Stability in martingale inequalties *

Rodrigo Bañuelos

Purdue University
Department of Mathematics
West Lafayette, IN. 47906

October 24, 2017-Banff

[^0]
M. Kac (1951) Principle of not feeling the boundary

For small time, the Dirichlet heat kernel $p_{t}^{D}(x, y)$ (transitions of killed BM) is the "same" as the free kernel $p_{t}(x, y)=$ gaussian

M. Kac (1951) Principle of not feeling the boundary

For small time, the Dirichlet heat kernel $p_{t}^{D}(x, y)$ (transitions of killed BM) is the "same" as the free kernel $p_{t}(x, y)=$ gaussian

Elegantly stated in his 1966 paper, "Can one hear the shape of a drum?" "As the Brownian particles begin to diffuse they are not aware, so to speak, of the disaster that awaits them when they reach the boundary." In other words, when you're young, life is really infinite.

M. Kac (1951) Principle of not feeling the boundary

For small time, the Dirichlet heat kernel $p_{t}^{D}(x, y)$ (transitions of killed BM) is the "same" as the free kernel $p_{t}(x, y)=$ gaussian

Elegantly stated in his 1966 paper, "Can one hear the shape of a drum?" "As the Brownian particles begin to diffuse they are not aware, so to speak, of the disaster that awaits them when they reach the boundary." In other words, when you're young, life is really infinite.

HAPPY BIRTHDAY, Chris!

Rosa and I wish you a long and very happy young life.

- Sharp inequalities in analysis, geometry, and probability have been investigated for a long, long, time ...
- What do extremals, or "near" extremals, (those that make the inequality an equality, or "near" equality) look like?
- The aim of "stability/deficit/quantitatively sharp" inequalities is to measure, in terms of an appropriate distance from the extremals, how far an admissible quantity is from attaining equality.
- The martingale results here are motivated form problems in analysis.

Stability (quantitatively sharp/deficit) inequalities

Stability (quantitatively sharp/deficit) inequalities

Optimal/sharp inequalities

Suppose you have two functionals \mathcal{E} and \mathcal{F} on some normed (real) linear space \mathcal{M} satisfying the functional inequality $\mathcal{E} \leqslant \mathcal{F}$ in the sense that

$$
\mathcal{E}(x) \leqslant \mathcal{F}(x), \quad \forall x \in \mathcal{M} .
$$

$\mathcal{E} \leqslant \mathcal{F}$ is sharp if $\forall \lambda<1, \exists x \in \mathcal{M}$ such that

$$
\begin{gathered}
\mathcal{E}(x)>\lambda \mathcal{F}(x) \\
\mathcal{M}_{0}=\{x \in \mathcal{M}: \mathcal{E}(x)=\mathcal{F}(x)\}
\end{gathered}
$$

is called the set of optimizers (extremals). When $\mathcal{M}_{0} \neq \emptyset$, the inequality is said to be optimal. (Note: An optimal inequality is sharp but not vice-versa.)

One question we may ask: Suppose $\left\{x_{n}\right\}$ is a sequence in \mathcal{M} such that $\mathcal{F}\left(x_{n}\right)-\mathcal{E}\left(x_{n}\right) \rightarrow 0$. Is it true that $d\left(x_{n}, \mathcal{M}_{0}\right) \rightarrow 0$ also (some metric d)?

Definition

Let d be a metric on \mathcal{M} (not necessarily the norm metric) and Φ a "rate function." The optimal functional inequality $\mathcal{E} \leqslant \mathcal{F}$ is (d, Φ) - stable if

$$
\mathcal{F}(x)-\mathcal{E}(x) \geqslant \Phi\left(d\left(x, \mathcal{M}_{0}\right)\right), \quad \forall x \in \mathcal{M}
$$

In various examples, $\Phi(t)=c t^{2}$ and $d(x, y)=\|x-y\|_{\mathcal{M}}$ and

$$
\mathcal{F}(x)-\mathcal{E}(x) \geqslant c \inf _{z \in \mathcal{M}_{0}}\|x-z\|_{\mathcal{M}}^{2}
$$

The quantity

$$
\delta(x)=\mathcal{F}(x)-\mathcal{E}(x)
$$

is offen called the deficit.

