Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet}

Images of compatible systems of Galois representations of global function fields

Gebhard Böckle

Universität Heidelberg Email: gebhard.boeckle@iwr.uni-heidelberg.de

BIRS Workshop p-adic Cohomology and Arithmetic Applications Oct. 1.-6.2017

Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet}

Set-up

- \mathbb{F}_q the finite field of q elements, of characteristic p
- X/\mathbb{F}_q a smooth geometrically connected curve
- $F = \mathbb{F}_q(X)$ the function field of X
- |X| the set of closed points of X
- $\Gamma_{\mathrm{K}} = \mathrm{Gal}(\mathrm{K}^{\mathrm{sep}}/\mathrm{K})$ for any field K ; e.g. $\Gamma_{\mathbb{F}_{q}} \cong \widehat{\mathbb{Z}}$
- π₁(X) the arithmetic fundamental group of X (have surjection Γ_F → π₁(X))
- $\pi_1^{geo}(X) := \pi_1(X_{\overline{\mathbb{F}}_q})$ the geometric fundamental group of X
- For $x \in |X|$ have $Frob_x \in \pi_1(X)$ (unique up to conjugacy)

One has the fundamental short exact sequence

$$1 \to \pi_1^{geo}(X) \to \pi_1(X) \to \Gamma_{\mathbb{F}_q} \to 1.$$

The setting An elliptic curve example Results of Cadoret-Hui-Tamagawa

ℓ -adic étale cohomology

Let \mathbb{L} be the set of all prime numbers $\ell \neq p$. Let $Y \to X$ be a smooth proper morphism. Consider

$$V_\ell := H^i(Y_{F^{sep}}, \mathbb{Q}_\ell)$$

 ℓ -adic étale cohomology (*i* fixed, $\ell \in \mathbb{L}$).

Theorem (Grothendieck, Deligne et al.)

- $d := \dim_{\mathbb{Q}_{\ell}} V_{\ell}$ is finite and independent of ℓ
- have a representation $\rho_{\ell} \colon \pi_1(X) \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}) \cong GL_d(\mathbb{Q}_{\ell}).$
- ▶ charpol_{*Frob*_x|*V*_ℓ(*T*) ∈ $\mathbb{Z}[T]$ is independent of ℓ for any $x \in |X|$.}
- ► The action of $\pi_1^{geo}(X)$ is semisimple. (i.e, every subrepresentation has a complement) $\Rightarrow G_{\ell}^{geo} := \overline{\rho_{\ell}(\pi_1^{geo}(X))}^{Zar} \subset \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell})$ is a reductive group

The setting An elliptic curve example Results of Cadoret-Hui-Tamagawa

Elliptic curves example

Let $E \to X$ be an elliptic curve. Let $W_{\ell} \cong \mathbb{Q}_{\ell}^2$ be the ℓ -adic Tate-module of E. Then

 $H^1(E_{F^{sep}},\mathbb{Q}_\ell)\cong W_\ell^*$

as a $\pi_1(X)$ -module. For $x \in |X|$ one has

$$\mathsf{charpol}_{\mathsf{Frob}_{\mathsf{x}}|W_\ell}(\mathsf{T}) = \mathsf{T}^2 - \mathsf{a}_{\mathsf{x}}(\mathsf{E})\mathsf{T} + \mathsf{q}_{\mathsf{x}} \in \mathbb{Z}[\mathsf{T}]$$

with q_x = cardinality of the residue field \mathbb{F}_x at $x \in |X|$ and $\#E(\mathbb{F}_x) = 1 - a_x(E) + q_x.$

If *E* has no complex multiplication, then $G_{\ell}^{geo} = SL_{2,\mathbb{Q}_{\ell}}$ and $G_{\ell} := \overline{\rho_{\ell}(\pi_1(X))}^{Zar} = GL_{2,\mathbb{Q}_{\ell}}$

A result of Igusa

Theorem (Igusa, 1959) Suppose E has no CM. Then the representation $\prod_{\ell \in \mathbb{L}} \rho_{\ell} \colon \pi_1^{geo}(X) \longrightarrow \prod_{\ell \in \mathbb{L}} SL_2(\mathbb{Z}_{\ell})$ arising from $H^1(E_{F^{sep}}, \mathbb{Q}_{\ell})$ has open image. Serre (1972) proved analog for $\Gamma_K \to \prod_{\ell} GL_2(\mathbb{Z}_{\ell})$, K a number field. Corollary (Y = E and $V_{\ell} = H^1(\ldots)$)

