A diffusion limit for a queueing model in the form of a

 Walsh Brownian motionRami Atar (EE Department, Technion)

Joint work with
Asaf Cohen (Haifa U.)

Banff, 2017

Model

- d buffers, a single server.
- Renewal arrivals with mean interarrival $1 / \lambda_{i}^{r}$ (finite 2nd moment) for $i \in\{1,2, \ldots, d\}, r$ a scaling parameter.
- For each i, IID job sizes, mean $1 / \mu_{i}^{r}$ (finite 2nd moment).
- Independence of stochastic primitives
- A policy is a rule dictating which job is served at each time.
- Heavy traffic asymptotics corresponds to
(i) a critical load condition, (ii) diffusion scale.

Heavy traffic

- Time acceleration

$$
\begin{aligned}
& \lambda_{i}^{r}=\lambda_{i} r^{2}+\hat{\lambda}_{i} r+o(r) \\
& \mu_{i}^{r}=\mu_{i} r^{2}+\hat{\mu}_{i} r+o(r) .
\end{aligned}
$$

- Critical load

$$
\sum_{i=1}^{d} \frac{\lambda_{i}}{\mu_{i}}=1 .
$$

- Queue length process $Q^{r}=\left(Q_{1}^{r}, \ldots, Q_{d}^{r}\right)$, well defined once a policy is specified.
- Normalization $\hat{Q}^{r}=r^{-1} Q^{r}$.

Some well-understood policies

- Fixed priority: buffers ranked and server prioritizes accordingly.
- Serve the longest queue: server always selects the longest queue. Motivation: minimize longest delays.
- (One also specifies preemptive or nonpreemptive service and how ties are broken.)

Theorem (Whitt (1971), Reiman (1984))

i. Under fixed priority,

$$
\left(\hat{Q}_{1}^{r}, \ldots, \hat{Q}_{d}^{r}\right) \Rightarrow(0, \ldots, 0, R)
$$

ii. Under SLQ,

$$
\left(\hat{Q}_{1}^{r}, \ldots, \hat{Q}_{d}^{r}\right) \Rightarrow(\tilde{R}, \ldots, \tilde{R}),
$$

where R and \tilde{R} are reflected Brownian motion on $[0, \infty)$ (with specific initial condition, drift and diffusion coefficients).

- Laws of R and \tilde{R} determined by first two moments of the primitives.

Serve the shortest queue

- The server always selects the shortest queue. Rationale: minimize the number of congested queueing, especially when uncertain about the various traffic intensities.
- Markovian setting (Poisson arrivals, exponential job sizes).
- Tie breaking according to some $\left\{p_{i}\right\}_{i=1, \ldots, d}$.

removing the lambdas

Walsh BM

- Proposed by Walsh (1978) as a diffusion process that performs BM (with drift) on a (finite) union of rays emanating from the origin in \mathbb{R}^{2}, in which the entrance law from the origin to the different rays follows a given probability distribution.
- Early results: Rogers (1983), Baxter and Chacon (1984), Varopoulos (1985), Salisbury (1986), Barlow, Pitman and Yor (1989).
- Skew BM: Barlow, Burdzy, Kaspi and Mandelbaum (2000), Burdzy and Chen (2001), Burdzy and Kaspi (2004).
- Recent: Ichiba, Karatsaz, Prokaj and Yan (2015) SDE for Walsh semimartingales.

Walsh BM on S

- Denote $S=\left\{x \in \mathbb{R}_{+}^{d}: x_{i}>0\right.$ for at most one $\left.i\right\}$.
- Convenient to work with the definition of Barlow, Pitman and Yor (1989) via semigroups. Let R be a (b, σ)-RBM and let q be a probability distribution on $\{1, \ldots, d\}$. Let ζ be the hitting time of R to zero. Then X is a $(b, \sigma, q)-W B M$ if for $f \in C_{0}(S)$ and $x=r e_{i_{0}} \in S$,

$$
E_{x}\left[f\left(X_{t}\right)\right]=E_{r}\left[f\left(R_{t} e_{i_{0}}\right) 1_{\{t<\zeta\}}\right]+\sum_{i} q_{i} E_{0}\left[f\left(R_{t} e_{i}\right) 1_{\{t \geq \zeta\}}\right] .
$$

- Proved by BPY to be a strong Markov, Feller process.

SSQ in heavy traffic

- Define

$$
\hat{X}^{r}=\left(\frac{\hat{Q}_{1}^{r}}{\mu_{1}}, \ldots, \frac{\hat{Q}_{d}^{r}}{\mu_{d}}\right) .
$$

- Assume $\hat{X}^{r}(0)$ converges to a RV supported on S.

Theorem

As $r \rightarrow \infty, \hat{X}^{r} \Rightarrow X$, u.o.c., where X is a Walsh BM on S. The modulus $R=1 \cdot X$ is a RBM with specific (constant) drift and diffusion coefficients.

- (b, σ) are explicit whereas q implicit.
- q expected to depend on data beyond first and second moments.