Some examples in analysis

- Classical Sobolev in $\mathbb{R}^{n}(n \geqslant 3)$. Optimality: Aubin (1976), Talenti (1976).

$$
\begin{gathered}
k_{n}^{2}=\frac{n(n-2)}{4}\left|\mathbb{S}^{n-1}\right| \\
k_{n}^{2}\|f\|_{\frac{2 n}{n-2}}^{2} \leqslant\|\nabla f\|_{2}^{2}, \quad \forall f \in H_{0}^{1}\left(\mathbb{R}^{n}\right)=\mathcal{M}, \\
\mathcal{M}_{0}=\left\{x \rightarrow c\left(a+b\left|x-x_{0}\right|^{2}\right)^{-(n-2) / 2}, a, b>0, x_{0} \in \mathbb{R}^{n}, c \in \mathbb{R}\right\}
\end{gathered}
$$

Stability: Biachi-Egnell (1990)

$$
\|\nabla f\|_{2}^{2}-k_{n}^{2}\|f\|_{\frac{2 n}{n-2}}^{2} \geqslant C \inf _{g \in \mathcal{M}_{0}}\|\nabla(f-g)\|_{2}^{2}
$$

- General Sobolev $(0<\alpha<n / 2)$.

$$
\|f\|_{\frac{2 n}{n-2 \alpha}} \leqslant k_{n, \alpha}\left\|(-\Delta)^{\alpha / 2} f\right\|_{2}
$$

Optimality E. Lieb (1983), Stability S. Cheng, R. Frank, T. Weth (2013)

- Hardy-Littlewood-Sobolev (fractional integrals), $0<\alpha<n$

$$
\begin{aligned}
& I_{\alpha}(f)(x)=\frac{1}{\Gamma(\alpha / 2)} \int_{0}^{\infty} t^{\alpha / 2-1} P_{t} f(x) d t \\
& \left\|I_{\alpha} f\right\|_{p} \leqslant C\|f\|_{q}, \quad q=\frac{n p}{n-\alpha p}, \quad p>1 .
\end{aligned}
$$

Optimality E. Lieb (1983), Stability E. Carlen (2016):

- Log-Sobolev Gross (1975): Stability M. Fathi, E. Indrei, M. Ledoux (2015), Indrei, D. Kim (2017). Stability measured with Kantorovich-Wasserstein distance.
- Housdorff-Young inequality: Optimality: W. Beckner 1975 (Lieb 1990) $1 \leqslant p \leqslant 2, q=\frac{p}{p-1}$

$$
\|\hat{f}\|_{q} \leqslant A_{p}^{n}\|f\|_{p} \quad A_{p}=p^{1 / 2 p} q^{-1 / 2 q}
$$

$A_{p}<1$ is best contacts. Extremizers are general Gaussians: $g(x)=c e^{Q(x)+x \cdot v}$.

Stability: M. Christ $(2015,2016)$: Let \mathcal{G} represent all Gaussian.

$$
\|\hat{f}\|_{q}-A_{p}^{n}\|f\|_{p} \geqslant c \inf _{g \in \mathcal{G}}\|f-g\|_{p}^{2}
$$

Isoperimetric principle of exit time of BM (one of several)

Let $D \subset \mathbb{R}^{n}$ be a domain of finite volume. Let D^{*} be the ball of same volume. Let B_{t} be Brownian motion starting in D and τ_{D} be its exit time from D.

$$
\int_{D} \mathbb{E}_{z}\left(\tau_{D}\right) d z \leqslant \int_{D *} \mathbb{E}_{z}\left(\tau_{D^{*}}\right) d z
$$

with equality if and only if $D=D^{*}$.
Brasco \& De Philippis (2016).

$$
\int_{D *} \mathbb{E}_{z}\left(\tau_{D^{*}}\right) d z-\int_{D} \mathbb{E}_{z}\left(\tau_{D}\right) d z \geqslant C_{n} \mathcal{A}(D)^{2}
$$

(Fraenkel Asymmetry) $\mathcal{A}(D):=\inf \left\{\frac{|D \triangle B|}{|D|}: B\right.$ is a ball with $\left.|B|=|D|\right\}$.

Remark

The "Isoperimetric principle" holds for very general Lévy processes (R.B.\& P. Méndez-Hénandez 2010). Stability, even for rotationally symmetric stables (fractional Laplacian), is an interesting problem.

Sharp but not optimal (i.e., $\mathcal{M}_{0}=\emptyset$)) Martingales inequalities.

