I Ω: current configuration.

I η̂(x̂) = φ̂(x̂)− x̂ : displacement of the material point x̂ .

A motion is a smooth map:

ϕ̂ : Ω̂× R+ → Ω(t), (x̂ , t)→ x = ϕ̂(x̂ , t)

s.t. for any t ≥ 0, ϕ̂t = ϕ̂(·, t) is a deformation.

A motion is a 1-parameter family of deformations.

I Ω̂ can be arb., or Ω̂ = Ω(0).

I Ω(t): current configuration at time t.



Displacement at time t: η̂(x̂ , t) = ϕ̂(x̂ , t)− x̂ .

Deformation Gradient: Ĝ : Ω̂× R+ → R3×3,

Ĝ (x̂ , t) = Dx̂ φ̂(x̂ , t) = ∇x̂ φ̂(x̂ , t).

Jacobian of the Deformation:

Ĵ = det(Ĝ ) > 0

I measures the variation of the volume due to the deformation: for
V̂ ⊂ Ω̂, and V (t) = {x ∈ Ω(t) | x = ϕ̂(x̂ , t), x̂ ∈ V̂ },

|V (t)| =

∫
V (t)

dx =

∫
V̂

Ĵ(x̂ , t)dx̂

Velocity:

û(x̂ , t) =
∂

∂t
η̂(x̂ , t) =

∂

∂t
ϕ̂(x̂ , t)

All physical quantities can be defined on the reference or on the current
configuration.



Lagrangian, Eulerian, and ALE

Solid: displacements are often relatively small

I computational domain: Ω̂

I Lagrangian formulation: focus on the material particle x̂ and its
evolution

Fluid: displacements are large and usually irrelevant

I we are mostly interested in the velocity field

I Eulerian framework: observe what happens at a given point x in the
physical space.

FSI: Fluid + elasticity + interface conditions between solid and fluid

To match these two different frameworks:

Arbitrary Lagrangian-Eulerian (ALE) formulation

I Evolution of the computational domain is not governed by the fluid
motion, but has to comply with the evolution of the boundary,
which is the result of the coupling with the structural model.
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Fluid - Elasticity Interaction: PDE model

I Configuration: the elastic body moves and deforms inside the fluid.

I Elastic body located at time t ≥ 0 in a domain Ω(t) ⊂ R3 with
boundary Γ(t).

I The fluid occupies domain Ωf (t) = D \ Ω̄(t), with smooth boundary
Γ(t) ∪ Γf .

I Let D ⊂ R3 be the control volume. D contains the solid and the
fluid at each time t ≥ 0, i.e. D = Ω(t) ∪ Ωf (t), with smooth
boundary ∂D = Γf .



Navier-Stokes - Eulerian Framework

I Fluid: Newtonian viscous, homogeneous, and incompressible.

I Its behavior is described by its velocity w and pressure p.

I The viscosity of the fluid is ν > 0, and the fluid strain tensor
is given by

ε(w) =
1

2
[Dw + (Dw)∗],

where Dw is the gradient matrix of w , and (Dw)∗ represents
the transpose of Dw .

I The fluid state satisfies the following Navier-Stokes equations:
wt − ν ∆w + Dw · w + ∇p = v1 on Ωf (t)

div w = 0 on Ωf (t)

w = 0 on Γf



Structural Deformation: Lagrangian formulation

I The evolution of the fluid domain Ωf (t) is induced by the structural
deformation through the common interface Γ(t).

I O ⊂ D: reference configuration for the solid; ∂O = S
I Of = D \ Ō: reference fluid configuration. T

I D is described by a smooth, injective map:

ϕ : D̄ × R+ −→ D̄, (x , t) 7→ ϕ = ϕ(x , t).

I For x ∈ O, ϕ(x , t): the position at time t of the material point x .

I On Of , ϕ(x , t) is defined as an arbitrary extension of the restriction
of ϕ to S, which preserves the boundary Γf , i.e. ϕ = IΓf

on Γf .

I J(ϕ) > 0: Jacobian of the deformation ϕ(t)



Nonlinear elasticity

I St. Venant - Kirchhoff equations: large displacement, small
deformation elasticity. Green-St. Venant nonlinear strain tensor:

σ(ϕ) =
1

2
[(Dϕ)∗Dϕ− I ].

