Minkowski Content and Exceptional Sets for Brownian Paths

Gregory F. Lawler

Department of Mathematics
Department of Statistics
University of Chicago
5734 S. University Ave.
Chicago, IL 60637
lawler@math.uchicago.edu

October 24, 2017

FRACTAL SUBSETS GENERATED BY BROWNIAN MOTION

B_{t} - standard Brownian motion in \mathbb{R}^{d}.

- The path $B[0, t]$.
- If $d=1$, the zero set $\left\{t: B_{t}=0\right\}$
- The set of cut times $\{t: B[0, t) \cap B[t, 1]=\emptyset\}$ or the corresponding set of cut points $\left\{B_{t}: B[0, t) \cap B[t, 1]=\emptyset\right\}$.
- No cut times for $d=1$; all cut times for $d \geq 4$.
- Interesting for $d=2,3$. (Burdzy)
- If $d=2$, the frontier or outer boundary of Brownian motion.
- Loop erasures.

 the same is true of self-avoiding Brownian motion.

An empirical test of this conjecture provides an excellent opportunity to test also the length-area relation of Chapter 12. The plate is covered by increasingly tight square lattics, and we count the numbers of squares of side G intersected by a) the hull, standing for G-area, and b) its boundary, standing for G-length. Graphs relating G-length to G-area, using doubly logarithmic coordinates, were ound to be remarkably straight, with a slope ndistinguishable from $D / 2=(4 / 3) / 2=2 / 3$.
The resemblance between the curves in Thates 243 and 231, and their dimensions, is worth stressing.

NOTE. In Plate 243, the maximal open domains that $\mathrm{B}(\mathrm{t})$ does not visit are seen in gray. They can be viewed as tremas bounded by fractals, hence the loop is a net in the sense of Chapter 14
\triangle The question arises, of whether the loop is a gasket or a carpet from the viewpoint of the order of ramification. I conjectured that the latter is the case, meaning that Brown nets satisfy the Whyburn property, as described on p . 133. This conjecture has been confirmed in Kakutani \& Tongling (unpublished). It follows that the Brown trail is a universal curve in the sense defined on page 144.

Figure: Loop-erased walk (F. Viklund)

Measuring the size of random fractal sets

- Minkowski or box dimension
- Hausdorff dimension
- Hausdorff measure (perhaps with a gauge function)
- Minkowski content

The goal of this talk is to discuss results about Minkowski content which is similar to local time.

Hausdorff measure

$$
\mathcal{H}_{\epsilon}^{\alpha}(V)=\inf \sum\left[\operatorname{diam} U_{j}\right]^{\alpha},
$$

where the sum is over all covers of V with $\operatorname{diam} U_{j} \leq \epsilon$.

$$
\mathcal{H}^{\alpha}(V)=\lim _{\epsilon \downarrow 0} \mathcal{H}_{\epsilon}^{\alpha}(V)
$$

- Very nice properties - \mathcal{H}^{α} is a Borel measure.
- Can be refined by gauges

$$
\mathcal{H}_{\epsilon}^{\phi}(V)=\inf \sum \phi\left(\operatorname{diam} U_{j}\right)
$$

e.g., $\phi(r)=r^{\alpha} L(1 / r)$ where L is slowly varying.

Hausdorff dimension

- $\operatorname{dim}_{h}(V)=\alpha$ if $\mathcal{H}^{\beta}(V)=\infty$ for $\beta<\alpha$ and $\mathcal{H}^{\beta}(V)=0$ for $\beta>\alpha$.
- The value at $\mathcal{H}^{\alpha}(V)$ at $\alpha=\operatorname{dim}_{h}(V)$ can be $0, \infty$, or something in between.
- Typically for random fractals $\mathcal{H}^{\alpha}(V)=0$.
- The reason is that the infimum is taken over all covers of diameter $\leq \epsilon$. It is more natural, especially when considering limits from lattice models, to take infima over covers of diameter $=\epsilon$.
- For some fractals (Brownian path, local time), one can get a nontrivial value by correcting with a gauge function. This can be much harder for more complicated fractal sets arising from nonMarkov processes.