Doob's inequality

$\left\{f_{n}\right\}$ an $L^{p}, 1<p \leqslant \infty$ martingale. $f^{*}=\sup _{n}\left|f_{n}\right|$ maximal function.

$$
\left\|f^{*}\right\|_{p} \leqslant \frac{p}{p-1}\|f\|_{p}
$$

- D. Burkholder (1984): The constant $\frac{p}{p-1}$ is best possible. But inequality is not optimal, i.e., $\mathcal{M}_{0}=\emptyset$.
- G. Wang (1991): Constant is also best possible in class of Brownian (and dyadic) martingales.

Burkholder (1966) $S(f)=\left(\sum_{n}\left(f_{n}-f_{n-1}\right)^{2}\right)^{1 / 2}$

There exists constants a_{p} and b_{p} such that

$$
a_{p}\|f\|_{p} \leqslant\|S(f)\|_{p} \leqslant b_{p}\|f\|_{p} \quad 1<p<\infty
$$

Burgess Davis (1976) proved sharp version (BM). But inequality is not optimal, i.e., $\mathcal{M}_{0}=\emptyset$, outside of the trivial case of $p=2$.
X, Y cádlág (right continuous/left limits) martingales:

- Y is differentially subordinate to $X(Y \ll X)$, if the process $\left\{[X, X]_{t}-[Y, Y]_{t}\right\}_{t \geqslant 0}$ is a.s. nonnegative and nondecreasing in t.

Example:

- $Y_{t}=\int_{0}^{t} K_{s} \cdot d B s, X_{t}=\int_{0}^{t} H_{s} \cdot d B_{s}$ with $\left|K_{s}\right| \leqslant\left|H_{s}\right|$, a.s.
- $g_{n}=\sum_{k=1}^{n} e_{k}, f_{n}=\sum_{k=1}^{n} d_{k}$ with $\left|e_{k}\right| \leqslant\left|d_{k}\right|$, a.s.

Burkholder (1984)

Suppose $Y \ll X$. For $1<p<\infty$, set $p^{*}=\max \{p, q\}$ where p and q are conjugate exponents.

$$
\begin{gathered}
p^{*}-1= \begin{cases}p-1, & 2 \leqslant p<\infty \\
\frac{1}{p-1}, & 1<p \leqslant 2\end{cases} \\
\Rightarrow \quad\|Y\|_{p} \leqslant\left(p^{*}-1\right)\|X\|_{p} .
\end{gathered}
$$

Inequality is sharp and strict, unless $p=2$ and $[X, X]_{t}=[Y, Y]_{t}$ a.s for all $t \geqslant 0$.

The dyadic maximal function in \mathbb{R}^{n} (dyadic martingales).

$$
M_{d}(f)(x)=\sup \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Sup over dyadic cubes in $[0,1]^{n}$ containing x.
Here we may restrict to non-negative functions.

Theorem (A. Melas 2015)

Fix $2<p<\infty, \epsilon>0$ (small enough). Suppose $f \geqslant 0$ (in L^{p}) is such that

$$
\left\|M_{d}(f)\right\|_{p} \geqslant\left(\frac{p}{p-1}-\varepsilon\right)\|f\|_{p}
$$

Then

$$
\left\|M_{d}(f)-\frac{p}{p-1} f\right\|_{p} \leqslant c_{p} \varepsilon^{1 / p}\|f\|_{p}
$$

for some constant c_{p} depending only on p.
For $1<p \leqslant 2$, ???

Theorem (R.B. \& A.Osękowski (2016): Assume $Y \ll X$)

(i) Let $1<p<2$ and $\varepsilon>0 .\|Y\|_{p} \geqslant\left(\frac{1}{p-1}-\varepsilon\right)\|X\|_{p}$. Then

$$
\left|\left||Y|-\frac{1}{(p-1)}\right| X\right|\left\|_{p} \leqslant c_{p} \varepsilon^{1 / 2}\right\| X \|_{p} .
$$

$O\left(\varepsilon^{1 / 2}\right)$ as $\varepsilon \rightarrow 0$ is sharp. $c_{p}=O\left((2-p)^{-1 / 2}\right)$ as $p \uparrow 2$ and this is sharp.
(ii) Let $2<p<\infty$ and $\varepsilon>0 .\|Y\|_{p} \geqslant(p-1-\varepsilon)\|X\|_{p}$.

