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FRACTAL SUBSETS GENERATED BY BROWNIAN MOTION

Bt - standard Brownian motion in Rd .

The path B[0, t].

If d = 1, the zero set {t : Bt = 0}
The set of cut times {t : B[0, t) ∩ B[t, 1] = ∅} or the
corresponding set of cut points {Bt : B[0, t) ∩ B[t, 1] = ∅}.

No cut times for d = 1; all cut times for d ≥ 4.
Interesting for d = 2, 3. (Burdzy)

If d = 2, the frontier or outer boundary of Brownian motion.

Loop erasures.
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Figure: Loop-erased walk (F. Viklund)
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Measuring the size of random fractal sets

Minkowski or box dimension

Hausdorff dimension

Hausdorff measure (perhaps with a gauge function)

Minkowski content

The goal of this talk is to discuss results about Minkowski content
which is similar to local time.
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Hausdorff measure

Hαε (V ) = inf
∑

[diamUj ]
α,

where the sum is over all covers of V with diamUj ≤ ε.

Hα(V ) = lim
ε↓0
Hαε (V ).

Very nice properties — Hα is a Borel measure.

Can be refined by gauges

Hφε (V ) = inf
∑

φ(diamUj),

e.g., φ(r) = rα L(1/r) where L is slowly varying.
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Hausdorff dimension

dimh(V ) = α if Hβ(V ) =∞ for β < α and Hβ(V ) = 0 for
β > α.

The value at Hα(V ) at α = dimh(V ) can be 0, ∞, or
something in between.

Typically for random fractals Hα(V ) = 0.

The reason is that the infimum is taken over all covers of
diameter ≤ ε. It is more natural, especially when considering
limits from lattice models, to take infima over covers of
diameter = ε.

For some fractals (Brownian path, local time), one can get a
nontrivial value by correcting with a gauge function. This can
be much harder for more complicated fractal sets arising from
nonMarkov processes.
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Minkowski content and dimension

Let V ⊂ Rd be compact.

Contα(V ) = lim
ε↓0

εα−d Vold{z : dist(z ,V ) ≤ ε}.

This is similar to finding optimal covers of V by balls of radius
exactly ε.

Typically this limit does not exists. We can define the upper
content Cont+α (V ) by taking lim sup.

(Upper) Minkowski or box dimension α = dimB(V ) is defined
by

Cont+β (V ) =

{
∞, β < α
0, β > α.

dimB(V ) ≥ dimh(V ).
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Even though the Minkowski content is not defined for many
sets, it is often the case that it is well defined (with
probability one) for random fractals and gives a good
“measure” on the set.

It also gives quick definitions.

For example if Zt = {s ≤ t : Bs = 0} is the zero set for
one-dimensional Brownian motion, then

Lt = Cont1/2(Zt)

is well-defined and is (a constant times) the usual local time
at 0 for the Brownian motion.
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Let Bt be a Brownian motion in Rd , d ≥ 3. Then

Cont2(B[0, t]) = c t,

for some easily computable constant c .

Proved (although not stated like this) in, e.g., Le Gall’s notes
on Brownian motion.

For d = 2 need a logarithmic correction essentially because
the dimension of double points is the same as the dimension
of the B[0, t].

If we were given the Brownian path but with the wrong
parametrization, we could find the natural parametrization by
using Minkowski content.
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Upper bounds on dimension

Suppose V is a random compact subset of Rd .

A weak one-point estimate

P{dist(z ,V ) ≤ ε} / εα.

Simple Markov inequality shows that with probability one
dimB(V ) ≤ d − α.

When α > d , then one shows that V is empty. (For example,
the set of double points on the frontier of a Brownian loop).
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Proving results about Hausdorff dimension

Up-to-constants estimate

P{dist(z ,V ) ≤ ε} � εα.

Two-point estimate

P{dist(z ,V ) ≤ ε,dist(w ,V ) ≤ ε} ≤ c ε2α |z − w |−α.