Minkowski content and dimension

- Let $V \subset \mathbb{R}^{d}$ be compact.
-

$$
\operatorname{Cont}_{\alpha}(V)=\lim _{\epsilon \downarrow 0} \epsilon^{\alpha-d} \operatorname{Vol}_{d}\{z: \operatorname{dist}(z, V) \leq \epsilon\}
$$

- This is similar to finding optimal covers of V by balls of radius exactly ϵ.
- Typically this limit does not exists. We can define the upper content $\operatorname{Cont}_{\alpha}^{+}(V)$ by taking limsup.
- (Upper) Minkowski or box dimension $\alpha=\operatorname{dim}_{B}(V)$ is defined by

$$
\operatorname{Cont}_{\beta}^{+}(V)= \begin{cases}\infty, & \beta<\alpha \\ 0, & \beta>\alpha\end{cases}
$$

- $\operatorname{dim}_{B}(V) \geq \operatorname{dim}_{h}(V)$.
- Even though the Minkowski content is not defined for many sets, it is often the case that it is well defined (with probability one) for random fractals and gives a good "measure" on the set.
- It also gives quick definitions.
- For example if $Z_{t}=\left\{s \leq t: B_{s}=0\right\}$ is the zero set for one-dimensional Brownian motion, then

$$
L_{t}=\operatorname{Cont}_{1 / 2}\left(Z_{t}\right)
$$

is well-defined and is (a constant times) the usual local time at 0 for the Brownian motion.

- Let B_{t} be a Brownian motion in $\mathbb{R}^{d}, d \geq 3$. Then

$$
\operatorname{Cont}_{2}(B[0, t])=c t,
$$

for some easily computable constant c.

- Proved (although not stated like this) in, e.g., Le Gall's notes on Brownian motion.
- For $d=2$ need a logarithmic correction essentially because the dimension of double points is the same as the dimension of the $B[0, t]$.
- If we were given the Brownian path but with the wrong parametrization, we could find the natural parametrization by using Minkowski content.

Upper bounds on dimension

- Suppose V is a random compact subset of \mathbb{R}^{d}.
- A weak one-point estimate

$$
\mathbb{P}\{\operatorname{dist}(z, V) \leq \epsilon\} \lesssim \epsilon^{\alpha} .
$$

- Simple Markov inequality shows that with probability one $\operatorname{dim}_{B}(V) \leq d-\alpha$.
- When $\alpha>d$, then one shows that V is empty. (For example, the set of double points on the frontier of a Brownian loop).

Proving results about Hausdorff dimension

- Up-to-constants estimate

$$
\mathbb{P}\{\operatorname{dist}(z, V) \leq \epsilon\} \asymp \epsilon^{\alpha} .
$$

- Two-point estimate

$$
\mathbb{P}\{\operatorname{dist}(z, V) \leq \epsilon, \operatorname{dist}(w, V) \leq \epsilon\} \leq c \epsilon^{2 \alpha}|z-w|^{-\alpha} .
$$

- Use estimate to put a find (with positive probability) a measure (Frostman measure) on V that is at least ($d-\alpha$)-dimensional.
- Generally defined as a subsequential limit - not necessary to show the limit exists.

Proving results about Minkowski content

- Need a strong one-point estimate.

$$
\mathbb{P}\{\operatorname{dist}(z, V) \leq \epsilon\}=G(z) \epsilon^{\alpha}\left[1+O\left(\epsilon^{\beta}\right)\right],
$$

often proved by showing that
$\mathbb{P}\left\{\operatorname{dist}(z, V) \leq e^{-(n+1)} \mid \operatorname{dist}(z, V) \leq e^{-n}\right\}=e^{-\alpha}\left[1+O\left(e^{-n \beta}\right)\right]$.

- Independence of local behavior. Conditioned on

$$
\left\{\operatorname{dist}(z, V) \leq e^{-n}, \operatorname{dist}(w, V) \leq e^{-n}\right\}
$$

the events

$$
\left\{\operatorname{dist}(z, V) \leq e^{-(n+1)}\right\}, \quad\left\{\operatorname{dist}(w, V) \leq e^{-(n+1)}\right\}
$$

are almost independent.