$$
\|||Y|-(p-1)| X \mid\|_{p} \leqslant c_{p} \varepsilon^{1 / p}\|X\|_{p},
$$

$O\left(\varepsilon^{1 / p}\right)$ as $\varepsilon \rightarrow 0$ is sharp. c_{p} is $O\left((p-2)^{-1 / p}\right)$ as $p \downarrow 2$ and $O(p)$ as $p \rightarrow \infty$.
These orders are sharp.
(iii) For $p=2$, no c_{2} and κ exist such that $\|Y\|_{2} \geqslant(1-\varepsilon)\|X\|_{2}$ implies $\left\|\left||Y|-|X|\left\|_{2} \leqslant c_{2} \varepsilon^{\kappa}\right\| X \|_{2}\right.\right.$. In fact, there exist martingales Y and $X, Y \ll X$, such that

$$
\|Y\|_{2}=\|X\|_{2}, \quad \text { and } \quad \frac{\||Y|-|X|\|_{2}}{\|X\|_{2}}>0 \quad(\text { independent of } \varepsilon)
$$

Beurling-Ahlfors operator in complex plane $\mathbb{C}=\mathbb{R}^{2}$

$$
B f(z)=-\frac{1}{\pi} \text { p.v. } \int_{\mathbb{C}} \frac{f(w)}{(z-w)^{2}} \mathrm{~d} w
$$

Calderón-Zygmund: \exists constant C_{p} (depending only on p)

$$
\begin{equation*}
\|B f\|_{p} \leqslant C_{p}\|f\|_{p}, \quad 1<p<\infty \tag{1}
\end{equation*}
$$

$$
\partial=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right), \quad \bar{\partial}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) \Rightarrow B=4 \partial^{2} \Delta^{-1}, \quad B \circ \bar{\partial}=\partial
$$

In fact, equivalent to (BA):

$$
\begin{equation*}
\|\partial f\|_{p} \leqslant C_{p}\|\bar{\partial} f\|_{p}, \quad 1<p<\infty, \quad f \in C_{0}\left(\mathbb{R}^{2}\right) \tag{2}
\end{equation*}
$$

Problem

Find norm of $B,\|B\|_{p \rightarrow p}$, on $L^{p}(\mathbb{C})$.

O. Lehto 1965

$$
\|B\|_{p \rightarrow p} \geqslant\left(p^{*}-1\right)
$$

Conjecture: T. Iwaniec 1984

$$
\|B\|_{p \rightarrow p}=\left(p^{*}-1\right), \quad 1<p<\infty
$$

Known upper bound (R.B \& P. Janakiraman 2008)

$$
\|B\|_{p \rightarrow p} \leqslant 1.575\left(p^{*}-1\right)
$$

Lehto: Consider $f=|z|^{\beta} \chi_{D}, D$ unit disk. With the right choice of β,

$$
\|B f\|_{p}>\left(\left(p^{*}-1\right)-\varepsilon\right)\|f\|_{p} .
$$

For such $f^{\prime} s$ one computes and finds that

$$
|B f(z)| \approx\left(p^{*}-1\right)|f(z)|
$$

(i.e., they are "near eigenfunctions")

$$
\begin{aligned}
\widehat{B f}(\xi) & =\frac{\bar{\xi}}{\xi} \widehat{f}(\xi)=\frac{\bar{\xi}^{2}}{|\xi|^{2}} \hat{f}(\xi)=\frac{\xi_{1}^{2}-2 i \xi_{1} \xi_{2}-\xi_{2}^{2}}{|\xi|^{2}} \hat{f}(\xi) \\
\Rightarrow B & =R_{1}^{2}-R_{2}^{2}+2 i R_{1} R_{2}=\operatorname{Re}(B)+i \operatorname{Im}(B)
\end{aligned}
$$

where R_{1} and R_{2} are the Riesz transforms in $\mathbb{R}^{2}: R_{j} f=\frac{\partial}{\partial x_{j}}(-\Delta)^{-1 / 2} f$
(1) R. B. \& Wang (1995): Both $\|\operatorname{Re}(B)\|_{p \rightarrow p}$ and $\|\operatorname{Im}(B)\|_{p \rightarrow p} \leqslant 2\left(p^{*}-1\right)$

$$
\Rightarrow \quad\|B\|_{p} \leqslant 4\left(p^{*}-1\right)
$$

(2) Nazarov and Volberg (2004) (R. B \& Méndez (2004)) improved bounds to $\leqslant\left(p^{*}-1\right)$

$$
\Rightarrow \quad\|B\|_{p, p} \leqslant 2\left(p^{*}-1\right)
$$

(3) Geiss, Montgomery-Smith and Saksman (2009): Riesz transforms on \mathbb{R}^{n} :

$$
\left\|R_{j}^{2}-R_{k}^{2}\right\|_{p \rightarrow p}=\left(p^{*}-1\right), \quad\left\|2 R_{j} R_{k}\right\|_{p \rightarrow p}=\left(p^{*}-1\right), \quad j \neq k
$$