- G_{ℓ}^{geo} comes from a reductive group over \mathbb{Z}_{ℓ} .
- $\rho_{\ell}(\pi_1(X)^{geo}) \subset SL_2(\mathbb{Q}_{\ell})$ is compact open for all $\ell \neq p$.
- $\rho_{\ell}(\pi_1(X)^{\text{geo}}) = SL_2(\mathbb{Z}_{\ell})$ for almost all ℓ .
- $\pi_1(X)^{geo}$ act semisimply on $H^1(E_{F^{sep}}, \mathbb{F}_\ell)$ for almost all ℓ
- the fields $\overline{\mathbb{F}_{p}}(F^{sep})^{Ker \rho_{\ell}}$, $\ell \in \mathbb{L}$, are 'almost independent'.

The setting An elliptic curve example Results of Cadoret-Hui-Tamagawa

General result on ℓ -adic cohomologies

Let $Y \to X$ be smooth proper, fix *i* and let $V_{\ell} = H^i(Y_{F^{sep}}, \mathbb{Q}_{\ell})$.

Proposition (Serre '67)

 $ho_\ell(\pi_1^{geo}(X)) \subset G_\ell^{geo}(\mathbb{Q}_\ell)$ is open for all $\ell \in \mathbb{L}$

Theorem (Cadoret-Hui-Tamagawa '16)

After replacing X by a finite étale cover one has:

- 1. $\pi_1(X)^{geo}$ acts semisimply on $H^1(Y_{F^{sep}}, \mathbb{F}_\ell)$ for almost all ℓ
- 2. there is a group scheme $\mathfrak{G}_{\ell}^{geo}/\mathbb{Z}_{\ell}$, reductive for almost all ℓ , such that $G_{\ell}^{geo} = \mathfrak{G}_{\ell}^{geo} \times_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ and $\rho_{\ell}(\pi_{1}^{geo}(X))''=''\mathfrak{G}_{\ell}^{geo}(\mathbb{Z}_{\ell})$
- 3. the following image is special adelic (in the sense of Hui-Larsen) $\left(\prod_{\ell \in \mathbb{L}} \rho_{\ell}\right)(\pi_{1}^{geo}(X)) \subset \prod_{\ell \in \mathbb{L}} \mathfrak{G}_{\ell}^{geo}(\mathbb{Z}_{\ell})$

Part 2 'for all ℓ in a set of density 1' is due to Larsen ('95).

E-rational compatible systems

Let *E* be a number field with \mathcal{P}'_E its set of finite places not above *p*. Definition

An *E*-rational *n*-dimensional compatible system ρ_{\bullet} consists of

1. a cont. homomorphism $\rho_{\lambda} \colon \pi_1(X) \to GL_n(E_{\lambda})$ for all $\lambda \in \mathcal{P}'_E$.

2. a polynomial $P_x \in E[T]$ monic of degree *n* for all $x \in |X|$ such that

$$\mathsf{charpol}_{\rho_{\lambda}(\mathit{Frob}_{x})} = \mathit{P}_{x} \text{ for } \mathit{E} \hookrightarrow \mathit{E}_{\lambda}, \forall x \in |X|, \lambda \in \mathcal{P}'_{\mathit{E}}$$

Call ρ_{\bullet} semisimple if all ρ_{λ} are semisimple. Call ρ_{\bullet} pure of weight w (in \mathbb{Z}) if for each $x \in |X|$ the roots of P_x are Weil q_x numbers of weight w.

Example

The earlier system ($V_\ell)_{\ell\in\mathbb{L}}$ is $\mathbb{Q}\text{-rational}$ and pure of weight i.

Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet}

A definition Background results (Toward) the main theorem

Background results I

Theorem (Cadoret-Tamagawa '13, Böckle-Gajda-Petersen '13) If $E = \mathbb{Q}$, there exists $X' \to X$ finite such that $\left(\prod_{\ell \in \mathbb{L}} \rho_{\ell}\right) \left(\pi_{1}^{geo}(X')\right) = \prod_{\ell \in \mathbb{L}} \left(\rho_{\ell}(\pi_{1}^{geo}(X'))\right).$

Analog of a similar result by Serre in the number field case.

For arbitrary E: can apply the result to the Q-rational system defined by $\rho_{\ell} = \prod_{\lambda \mid \ell} \rho_{\lambda}$.