Use estimate to put a find (with positive probability) a
measure (Frostman measure) on V that is at least
(d − α)-dimensional.

Generally defined as a subsequential limit — not necessary to
show the limit exists.
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Proving results about Minkowski content

Need a strong one-point estimate.

P{dist(z ,V ) ≤ ε} = G (z) εα [1 + O(εβ)],

often proved by showing that

P{dist(z ,V ) ≤ e−(n+1) | dist(z ,V ) ≤ e−n} = e−α [1+O(e−nβ)].

Independence of local behavior. Conditioned on

{dist(z ,V ) ≤ e−n,dist(w ,V ) ≤ e−n}

the events

{dist(z ,V ) ≤ e−(n+1)}, {dist(w ,V ) ≤ e−(n+1)}

are almost independent.
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Brownian frontier

Mandelbrot saw a curve that looked like a SAW by viewing
the outer boundary of random walk loop (Brownian bridge).

This led to the conjecture that the dimension of the outer
boundary of Brownian motion is 4/3.

For some of us seemed like a pretty wild conjecture!

Burdzy noted that conjecture would imply something very
unlikely — that one cannot tell the “inside” from the
“outside” of the Brownian frontier if one only sees the frontier

Several people (including me) tried (unsuccessfully!) to show
that one could distinguish the inside from the outside.

(Burdzy-L) The frontier of a Brownian bridge/loop is a Jordan
curve. (Not true for a non-loop.)
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Let B1,B2 are independent Brownian motions and

T j
n = inf{t : |B j

t | = en}, Γj
n = B j [T j

0,T
j
n].

Let An be the event that Γ1
n ∪ Γ2

n does not disconnect the
origin from infinity, pn = P(An),

There exists ξ = ξ2(2, 0) (disconnection exponent) such that
pn ≈ e−nξ. This implies dimB ≤ 2− ξ.

In fact, P(An+1 | An) = e−ξ [1 + O(δn)], where δn summable.
In particular pn ∼ c e−nξ and dimh = 2− ξ.
Later work δn = O(e−βn).

Exponent for random walk problem is the same. (L-Puckette)

These techniques do not compute ξ although some estimates
can be given.

ξ < 1 and hence dimh > 1 (this last fact had been proved in a
different way by Bishop, Jones, Pemantle, Peres)
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(L-Schramm-Werner) ξ = 2/3 and the dimension is 4/3.

In fact, the frontier is essentially a Schramm-Loewner
evolution (SLEκ) with parameter 8/3.

This is also the conjectured limit of self-avoiding walk.
Mandelbrot’s observations were correct!

(Rohde-Schramm, Beffara) The Hausdorff dimension of SLEκ
paths is 1 + κ

8 .

SLE paths were parameterized by capacity — this is singular
with respect to the natural parametrization which would be
scaling limit of counting measure.

(L-Rezaei) If κ < 8, The (1 + κ
8 )-Minkowski content exists for

SLEκ paths and can be used to give the natural
parametrization. (Earlier related work with Sheffield and
Zhou.)

In particular, the Brownian frontier can be parametrized by
Cont4/3.
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Open problem

Let Sn be a simple random walk in Z2 conditioned so that
S0 = S2N = 0.

Let A be the path of the walk “filled in”, that is, A is the
smallest simply connected subset of Z2 containing all of the
vertices in S2N .

View A as a simply connected domain DA by replacing each
vertex with the square of side length 1 centered at A.

The boundary of DA is a piecewise linear loop — parametrize
this loop by length, giving a curve γN(t), 0 ≤ t ≤ K where K
is the number of edges.

Conjecture: as N →∞, the distribution of the curve

γ(N)(t) = N−4/3 γN(tN4/3), 0 ≤ t ≤ N−4/3 K

converges to the frontier of a Brownian bridge parametrized
by (a constant times) the (4/3)-Minkowski content.
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Really hard open problem

Show that this also is the scaling limit for self-avoidng loops
(polygons).