Theorem (R.B. \& A.Osẹkowski 2016)

T either $\operatorname{Re}(B)$ or $\operatorname{Im}(B)$ or more generally, $R_{j}^{2}-R_{k}^{2}$ or $2 R_{j} R_{k}, j \neq k$ in \mathbb{R}^{n}.
(i) Let $1<p<2, \varepsilon>0$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ is such that

$$
\|T f\|_{p} \geqslant\left((p-1)^{-1}-\varepsilon\right)\|f\|_{p},
$$

then

$$
\left\||T f|-(p-1)^{-1}|f|\right\|_{p} \leqslant c_{p} \varepsilon^{1 / 2}\|f\|_{p} .
$$

Same constants as in martingale inequalities and also sharp.
(ii) Let $2<p<\infty, \varepsilon>0$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ is such that

$$
\|T f\|_{p} \geqslant(p-1-\varepsilon)\|f\|_{p},
$$

then

$$
\||T f|-(p-1)|f|\|_{p} \leqslant c_{p} \varepsilon^{1 / p}\|f\|_{p},
$$

(iii) For $p=2$, no such estimates: There are no finite constants c_{2} and $\kappa>0$ such that

$$
\||T f|-|f|\|_{p} \leqslant c_{2} \varepsilon^{\kappa}\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

Idea of Proof for martingale Inequality: Burkholder's method (AoP 1984)

$$
f_{n}=\sum_{k=1}^{n} d_{k}, \quad g=\sum_{k=1}^{n} e_{k}, \quad\left|e_{k}\right| \leqslant\left|d_{k}\right|, \text { a.s. } \forall k
$$

Considers the function $V_{p}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$

$$
V_{p}(x, y)=|y|^{p}-\left(p^{*}-1\right)^{p}|x|^{p}
$$

Goal: show that $E V_{p}\left(f_{n}, g_{n}\right) \leqslant 0$. Burkholder then "introduces" the function

$$
U_{p}(x, y)=p\left(1-\frac{1}{p^{*}}\right)^{p-1}\left(|y|-\left(p^{*}-1\right)|x|\right)(|x|+|y|)^{p-1},
$$

and proves: (i)

$$
V_{p}(x, y) \leqslant U_{p}(x, y) \text { for all } x, y \in \mathbb{R}
$$

and (ii)

$$
E U_{p}\left(f_{n}, g_{n}\right) \leqslant E U_{p}\left(f_{n-1}, g_{n-1}\right) \leqslant \cdots \leqslant E U_{p}\left(f_{0}, g_{0}\right)=0
$$

Lemma ("Basic Lemma" R.B \& G. Wang (1995))

Suppose $U: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is "smooth" and for all $h, k \in \mathbb{R}$, it satisfies:

$$
U_{x x}(x, y)|h|^{2}+2 U_{x y}(x, y) h k+U_{y y}(x, y)|k|^{2} \leqslant c(x, y)\left(|k|^{2}-|h|^{2}\right)
$$

$c(x, y) \geqslant 0$.
Then if $Y \ll X, U\left(X_{t}, Y_{t}\right)$ is a supermartingale and

$$
\mathbb{E} U\left(X_{t}, Y_{t}\right) \leqslant \mathbb{E} U\left(X_{0}, Y_{0}\right)
$$

Example (Burkholder's function)

$$
\begin{gathered}
U_{p}(x, y)=\beta_{p}\left(|y|-\left(p^{*}-1\right)|x|\right)(|x|+|y|)^{p-1} \\
\beta_{p}=p\left(1-\frac{1}{p^{*}}\right)^{p-1}
\end{gathered}
$$

For $1<p<2$, set

$$
\widetilde{U_{p}}(x, y)=(p-1)^{p}|y|^{p}-|x|^{p}+\left(1-p\left(1-\frac{1}{p}\right)^{p-1}\right) \frac{((p-1)|y|-|x|)^{2}}{(|x|+|y|)^{2-p}}
$$

Lemma

$$
\widetilde{U_{p}}(x, y) \leqslant U_{p}(x, y), \forall x, y \in \mathbb{R}^{n}
$$