A definition Background results (Toward) the main theorem

Background results II

Proposition (classical)

Given a sequence of Frobenius polynomials $(P_x)_{x \in |X|}$ there is up to conjugacy at most one semisimple compatible system with these P_x .

Theorem (Serre '81, Larsen-Pink '92)

There exists $X' \to X$ finite such that $G_{\lambda}^{(geo)} := \overline{\rho_{\lambda}^{(geo)}(\pi_1(X'))}^{Zar}$ is connected for all λ .

Theorem (Deligne '80)

 G_{λ}^{geo} is semisimple and $G_{\lambda}^{geo,o} = ([G_{\lambda}, G_{\lambda}])^{o}$ for all λ . From now on consider only ρ_{\bullet} which are **semisimple and** *E*-rational, and such that all $G_{\lambda}^{(geo)}$ are **connected**. $[\rho_{\bullet} \rightsquigarrow \rho_{\bullet}^{ss}]$ Then all $G_{\lambda}^{(geo)}$ are reductive (semisimple).

A definition Background results (Toward) the main theorem

Background results III

Conjecture (Larsen-Pink '95)

There exists G/E reductive such that $G \times_E E_{\lambda} = G_{\lambda}$ for all $\lambda \in \mathcal{P}'_E$.

Theorem (Cheewhye Chin '04)

Over some finite extension $E' \supset E$ the above conjecture holds. (Call the group M/E' the Chin group).

Fix for each $\lambda \in \mathcal{P}'_{\mathcal{E}}$ an \mathcal{O}_{λ} -lattice $\Lambda_{\lambda} \subset E_{\lambda}^{n}$ stable under $\pi_{1}(X)$.

Theorem (Larsen-Pink '95) Let $\mathfrak{G}_{\lambda}^{(geo)}/\mathcal{O}_{\lambda}$ be the Zariski closure of $G_{\lambda}^{(geo)}$ in $\operatorname{Aut}_{\mathcal{O}_{\lambda}}(\Lambda_{\lambda})$. Then the group scheme $\mathfrak{G}_{\lambda}^{(geo)}$ is smooth over \mathcal{O}_{λ} for almost all λ .

A definition Background results (Toward) the main theorem

Wishlist for reduction of ρ_{\bullet}

Using the lattices Λ_{λ} , can assume

$$\rho_{\lambda} \colon \pi_1(X) \to GL_n(\mathcal{O}_{\lambda})$$

Define k_{λ} as the residue field of E_{λ} , denote the reduction of ρ_{λ} to k_{λ} by $\bar{\rho}_{\lambda} : \pi_1(X) \to GL_n(k_{\lambda})$.

Wishlist (for almost all λ)

- 1. $\bar{\rho}_{\lambda}$ is semisimple.
- 2. the reduction $\mathfrak{G}_{k_{\lambda}}^{(geo)} = \mathfrak{G}_{\lambda}^{(geo)} \times_{\mathcal{O}_{\lambda}} k_{\lambda}$ is reductive.

3. recover $\mathfrak{G}_{k_{\lambda}}^{(\text{geo})}$ from the finite group $\bar{\rho}_{\lambda}(\pi_{1}^{(\text{geo})}(X))$.

Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet}

A definition Background results (Toward) the main theorem

The Nori envelope/Serre saturation

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0). $\exists \exp, \log \text{ in } GL_n^{unip}(\overline{\mathbb{F}_\ell}) \xrightarrow[\exp p]{\log} M_{n \times n}^{nilp}(\overline{\mathbb{F}_\ell}) \text{ as truncated power series,}$ if $\ell > n$. For $u \in GL_n^{unip}(\overline{\mathbb{F}_\ell})$, $t \in \overline{\mathbb{F}_\ell}$ set $u^t := \exp(t \cdot \log u)$. Definition (Nori envelope/Serre saturation) The Nori envelope of a subgroup $H \subset GL_n(\overline{\mathbb{F}_\ell})$ is $H^{sat} = \overline{\langle u^t \mid u \in H \cap GL_n^{unip}(\overline{\mathbb{F}_\ell}), t \in \overline{\mathbb{F}_\ell} \land H}^{Zar}$

Lemma

If H lies in $GL_n(\mathbb{F}_{\ell^e})$, then H^{sat} is defined over \mathbb{F}_{ℓ^e} . Examples $SL_n(\mathbb{F}_{\ell^e})^{sat} = SL_{n,\mathbb{F}_{\ell^e}}$; $GL_1(\mathbb{F}_{\ell^e})^{sat} = GL_1(\mathbb{F}_{\ell^e})$ (discrete). Theorem (Serre) If H acts semisimply on $\overline{\mathbb{F}_{\ell}}^n$, then H^{sat} is reductive.