Give each polygon of 2n steps measure e−2nβc where βc is
critical, that is, the number of self-avoiding walks of length n
grows like enβc .

The limiting measure should be the frontiers of the Brownian
loop measure.
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Cut points

Let B1,B2 are independent Brownian motions and

T j
n = inf{t : |B j

t | = en}, Γj
n = B j [T j

0,T
j
n].

Let An be the event that Γ1
n ∩ Γ2

n = ∅, pn = P(An),

There exists ξ = ξd = ξd(1, 1) (intersection exponent) such
that pn ≈ e−nξ. This implies dimB(cutpoints) ≤ 2− ξ.

Exponent for random walk problem is the same. (Burdzy-L)

In fact, P(An+1 | An) = e−ξ [1 + O(δn)], where δn summable.
In particular pn ∼ c e−nξ and dimh(cutpoints) = 2− ξ.
Later work δn = e−βn (LSW, L-Vermesi)

These techniques do not compute ξ although some estimates
can be given.

ξd(1, 2) = 4− d ,
4− d

2
< ξd < 4− d .
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Numerics ξ3 ≈ .58. (Burdzy - L - Polaski) May never be
determined exactly.

(LSW) ξ2 = 5/4 proved using SLE.

Theorem (in preparation, with N. Holden, X. Li, X, Sun)

Consider the measure on Brownian paths starting at 0 ending
at x 6= 0 in Rd . (If d = 3, this has total mass G (0, x) and has
infinite mass in d = 2.)

Consider the set of cut points on the path.

Except for a set of paths of zero measure, the cut points have
nontrivial (2− ξ)-Minkowski content and this gives a function
on the paths that is increasing only at the cut points.

Important tool is the invariant measure on Brownian paths
conditioned on a cut point. This is what is used to get

P(An+1 | An) = e−ξ [1 + O(e−βn)].
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Open problem

Let Sn, 0 ≤ n ≤ dN2 be a simple random walk in Zd , d = 2, 3.

Consider the set of cut points on the walk and define

Lt = Nξ−2 #{cut points ≤ t N2}.

Then the pair (N−1 StN2 , Lt) converges to a Brownian motion
with (a constant times) the Minkowski content of the cut
points of the Brownian motion.

One thing that is known is up-to-constant estimates for
random walk,

P{S [0,N2] ∩ S [N2 + 1, dN2] = ∅} � N−ξ.

(Similarly, up-to-contant estimates are known for the random
walk frontier in d = 2.)
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Why this problem arose

Garban, Pete, and Schramm studied pivotal points for critical
percolation on the triangular lattice for d = 2.

They showed that counting measure, appropriately
normalized, on the set of pivotal points had a scaling limit
that is a measure on the whole scaling limit of percolation.

The frontier of the scaling limit of percolation is the same as
the frontier of Brownian motion. (Smirnov, LSW)

Goal: to show that the measure they produced can be given
by Minkowski content on the set of cut points of the
Brownian motion.

Here we are using the fact that cut points of the Brownian
motion are cut points of the frontier.

Gregory F. Lawler Minkowski Content and Brownian Paths 23/26



One scaling limit that has been done

Consider loop-erased random walk in Z2 parametrized by the
number of steps.

(LSW) If we ignore parametrization, the scaling limit is SLE2.

(L-Viklund) The scaling limit of the curves parametrized by
the number of steps converges to SLE2 parametrized by (a
constant times) the Minkowski content.

Proof requires both SLE estimates and a very strong estimate
for the Green’s function of the discrete loop-erased walk
(Beneš-L-V).

Not just up-to-constant but asymptotic probabilities that are
the same as for SLE and hence are conformally covariant.
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Summary

When parametrizing fractal sets arising from discrete limits, it
is natural to use Minkowski content rather than versions of
Hausdorff measure (when possible).

There are (should be) many random fractals for which one
can show the existence of the Minkowski content.

Showing discrete limits may require deep understanding of the
discrete object as well as the continuum.
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THANK YOU
HAPPY 60th, CHRIS
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