Literature on the SSQ

Has been proposed for packet scheduling on the internet.

- "Thanks to this simple policy, the scheduler prioritizes constant bit rate flows associated with delay-sensitive applications such as voice and audio/video streaming...; priority is thus implicitly given to smooth flows over data traffic... sending packets in bursts." Guillemin and Simonian, Orange Labs (2014).
- Has been referred to as 'implicit service differentiation', 'self prioritization of audio and video traffic'.
- Proposed in two ways: queues correspond to different end users, the scheduler is at the base station; queues correspond to different types of data that a single user transmits/receives (scheduler is at the home gateway).
- Experiments show that it performs well (Nasser, Al-Manthari and Hassaneim (2005)).
Mathematical treatment: For $d=2$ and exponential service times, expressions for the Laplace transform of the stationary distribution (Guillemin and Simonian (2012, 2013)).

Idea of proof

- Convergence toward $S: \sup _{t \in[0, T]} \operatorname{dist}\left(\hat{X}_{t}^{r}, S\right) \Rightarrow 0$.
- Reason: see picture.
- $1 \cdot X^{r} \Rightarrow R$.
- A standard result (for a general policy).

Remark: C-tightness of \hat{X}^{r} follows. However the proof does not proceed by analyzing subsequential limits. This is because strong Markovity is crucially used. Strong Markovity of WBM cannot be used before establishing that the limit is a WBM; we rely on that of the prelimit.

Lemma

Denote

$$
\begin{aligned}
S_{i} & =\left\{y e_{i}: y \in \mathbb{R}_{+}\right\} \\
S_{i}^{\varepsilon} & =\left\{x \in \mathbb{R}_{+}^{d}: \operatorname{dist}\left(x, S_{i}\right) \leq \varepsilon\right\} \\
S^{\varepsilon} & =\left\{x \in \mathbb{R}_{+}^{d}: \operatorname{dist}(x, S) \leq \varepsilon\right\}
\end{aligned}
$$

- $\hat{R}^{r}(t)=1 \cdot \hat{X}^{r}(t)$
- $\tau_{\varepsilon}^{r}=\inf \left\{t: \hat{R}^{r}(t) \geq \varepsilon\right\}$

Lemma

There exists $\left(q_{i}\right)_{i=1, \ldots, d}, 1 \cdot q=1$, such that

$$
\lim _{\varepsilon \downarrow 0} \limsup _{r \rightarrow \infty}\left|P_{0}\left(\hat{X}^{r}\left(\tau_{\varepsilon}^{r}\right) \in S_{i}^{\varepsilon}\right)-q_{i}\right|=0 .
$$

Proof of lemma

First, instead of a double limit it is easier to work with a single one.

- By a change of measure, modify (with little cost) the intensities

$$
\lambda_{i}^{r}=\lambda_{i} r^{2}+\hat{\lambda}_{i} r+o(r), \quad \mu_{i}^{r}=\mu_{i} r^{2}+\hat{\mu}_{i} r+o(r)
$$

into

$$
\lambda_{i}^{r}=\lambda_{i} r^{2}, \quad \quad \mu_{i}^{r}=\mu_{i} r^{2}
$$

- Then Q^{r} is a time acceleration of a single process $\hat{Q}, Q^{r}=\hat{Q}\left(r^{2} \cdot\right)$; $\hat{X}_{i}=\frac{\hat{Q}_{i}}{\mu_{i}}$.
- Let $\tau^{r}=\inf \{t: 1 \cdot \hat{X}(t) \geq r\}$ and attempt to prove that

$$
q_{i}^{r}:=P_{0}\left(\hat{X}\left(\tau^{r}\right) \in S_{i}^{\varepsilon_{0} r}\right)
$$

has a limit.

- It is a Cauchy sequence argument.

A toy model

Consider a Markov chain on $2 d+1$ states. B_{i} are absorbing.

Then

$$
\max _{i}\left|p\left(A_{i}, 0\right)-p\left(A_{1}, 0\right)\right|
$$

controls

$$
\left.\max _{i} \mid p\left(0, A_{i}\right)-P_{0} \text { (getting absorbed at } B_{i}\right) \mid .
$$

- Back to the process \hat{X}, consider this analogous picture

- Recall $q_{i}^{r}=P_{0}\left(\hat{X}\left(\tau^{r}\right) \in S_{i}^{\varepsilon_{0} r}\right)$. We aim at showing it is Cauchy via

$$
\exists \delta \in(0,1) \text { s.t. }\left|q_{i}^{r}-q_{i}^{m}\right| \leq \delta^{k} \text { for } r \in\left[2^{k}, 2^{k+1}\right], m=2^{k+2}, \forall k,
$$

since this would imply, for general $r<m$,

$$
\left|q_{i}^{r}-q_{i}^{m}\right| \leq \sum_{\log _{2}} \sum_{r \leq j \leq \log _{2} m} 2 \delta^{j} \leq c \delta^{\log _{2} r} .
$$

- Now make the sleeves r^{1-c} thin, and use the fact that $1 \cdot \hat{X}$ is a martingale to get

$$
\forall x \in B\left(r e_{i}, r^{1-c}\right), \quad\left|P_{x}\left(\zeta<\tau^{m}\right)-\frac{m-r}{m}\right| \leq r^{-c}
$$

In view of the toy model this should give estimate that makes $\left|q_{i}^{r}-q_{i}^{m}\right|$ small. However, we need to improve the sleeve estimate from $o(1)$ to r^{-c}, and to obtain similar estimates for the event that the walk switches sleeves without passing through the origin.