A definition Background results (Toward) the main theorem

The main theorem

Let ρ_{\bullet} , G_{λ} , Λ_{λ} , \mathfrak{G}_{λ} be as above.

Theorem 1 (Böckle-Gajda-Petersen)

After passing to a finite cover of X, for all but finitely many $\lambda \in \mathcal{P}'_E$ the following hold:

1.
$$\mathfrak{G}_{k_{\lambda}}^{geo} \subset GL_{n,k_{\lambda}}$$
 is saturated, i.e, $\mathfrak{G}_{k_{\lambda}}^{geo} = (\mathfrak{G}_{\lambda}^{geo}(k_{\lambda}))^{sat}$.

2. $\bar{\rho}_{\lambda}$ is semisimple as a representation of $\pi_1^{\text{geo}}(X)$.

3. $\mathcal{H}_{k_{\lambda}}^{geo} := \bar{\rho}_{\lambda}(\pi_{1}^{geo}(X))^{sat}$ is reductive and defined over k_{λ} .

4.
$$\mathcal{H}_{k_{\lambda}}^{geo} \subseteq \mathfrak{G}_{k_{\lambda}}^{geo}$$
 is an equality.

A definition Background results (Toward) the main theorem

Corollary

Suppose the Chin group M of ρ_{\bullet} is absolutely simple, the Chin representation $M \hookrightarrow GL_n$ is the adjoint representation, and E is minimal (as defined by Pink). Then

$$\Big(\prod_{\ell\in\mathbb{L}}
ho_\lambda\Big)(\pi_1(X))\subset\prod_{\ell\in\mathbb{L}}\mathfrak{G}_\lambda(\mathcal{O}_\lambda)$$

is special adelic in the sense of Hui-Larsen. Note here M is semisimple \Rightarrow have result not only for $\pi_1^{geo}(X)$.

Global Langlands over function fields I

- Let \overline{X} be the smooth compactification of X.
- Denote by N an effective divisor of \overline{X} with support in $\overline{X} \setminus X$.
- Theorem (L. Lafforgue (any n), Drinfeld (n = 2))
- Part I:

Let Π be a cuspidal automorphic representation for GL_{n/\mathbb{A}_F} of level N, central character $\tau \colon \pi_1(X) \to GL_1(\overline{\mathbb{Q}})$ of finite order, Hecke field E_0 , and Hecke polynomial $P_{\Pi,x} \in E_0[T]$ at all $x \in |X|$.

Then for some $E \supset E_0$ there exists an E-rational compatible system $\rho_{\lambda} \colon \pi_1(X) \to GL_n(E_{\lambda})$, for $\lambda \in \mathcal{P}'_E$,

with Frobenius polynomials $(P_{\Pi,x})_{x\in |X|}$, such that det $\rho_{\bullet} = \tau$, and ρ_{\bullet} is absolutely irreducible and pure of weight zero.

Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet} The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Global Langlands over function fields II

Theorem (L. Lafforgue (any *n*), Drinfeld (n = 2)) Part II: Let $\rho: \pi_1(X) \to GL_n(\overline{\mathbb{Q}_\ell})$ be continuous and absolutely irreducible with finite order determinant τ and conductor at most *N*.

Then there exists a cuspidal automorphic representation for GL_{n/\mathbb{A}_F} of level N, and central character τ such that

 $\rho = \iota \circ \rho_{\Pi,\lambda}$ for some continuous embedding $\iota \colon E_{\lambda} \hookrightarrow \overline{\mathbb{Q}_{\ell}}$. In particular, ρ is a member of a compatible system.

Part III: The above correspondence is compatible with the local Langlands correspondence at all $x \in |\overline{X}| \setminus |X|$.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Consequences I

Corollary (Passage to irreducibility and trivial determinant) Let ρ_{\bullet} be E-rational semisimple compatible.