Piola transform of the Cauchy stress tensor:

P(x) = Dϕ(x)[λTr[σ(ϕ)]I + 2µσ(ϕ)])

I Equilibrium equations for elasticity :

Jρ∂ttϕ− DivP = Jρv2 on O

On Γ(t) = ϕ(t)(S), we have suitable transmission boundary

conditions:

{
w ◦ ϕ = ϕt on S
Pn = J(ϕ)(σ(p,w) ◦ ϕ)(Dϕ)−∗n on S,

where n(t) is the unit outer normal vector along Γ(t) with respect
to Ω(t), and σ(p,w) = −pI + 2νε(w) is the fluid stress tensor.



FSI - PDE model



wt − ν ∆w + Dw · w + ∇p = v1 on Ωf (t)

div w = 0 on Ωf (t)

w = 0 on Γf

Jρ∂ttϕ− DivP = Jρv2 on O
w ◦ ϕ = ϕt on S
Pn = J(ϕ)(σ(p,w) ◦ ϕ)(Dϕ)−∗n on S
ϕ = IΓf

on Γf ,

with IC
ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1,w(·, 0) = w0, p(·, 0) = p0 on (O)2 × (Oc)2.



Well-posedness Analysis

FSI: parabolic-hyperbolic coupled system

I regularity gap of the fluid and structure velocities on the common
interface: the traces of the elastic component at the energy level are
not defined via the standard trace theory, and this induces a loss of
regularity at the boundary of the coupled system.

I Coutand-Shkoller ’05-’06: Existence of strong solutions for the case of a linear and then quasi-linear elastic
body flowing within a viscous, incompressible fluid, under the assumptions of smooth initial data (i.e., the

initial fluid velocity w0 belongs to H5, and the initial data for elasticity (ϕ0, ϕ1) belong to H3 × H2).
Due to the incompressibility condition of the fluid, uniqueness of solution for the model required higher
regularity for the initial data (i.e., (w0, ϕ0, ϕ1) ∈ H7 × H5 × H4).

I Kukavica-Tuffaha-Ziane ’09-’11, Ignatova-Kukavica-Lasiecka-Tuffaha ’12-’14, Raymond-Vanninathan ’15
for N-S coupled with linear elasticity/wave equation.

I The authors of [Ignatova-Kukavica-Lasiecka-Tuffaha] also prove global in time well-posedness for small
initial data of the Navier–Stokes-elasticity model involving a wave equation with frictional damping, and
they show that the energy associated with smooth and sufficiently small solutions of the damped model
decay exponentially to zero.

I Canic-Muha ’13-’14: dynamical coupling (which is of great interest in the modeling and analysis of the
cardiovascular system).

I Grandmont’02, Wick-Wollner’14: steady state NS-St. Venant elasticity equations.



PDE-constrained Optimization Problems governed by FSI

In most of the applications, the ultimate goal is the{
optimization or optimal control of the considered process,

related sensitivity analysis (with respect to relevant physical parameters).

I minimize turbulence in the fluid

I optimize fluid velocity or pressure

I optimize the deformation of the structure

I minimize wall shear stresses

I ...

I Control problems in FSI: most of the literature is focused on the assumption of small but rapid oscillations
of the solid body, so that the common interface may be assumed fixed:
Lasiecka and Bucci ’05, ’10, Lasiecka, Triggiani, and Zhang ’11, Lasiecka and Tuffaha, ’08-’09,
Avalos-Triggiani ’08-’12.

I Recently, PDE constrained optimization problems governed by free boundary interactions have been
considered, with most research studies mainly addressed in the context of the numerical analysis of the
finite element methods [Antil-Nochetto-Sodre ’14, Richter-Wick ’13, Van Der Zee et al ’10]
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Steady State Navier-Stokes and Elasticity



−ν ∆w + Dw · w + ∇p = v |Ωf
on Ωf

divw = 0 on Ωf

w = 0 on Γ := ϕ(S)

−DivP = v |Ωe on O
Pn = J(ϕ)(σ(p,w) ◦ ϕ)(Dϕ)−∗n on S
w = 0, ϕ = IΓf

on Γf

Cauchy Stress Tensor T : Ωe → S3, T = [J−1P · (Dϕ)∗] ◦ ϕ−1 [2]



−ν ∆w + Dw · w + ∇p = v |Ωf
on Ωf

divw = 0 on Ωf

w = 0 on Γ := ϕ(S)

−DivT = v |Ωe on Ωe = ϕ(O)

T n = σ(p,w)n on Γ

w = 0, ϕ = IΓf
on Γf .