Corollary

Suppose $Y \ll X$. Then $E\left(\widetilde{U_{p}}(X, Y) \leqslant 0\right.$.
Thus if in addition, $\|Y\|_{p} \geqslant\left(\frac{1}{p-1}-\varepsilon\right)\|X\|_{p}$, we have

$$
\begin{aligned}
\left(1-p\left(1-\frac{1}{p}\right)^{p-1}\right) \mathbb{E} \frac{((p-1)|Y|-|X|)^{2}}{(|X|+|Y|)^{2-p}} & \leqslant\|X\|_{p}^{p}-(p-1)^{p}\|Y\|_{p}^{p} \\
& \leqslant\left(1-(1-(p-1) \varepsilon)^{p}\right)\|X\|_{p}^{p} \\
& \leqslant p(p-1) \varepsilon\|X\|_{p}^{p}
\end{aligned}
$$

$$
\begin{aligned}
& \|(p-1)|Y|-|X|\|_{p} \leqslant\left(\mathbb{E}\left\{\frac{((p-1)|Y|-|X|)^{2}}{(|X|+|Y|)^{2-p}}\right\}\right)^{1 / 2}\left(\||X|+|Y|\|_{p}^{\frac{(2-p)}{2}}\right) \\
& \leqslant\left(\frac{p(p-1) \varepsilon}{1-p\left(1-\frac{1}{p}\right)^{p-1}}\right)^{1 / 2}\|X\|_{p}^{p / 2}\left(\||X|+|Y|\|_{p}^{\frac{(2-p)}{2}}\right) \\
& \leqslant\left(\frac{p(p-1) \varepsilon}{1-p\left(1-\frac{1}{p}\right)^{p-1}}\right)^{1 / 2}\|X\|_{p}^{p / 2} \cdot\left(\frac{p}{p-1}\|X\|_{p}\right)^{\frac{(2-p)}{2}}
\end{aligned}
$$

First inequality is Hölder with $\bar{p}=p / 2$ and $\bar{q}=2 /(2-p)$, second is the Corollary and third is Minkowski and Burkholder.
$2<p<\infty$, consider:

$$
\widehat{U_{p}}(x, y)= \begin{cases}p\left(1-\frac{1}{p}\right)^{p-1}(|y|-(p-1)|x|)(|x|+|y|)^{p-1}, & \text { if }|y| \geqslant(p-2)|x|, \\ -\frac{(p-1)^{2 p-2}}{p^{p-2}}|x|^{p}, & \text { if }|y|<(p-2)|x|\end{cases}
$$

Lemma

(i)

$$
\begin{gathered}
\widehat{U_{p}}(x, y) \geqslant|y|^{p}-(p-1)^{p}|x|^{p}+\left.\alpha_{p}| | y|-(p-1)| x\right|^{p}, \\
\alpha_{p}=\frac{p-2}{p-1}\left(\frac{1}{2}-\frac{1}{e}\right) .
\end{gathered}
$$

(ii) $\widehat{U_{p}}$ satisfies the "Basic Lemma."

$$
\begin{aligned}
\alpha_{p}\| \| Y_{\infty}|-(p-1)| X_{\infty} \mid \|_{p}^{p} & \leqslant(p-1)^{p}\|X\|_{p}^{p}-\|Y\|_{p}^{p} \\
& \leqslant\left[(p-1)^{p}-(p-1-\varepsilon)^{p}\right]\|X\|_{p}^{p} \\
& \leqslant p(p-1)^{p-1} \varepsilon\|X\|_{p}^{p} .
\end{aligned}
$$

Thank you!

Sharpness

Assume $1<p<2$. Let $x>0$ and let $w>p$ satisfy

$$
x^{p}+p w^{p-1}-w^{p}=0
$$

Set

$$
\theta=1-1 / w, \quad \text { and } \quad \beta_{k}=1-\frac{w \delta}{x+k \delta}, \quad k \geqslant 1,
$$

where $0<\delta<x / w$. Using the same notation for an interval $[a, b)$ and its indicator function, set

$$
\begin{aligned}
d_{1} & =x[0,1) \\
d_{2} & =\delta\left[0, \beta_{1}\right)+(\theta(x+\delta)-x)\left[\beta_{1}, 1\right] \\
d_{3} & =\delta\left[0, \beta_{1} \beta_{2}\right)+(\theta(x+2 \delta)-(x-\delta))\left[\beta_{1} \beta_{2}, \beta_{1}\right)
\end{aligned}
$$

and so forth. Then

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \lim _{\theta \rightarrow 0} \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n}(-1)^{k} d_{k}\right\|_{p}=1 \\
& \lim _{x \rightarrow 0} \lim _{\theta \rightarrow 0} \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}=p-1
\end{aligned}
$$

[^0]: *Joint with Adam Osękowski