1. After possible enlarging E, one has

 $\rho_{\bullet} = \rho_{\bullet,1} \oplus \ldots \oplus \rho_{\bullet,r}$

for absolutely irreducible compatible systems $\rho_{ullet,i}$

2. After possibly passing to a finite cover $X' \to X$, can write

$$\rho_{\bullet,i} = \rho_{\bullet,i}' \otimes \tau_{\bullet,i}$$

with $\tau_{\bullet,i}$ one-dimensional and $\rho'_{\bullet,i}$ pure of weight zero.

Further reduction steps reduce Theorem 1 to the case: ρ_{\bullet} is absolutely irreducible, det $\rho_{\bullet} = 1$, all G_{λ} are connected.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Consequences II

Corollary (Conductor)

The conductor of the ρ_{λ} in a semisimple compatible system ρ_{\bullet} is independent of λ .

Let $\tau : \pi_1(X) \to GL_1(\overline{\mathbb{Q}})$ be fixed and continuous. Let N be fixed as before.

Corollary (Finiteness)

For any N and n there are only finitely many absolutely irreducible n-dimensional compatible systems ρ_{\bullet} with conductor bounded by N and det $\rho_{\bullet} = \tau$.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Consequences of de Jong's and Gaitsgory's results

Using mainly results of de Jong and Gaitsgory one has

Theorem 2 (B.-Harris-Khare-Thorne)

Suppose $G \hookrightarrow GL_n$ is reductive over $W(\mathbb{F}_{\ell^e})$ and $\ell > 2 \dim G_{\lambda}$. Let $\bar{\rho} \colon \pi_1(X) \to G(\mathbb{F}_{\ell^e}) \hookrightarrow GL_n(\mathbb{F}_{\ell^e})$ be absolutely irreducible. Let $\chi \colon \pi_1(X) \to GL_1(W(\mathbb{F}_{\ell^e}))$ be a continuous lift of det $\bar{\rho}$.

Then $\bar{\rho}$ has a lift $\rho: \pi_1(X) \to G(W(\mathbb{F}_{\ell^e}))$ with det $\rho = \chi$. Moreover if \bar{N} is the conductor of $\bar{\rho}$, and \bar{T} that of χ , then the conductor of ρ can be bounded $\bar{N} + n \cdot \bar{T} + n(\overline{X} \smallsetminus X)$.

The global Langlands correspondence Consequences of global Langlands and Lifting **Residually compatible systems** Proof of parts of the main theorem

Residually compatible systems

Let $\mathcal{P} \subset \mathcal{P}'_E$ be infinite. Write $\mathfrak{p}_{\lambda} \subset \mathcal{O}_E$ for the maximal ideal defined by $\lambda \in \mathcal{P}'_E$. Definition

An *E*-rational *n*-dim. residually compatible system $\bar{\rho}_{\bullet}$ over \mathcal{P} is

1. a cont. homomorphism $\bar{\rho}_{\lambda} \colon \pi_1(X) \to GL_n(k_{\lambda})$ for all $\lambda \in \mathcal{P}$.

2. a Polynomial $\overline{P}_x \in \mathcal{O}_E[\frac{1}{p}][T]$ monic of degree *n* for all $x \in |X|$ such that

$$\mathsf{charpol}_{ar{
ho}_{\lambda}(\mathit{Frob}_{x})}\equivar{P}_{x} \ (\mathsf{mod} \ \mathfrak{p}_{\lambda}), \ orall x\in |X|,\lambda\in\mathcal{P}$$

Lemma 1

For any residually compatible system $\bar{\rho}_{\bullet}$ of bounded conductor there exists a unique semisimple compatible system ρ_{\bullet} over some $E' \supset E$ such that $\bar{P}_x = P_x \quad \forall x \in |X|$. Moreover if all $\bar{\rho}_{\lambda}$ are reducible, then so is ρ_{\bullet} .

The global Langlands correspondence Consequences of global Langlands and Lifting **Residually compatible systems** Proof of parts of the main theorem

Proof of Lemma 1

Over some finite extension k'_{λ} of k_{λ} have $\bar{\rho}_{\lambda}^{ss} = \bar{\rho}_{\lambda,1} \oplus \ldots \oplus \bar{\rho}_{\lambda,n_{\lambda}}$ with $\bar{\rho}_{\lambda,i}$ absolutely irreducible.