2
P.G. Ciarlet, Mathematical Elasticity Vol. I: Three-dimensional Elasticity, North-Holland Publishing Co.,

1988.
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OCP

We consider the optimal control problem:

min J(w , v) = 1/2‖w − wd‖2
L2(Ωf ) + 1/2‖v‖2

H3(D) (1)

subject to

−ν ∆w + Dw · w + ∇p = v |Ωf
on Ωf

divw = 0 on Ωf

w = 0 on Γ := ϕ(S)

−DivT = v |Ωe on Ωe = ϕ(O)

T n = σ(p,w)n on Γ

w = 0, ϕ = IΓf
on Γf .

I distributed control v ∈ H3(D)

I wd ∈ L2(Ωf ) is a desired fluid velocity.



OCP

min J(w , v) = 1/2‖w − wd‖2
L2(Ωf ) + 1/2‖v‖2

H3(D) (2)

subject to

(E )
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w = 0, ϕ = IΓf
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Goals:

1. Existence of an optimal control
L. Bociu, L. Castle, K. Martin, and D. Toundykov, Optimal Control
in a Free Boundary Fluid-Elasticity Interaction, AIMS Proceedings,
(2015), 122-131.

2. First-order necessary conditions of optimality (NOC)
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Goals:

1. Existence of an optimal control

2. First-order necessary conditions of optimality (NOC)

I Compute the gradient of the functional J.
I Characterization of the optimal control will pave the way for a

numerical study of the problem.



Main Challenge

I Lagrangian: L = J − (weak form of the system)

I Not convex-concave, due to the nonlinearity of the
control-to-state map.

I Min-Max theory does not apply, i.e., one can not reduce the
cost function gradient to the derivative of the Lagrangian with
respect to the control, at its saddle point [ Delfour-Zolesio ’86]

I Optimality conditions must be derived from differentiability
arguments on the cost functional J with respect to the control v .

I Main challenge: dependence of the cost integrals in J on the
unknown domain Ωf , which also depends on the control v .

min J(w , v) = 1/2‖w − wd‖2
L2(Ωf ) + 1/2‖v‖2

H3(D)

I Directional derivative of J with respect to v in the direction of v ′:
for small parameter s ≥ 0, consider the perturbed functional
J(v + sv ′) and then calculate the derivative at s = 0 of the function
s → J(v + sv ′).



With the following notation for the s-derivatives at s = 0,

ϕ′ =
∂

∂s
ϕs

∣∣∣
s=0

, U ′ = ϕ′◦ϕ−1, w ′ =
∂

∂s
ws

∣∣∣
s=0

, and p′ =
∂

∂s
ps

∣∣∣
s=0

,

we can compute the directional derivative of J as

∂J(v ; v ′) = lim
s→0

J(v + sv ′)− J(v)

s
=

∂

∂s
J(v + sv ′)

∣∣∣∣
s=0

=
∂

∂s

[
1

2

∫
(Ωf )s

|ws − wd |2 +
1

2
‖v + sv ′‖2

H3(D)

]∣∣∣∣∣
s=0

=

∫
Ωf

(w − wd) · w ′ +
1

2

∫
Γ

|w − wd |2U ′ · nf + (v , v ′)H3(D)

I The challenge of applying optimization tools to free boundary FSI is
the proper derivation of the sensitivity and adjoint sensitivity
information with correct balancing conditions on the common
interface.

I As the interaction is a coupling of Eulerian and Lagrangian
quantities, sensitivity analysis on the system falls into the framework
of shape analysis.