Brownian frontier

- Mandelbrot saw a curve that looked like a SAW by viewing the outer boundary of random walk loop (Brownian bridge).
- This led to the conjecture that the dimension of the outer boundary of Brownian motion is $4 / 3$.
- For some of us seemed like a pretty wild conjecture!
- Burdzy noted that conjecture would imply something very unlikely - that one cannot tell the "inside" from the "outside" of the Brownian frontier if one only sees the frontier
- Several people (including me) tried (unsuccessfully!) to show that one could distinguish the inside from the outside.
- (Burdzy-L) The frontier of a Brownian bridge/loop is a Jordan curve. (Not true for a non-loop.)
- Let B^{1}, B^{2} are independent Brownian motions and

$$
T_{n}^{j}=\inf \left\{t:\left|B_{t}^{j}\right|=e^{n}\right\}, \quad \Gamma_{n}^{j}=B^{j}\left[T_{0}^{j}, T_{n}^{j}\right] .
$$

Let A_{n} be the event that $\Gamma_{n}^{1} \cup \Gamma_{n}^{2}$ does not disconnect the origin from infinity, $p_{n}=\mathbb{P}\left(A_{n}\right)$,

- There exists $\xi=\xi_{2}(2,0)$ (disconnection exponent) such that $p_{n} \approx e^{-n \xi}$. This implies $\operatorname{dim}_{B} \leq 2-\xi$.
- In fact, $\mathbb{P}\left(A_{n+1} \mid A_{n}\right)=e^{-\xi}\left[1+O\left(\delta_{n}\right)\right]$, where δ_{n} summable. In particular $p_{n} \sim c e^{-n \xi}$ and $\operatorname{dim}_{h}=2-\xi$.
- Later work $\delta_{n}=O\left(e^{-\beta n}\right)$.
- Exponent for random walk problem is the same. (L-Puckette)
- These techniques do not compute ξ although some estimates can be given.
- $\xi<1$ and hence $\operatorname{dim}_{h}>1$ (this last fact had been proved in a different way by Bishop, Jones, Pemantle, Peres)
- (L-Schramm-Werner) $\xi=2 / 3$ and the dimension is $4 / 3$.
- In fact, the frontier is essentially a Schramm-Loewner evolution $\left(S L E_{\kappa}\right)$ with parameter $8 / 3$.
- This is also the conjectured limit of self-avoiding walk. Mandelbrot's observations were correct!
- (Rohde-Schramm, Beffara) The Hausdorff dimension of $S L E_{\kappa}$ paths is $1+\frac{\kappa}{8}$.
- SLE paths were parameterized by capacity - this is singular with respect to the natural parametrization which would be scaling limit of counting measure.
- (L-Rezaei) If $\kappa<8$, The ($1+\frac{\kappa}{8}$)-Minkowski content exists for $S L E_{\kappa}$ paths and can be used to give the natural parametrization. (Earlier related work with Sheffield and Zhou.)
- In particular, the Brownian frontier can be parametrized by Cont $_{4 / 3}$.

Open problem

- Let S_{n} be a simple random walk in \mathbb{Z}^{2} conditioned so that $S_{0}=S_{2 N}=0$.
- Let A be the path of the walk "filled in", that is, A is the smallest simply connected subset of \mathbb{Z}^{2} containing all of the vertices in $S_{2 N}$.
- View A as a simply connected domain D_{A} by replacing each vertex with the square of side length 1 centered at A.
- The boundary of D_{A} is a piecewise linear loop - parametrize this loop by length, giving a curve $\gamma_{N}(t), 0 \leq t \leq K$ where K is the number of edges.
- Conjecture: as $N \rightarrow \infty$, the distribution of the curve

$$
\gamma^{(N)}(t)=N^{-4 / 3} \gamma_{N}\left(t N^{4 / 3}\right), \quad 0 \leq t \leq N^{-4 / 3} K
$$

converges to the frontier of a Brownian bridge parametrized by (a constant times) the (4/3)-Minkowski content.

Really hard open problem

- Show that this also is the scaling limit for self-avoidng loops (polygons).
- Give each polygon of 2 n steps measure $e^{-2 n \beta_{c}}$ where β_{c} is critical, that is, the number of self-avoiding walks of length n grows like $e^{n \beta_{c}}$.
- The limiting measure should be the frontiers of the Brownian loop measure.