- On what time interval are the estimates required? ζ and τ^{m} (starting in the ball) do not occur within $\left[0, r^{2}\right]$ w.h.p., but within $\left[0, r^{2} \log r\right]$.
- Hence the estimate we really need is

$$
P_{x}\left(\|\operatorname{dist}(\hat{X}, S)\|_{r^{2} \log r}>r^{-a}\right)<r^{-c}, \quad \text { if } \operatorname{dist}(x, S)<\gamma r^{-a} .
$$

- This is achieved by working with a suitable Lyapunov function. Measures distance from S and has the intuitive meaning of work present in all but longest queue:

$$
F(x)=\sum_{i} x_{i}-\max _{i} x_{i}
$$

Proof of theorem

One needs to show for $x^{r} \rightarrow x \in S$, uniformly for x in compacts,

$$
E_{x^{r}} f\left(\hat{X}^{r}(t)\right) \rightarrow E_{x} f(X(t)) .
$$

Focus on $x^{r}=x=0$. Fix $\varepsilon>0$. Let $\zeta_{0}^{r}=0$ and for $m=0,1,2, \ldots$,

$$
\begin{aligned}
& \tau_{m}^{r}=\inf \left\{t>\zeta_{m}^{r}: 1 \cdot X^{r}(t) \geq \varepsilon\right\}, \\
& \zeta_{m+1}^{r}=\inf \left\{t>\tau_{m}^{r}: 1 \cdot X^{r}(t)=0\right\} . \\
& E_{0} f\left(\hat{X}^{r}(t)\right) \sim \sum_{i} \sum_{m} E_{0}\left[f\left(X^{r}(t)\right) 1_{\left\{\tau_{m}^{r} \leq t<\zeta_{m+1}^{r}\right\}} 1_{\left\{X^{r}\left(\tau_{m}^{r}\right) \in S_{i}^{r}-c\right.}\right] \\
& \sim \sum_{i} \sum_{m} E_{0}\left[f\left(1 \cdot X^{r}(t) e_{i}\right) 1_{\left\{\tau_{m}^{r} \leq t<\zeta_{m+1}^{r}\right\}} 1_{\left\{X^{r}\left(\tau_{m}^{r}\right) \in S_{i}^{r-c}\right\}}\right] \\
& \sim^{*} \sum_{i} \sum_{m} E_{0}\left[f\left(1 \cdot X^{r}(t) e_{i}\right) 1_{\left\{\tau_{m}^{r} \leq t<\zeta_{m+1}^{r}\right\}}\right] q_{i} \\
& \sim \sum_{i} E_{0}\left[f\left(R(t) e_{i}\right)\right] q_{i}
\end{aligned}
$$

${ }^{(*)}$ Lemma + another lemma on asymptotic independence, for fixed m, of $X^{r}\left(\tau_{m}^{r}\right)$ and τ_{m}^{r}.

Two main open questions

- Dependence of the angular distribution q on the data.
- The queueing model is natural to consider for general job size distributions. How to treat it beyond the Markov case?

$$
\begin{aligned}
& q_{1} \text { as a function of } \lambda_{1}, \text { fixed } \mu^{\prime} \text { 's } \\
& \mu_{1}=20, \mu_{2}=20, \lambda_{1}=5 \ldots 15, \lambda_{2}=\mu_{2}-\lambda_{1}, p_{1}=.5, p_{2}=.5
\end{aligned}
$$

q_{1} as a function of μ_{1}, fixed λ 's
$\lambda_{1}=10, \lambda_{2}=10, \mu_{1}=15 \ldots 30, \mu_{2}=1 /\left(1 / \lambda_{1}-1 / \mu_{1}\right), p_{1}=.5, p_{2}=.5$

$$
\begin{aligned}
& q_{1} \text { as a function of } \lambda_{1} \text {, fixed } \lambda_{1} / \mu_{1}, \lambda_{2}, \mu_{2} \\
& \mu_{2}=20, \lambda_{2}=10, \lambda_{1}=3 \ldots 25, \mu_{1}=2 \lambda_{1}, p_{1}=.5, p_{2}=.5
\end{aligned}
$$

q_{1} as a function of p_{1}, fixed λ 's and μ 's

$$
\lambda_{1}=10, \lambda_{2}=10, \mu_{1}=20, \mu_{2}=20, p_{1}=0 \ldots 1, p_{2}=1-p_{1}
$$