With the following notation for the s-derivatives at s = 0,

ϕ′ =
∂

∂s
ϕs

∣∣∣
s=0

, U ′ = ϕ′◦ϕ−1, w ′ =
∂

∂s
ws

∣∣∣
s=0

, and p′ =
∂

∂s
ps

∣∣∣
s=0

,

we can compute the directional derivative of J as

∂J(v ; v ′) = lim
s→0

J(v + sv ′)− J(v)

s
=

∂

∂s
J(v + sv ′)

∣∣∣∣
s=0

=
∂

∂s

[
1

2

∫
(Ωf )s

|ws − wd |2 +
1

2
‖v + sv ′‖2

H3(D)

]∣∣∣∣∣
s=0

=

∫
Ωf

(w − wd) · w ′ +
1

2

∫
Γ

|w − wd |2U ′ · nf + (v , v ′)H3(D)

I The challenge of applying optimization tools to free boundary FSI is
the proper derivation of the sensitivity and adjoint sensitivity
information with correct balancing conditions on the common
interface.

I As the interaction is a coupling of Eulerian and Lagrangian
quantities, sensitivity analysis on the system falls into the framework
of shape analysis.



Sensitivity System [LB - Zolesio]



−ν∆w ′ + (Dw’) w + (Dw) w’ + ∇p′ = v ′
∣∣
Ωf

in Ωf

divw ′ = 0 in Ωf

w ′ + (Dw)U’ = 0 on Γ

−Div T(U’) = v ′
∣∣
Ωe

in Ωe

T (U ′) · n = (−p′I + 2νε(w ′)) · n + B(U’) on Γ

w ′ = 0, U ′ = 0 on Γf

Θ = Dϕ ◦ ϕ−1 DU ′ := Θ∗(DU ′)Θ,

T (U ′) := (DU ′)T +
1

det Θ
Θ · {λTr(DU ′)I + µ[DU ′ + (DU ′)∗]}Θ∗,
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Sensitivity System [LB - Zolesio ]
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′)∗n + (D2bΩe )U ′Γ] +(DT )U ′ · n

+ div(U ′)T · n − T · (DU ′)∗ · n−

− 〈U ′, n〉(−DivΓ(T ) + [∂νpI − 2ν∂νε(w)] · n).
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Notation

I (Df)ij = ∂j fi ∈M3 is the gradient matrix at a ∈ X of any vector
field f = (fi ) : X ⊂ R3 → R3.

I div f = ∂i fi ∈ R is the divergence of f : X ⊂ R3 → R3.

I DivT = ∂jTij ∈ R3 is the divergence of any second-order tensor
field T = (Tij) : X ⊂ R3 →M3.

I A∗ = transpose of A, for any A ∈M3.

I dΩ(x) =

{
infy∈Ω |y − x | Ω 6= ∅
∞ Ω = ∅

is the distance function

I bΩ(x) = dΩ(x)− dΩc (x) , ∀x ∈ Rn is the oriented distance fn.

from x to Ω, for any Ω ⊂ Rn.

I H = ∆bΩ = Tr(D2bΩ) is the additive curvature of Γ = ∂Ω. [3]

3
M.C. Delfour and J.P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus and Optimization,

SIAM 2001.



Sensitivity System [LB - Zolesio]



−ν∆w ′ + (Dw ′)w + (Dw)w ′ + ∇p′ = v ′
∣∣
Ωf

in Ωf

divw ′ = 0 in Ωf

w ′ + (Dw)U ′ = 0 on Γ
−DivT (U ′) = v ′

∣∣
Ωe

in Ωe

T (U ′) · n = (−p′I + 2νε(w ′)) · n + B(U’) on Γ

w ′ = 0, U ′ = 0 on Γf
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[(DΓU
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+ div(U ′)T · n − T · (DU ′)∗ · n−

− 〈U ′, n〉(−DivΓ(T ) + [∂νpI − 2ν∂νε(w)] · n).

= B1 · ∇Γ〈U ′, n〉 − 〈U ′, n〉B2 + (DT )U ′ · n + div(U ′)T · n − T · (DU ′)∗ · n
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Connection to Shape Analysis

I As vs = v + sv ′, the geometry of the problem moves with the
flow of a vector field that depends on the deformation ϕs .

I The perturbation Γs of the boundary is built by the flow of the
vector field V (s, x) = ∂

∂sϕs ◦ ϕ−1
s , i.e.,

Γs = Ts(V )(S),where Ts(V ) : Ωe → (Ωe)s , Ts(V ) = ϕs◦ϕ−1.