Cut points

- Let B^{1}, B^{2} are independent Brownian motions and

$$
T_{n}^{j}=\inf \left\{t:\left|B_{t}^{j}\right|=e^{n}\right\}, \quad \Gamma_{n}^{j}=B^{j}\left[T_{0}^{j}, T_{n}^{j}\right] .
$$

Let A_{n} be the event that $\Gamma_{n}^{1} \cap \Gamma_{n}^{2}=\emptyset, p_{n}=\mathbb{P}\left(A_{n}\right)$,

- There exists $\xi=\xi_{d}=\xi_{d}(1,1)$ (intersection exponent) such that $p_{n} \approx e^{-n \xi}$. This implies dim_{B} (cutpoints) $\leq 2-\xi$.
- Exponent for random walk problem is the same. (Burdzy-L)
- In fact, $\mathbb{P}\left(A_{n+1} \mid A_{n}\right)=e^{-\xi}\left[1+O\left(\delta_{n}\right)\right]$, where δ_{n} summable.

In particular $p_{n} \sim c e^{-n \xi}$ and $\operatorname{dim}_{h}($ cutpoints $)=2-\xi$.

- Later work $\delta_{n}=e^{-\beta n}$ (LSW, L-Vermesi)
- These techniques do not compute ξ although some estimates can be given.

$$
\xi_{d}(1,2)=4-d, \quad \frac{4-d}{2}<\xi_{d}<4-d
$$

- Numerics $\xi_{3} \approx$.58. (Burdzy - L - Polaski) May never be determined exactly.
- (LSW) $\xi_{2}=5 / 4$ proved using SLE.

Theorem (in preparation, with N. Holden, X. Li, X, Sun)

- Consider the measure on Brownian paths starting at 0 ending at $x \neq 0$ in \mathbb{R}^{d}. (If $d=3$, this has total mass $G(0, x)$ and has infinite mass in $d=2$.)
- Consider the set of cut points on the path.
- Except for a set of paths of zero measure, the cut points have nontrivial $(2-\xi)$-Minkowski content and this gives a function on the paths that is increasing only at the cut points.
- Important tool is the invariant measure on Brownian paths conditioned on a cut point. This is what is used to get

$$
\mathbb{P}\left(A_{n+1} \mid A_{n}\right)=e^{-\xi}\left[1+O\left(e^{-\beta n}\right)\right] .
$$

Open problem

- Let $S_{n}, 0 \leq n \leq d N^{2}$ be a simple random walk in $\mathbb{Z}^{d}, d=2,3$.
- Consider the set of cut points on the walk and define

$$
L_{t}=N^{\xi-2} \#\left\{\text { cut points } \leq t N^{2}\right\}
$$

- Then the pair $\left(N^{-1} S_{t N^{2}}, L_{t}\right)$ converges to a Brownian motion with (a constant times) the Minkowski content of the cut points of the Brownian motion.
- One thing that is known is up-to-constant estimates for random walk,

$$
\mathbb{P}\left\{S\left[0, N^{2}\right] \cap S\left[N^{2}+1, d N^{2}\right]=\emptyset\right\} \asymp N^{-\xi} .
$$

(Similarly, up-to-contant estimates are known for the random walk frontier in $d=2$.)

Why this problem arose

- Garban, Pete, and Schramm studied pivotal points for critical percolation on the triangular lattice for $d=2$.
- They showed that counting measure, appropriately normalized, on the set of pivotal points had a scaling limit that is a measure on the whole scaling limit of percolation.
- The frontier of the scaling limit of percolation is the same as the frontier of Brownian motion. (Smirnov, LSW)
- Goal: to show that the measure they produced can be given by Minkowski content on the set of cut points of the Brownian motion.
- Here we are using the fact that cut points of the Brownian motion are cut points of the frontier.

One scaling limit that has been done

- Consider loop-erased random walk in \mathbb{Z}^{2} parametrized by the number of steps.
- (LSW) If we ignore parametrization, the scaling limit is $S L E_{2}$.
- (L-Viklund) The scaling limit of the curves parametrized by the number of steps converges to $S L E_{2}$ parametrized by (a constant times) the Minkowski content.
- Proof requires both SLE estimates and a very strong estimate for the Green's function of the discrete loop-erased walk (Beneš-L-V).
- Not just up-to-constant but asymptotic probabilities that are the same as for SLE and hence are conformally covariant.

Summary

- When parametrizing fractal sets arising from discrete limits, it is natural to use Minkowski content rather than versions of Hausdorff measure (when possible).
- There are (should be) many random fractals for which one can show the existence of the Minkowski content.
- Showing discrete limits may require deep understanding of the discrete object as well as the continuum.

THANK YOU HAPPY 60th, CHRIS