I (ϕ′,w ′, p′): ‘shape’ derivatives with respect to the speed V , which
is a vector field that depends on ϕs and is not given a priori.

I Standard theory on shape derivatives: the domain is perturbed
by an a priori given vector field and then the speed method is
applied.

I s-derivatives: ‘pseudo-shape derivatives’, in the sense that
much of the theory of shape calculus remains applicable.
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Goal: find the gradient of J at v : J ′(v ; v ′)

∂J(v ; v ′) =

∫
Ωf

(w − wd) · w ′ +
1

2

∫
Γ

|w − wd |2U ′ · nf + (v , v ′)H3(D)

I Sensitivity system provides the characterization for (U ′,w ′, p′):

−ν∆w ′ + (Dw ′)w + (Dw)w ′ + ∇p′ = v ′
∣∣
Ωf

in Ωf

divw ′ = 0 in Ωf

w ′ + (Dw)U ′ = 0 on Γ
−DivT (U ′) = v ′

∣∣
Ωe

in Ωe

T (U ′) · n = (−p′I + 2νε(w ′)) · n + B(U ′) on Γ
w ′ = 0, U ′ = 0 on Γf

I v ′ does not appear in the chain rule computation, since it is hidden
in the sensitivity equations for w ′, p′, and U ′.

I Idea: Introduce a suitable adjoint problem that eliminates the
s-derivatives and provides an explicit representation for J ′(v ; v ′).
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Theorem (LB - Martin ’16)
For the optimal control problem:

min J(w , v) = 1/2‖w − wd‖2
L2(Ωf ) + 1/2‖v‖2

H3(D),

subject to FSI, the gradient of the cost functional is given by

J ′(v ; v ′) = (v ′, v)D + (v ′|Ωf
,Q) + (v ′|Ωe ,R),

where Q, P, and R solve the following adjoint sensitivity problem:

−ν∆Q + (Dw)∗Q − (DQ)w +∇P = w − wd Ωf

div(Q) = 0 Ωf

−DivT̄ ′(R) = 0 Ωe

Q = R Γ

T̄ ′(R)n + (Dw)∗σ(P,Q)n + divΓ[B1R]n − (DT ∆ · n)∗R

−H〈T n,R〉n +∇Γ〈T n,R〉
−DivΓ(n ⊗ T R) + 〈B2,R〉n = 1

2 |w − wd |2nf Γ

Q = 0 Γf

(4)



Matching of Normal Stress Tensors

T̄ ′(R)n+(Dw)∗σ(P,Q)n+divΓ[B1R]n−(DT ∆·n)∗R−H〈T n,R〉n+∇Γ〈T n,R〉

−DivΓ(n ⊗ T R) + 〈B2,R〉n =
1

2
|w − wd |2nf

I B1 = T + pI − 2νε(w) and B2 = −DivΓ(T ) + [∂νpI − 2ν∂νε(w)] · n
I (DT ∆ · ~f )ik := ∂kTij fj

DT is defined as (DT .~e)ij = (∂kTij)ek . With the above notation,
we can IBP∫

Γ̃c

〈{(DT )γ} · ne ,R〉 =

∫
Γ̃c

(∂kTijγk)(ne)jRi

=

∫
Γ̃c

γk(∂kTij(ne)jRi ) =

∫
Γ̃c

〈γ, (DT ∆ · ne)∗R〉.

I

B̃(R) = divΓ[B1R]n − (DT ∆ · n)∗R − H〈T n,R〉n +∇Γ〈T n,R〉

−DivΓ(n ⊗ T R) + 〈B2,R〉n
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,Q) + (v ′|Ωe ,R),
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−ν∆Q + (Dw)∗Q − (DQ)w +∇P = w − wd Ωf

div(Q) = 0 Ωf

−DivT̄ ′(R) = 0 Ωe

Q = R Γ

T̄ ′(R)n + (Dw)∗σ(P,Q)n + B̃(R) = 1
2 |w − wd |2nf Γ

Q = 0 Γf

(5)



Current Work

I Well-posedness analysis for sensitivity and adjoint sensitivity
system (LB and K. Martin)

I Optimizing the fluid pressure in a moving boundary fluid-wave
interaction with distributed control (LB, L. Castle, and I.
Lasiecka)
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