Use knowledge of eigenvalues of $Frob_x$ via \bar{P}_x for one x to ensure: there is a finite set of lists (τ_1, \ldots, τ_s) of finite order characters such that each $(\det \bar{\rho}_{\lambda,1}, \ldots, \det \bar{\rho}_{\lambda,n_\lambda})$ is one list mod \mathfrak{p}_{λ}

Use Theorem 2 to obtain a lift $\rho_{\lambda,1} \oplus \ldots \oplus \rho_{\lambda,n_{\lambda}}$ with det $\rho_{\lambda,i} = \tau_i$.

Finiteness of lists and of partitions of n and conductor bound in Theorem 2 (for GL_{n_i}) shows:

there exist automorphic representations Π_1, \ldots, Π_s (for GL_{n_i, \mathbb{A}_F}) such that $\bigoplus_j \rho_{\Pi_i, \lambda} \equiv \overline{\rho}_{\lambda} \mod \mathfrak{p}_{\lambda}$ for infinitely many $\lambda \in \mathcal{P}$.

The global Langlands correspondence Consequences of global Langlands and Lifting **Residually compatible systems** Proof of parts of the main theorem

Absolute irreducibility

Corollary (Drinfeld)

Suppose ρ_{\bullet} is absolutely irreducible. Then $\bar{\rho}_{\lambda}$ is absolutely irreducible for almost all $\lambda \in \mathcal{P}'_{F}$.

Proof.

Suppose infinitely many $\bar{\rho}_{\lambda}$ are reducible. They form a residually compatible reducible system. By Lemma 1 the latter arises from a reducible compatible system ρ'_{\bullet} .

Now $P'_x = P_x$ for all $x \in |X|$ gives a contradiction.

Recall: Main Theorem in the absolutely irreducible case

Suppose ρ_{\bullet} is absolutely irreducible and the G_{λ} are connected semisimple. Need to show:

Theorem 1' (Böckle-Gajda-Petersen)

After passing to a finite cover of X, for all but finitely many $\lambda \in \mathcal{P}'_E$ the following hold:

- 1. $\mathfrak{G}_{k_{\lambda}} \subset GL_{n,k_{\lambda}}$ is saturated.
- 2. $\bar{\rho}_{\lambda}$ is absolutely irreducible. (Drinfeld).
- 3. $\mathcal{H}_{k_{\lambda}} := \bar{\rho}_{\lambda}(\pi_1(X))^{sat}$ is semisimple and defined over k_{λ} .

4.
$$\mathcal{H}_{k_{\lambda}} \subseteq \mathfrak{G}_{k_{\lambda}}$$
 is an equality.

Part 2 was just shown. Part 1 I will not discuss. Part 3 follows from part 2 and an earlier quoted result of Serre. The inclusion in 4 follows from 1 and the definitions. Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet} The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems **Proof of parts of the main theorem**

Saturated image and the Chin group

Recall
$$\mathcal{H}_{k_{\lambda}} = \bar{\rho}_{\lambda}(\pi_1(X))^{sat}$$
.

Lemma 2

Suppose ρ_{\bullet} is E-rational absolutely irreducible with det $\rho_{\bullet} = 1$. Assume $\bar{\rho}_{\lambda}(\pi_1(X))$ is ℓ_{λ} -generated ($\ell_{\lambda} = Char k_{\lambda}$) for almost all λ .

Then for almost all $\lambda \in \mathcal{P}$ there exists a semisimple group $\mathfrak{H}_{\lambda}/W(k_{\lambda})$ with generic fiber G_{λ} and special fiber $\mathcal{H}_{k_{\lambda}}$.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems **Proof of parts of the main theorem**

Proof of Lemma 2

For $\ell_{\lambda} \gg 0$ we have:

- $\mathcal{H}_{k_{\lambda}}$ is semisimple by Theorem 1'(iii).
- dim $\mathcal{H}_{k_{\lambda}} \leq \dim \mathfrak{G}_{k_{\lambda}} = \dim \mathcal{G}_{\lambda}$.
- $\mathcal{H}_{k_{\lambda}}$ is connected because $\bar{\rho}_{\lambda}(\pi_1(X))$ is ℓ -generated.
- ► The irreducible representation r̄: H_{kλ} → GL_n over k_λ is of low weight (ℓ_λ-restricted) because H_{kλ} is saturated.

Using results of Jantzen (and Serre): There is a lift $r: \mathfrak{H}_{\lambda} \hookrightarrow GL_n$ of \overline{r} to $W(k_{\lambda})$ with \mathfrak{H}_{λ} semisimple. By Theorem 2 there is a lift $\rho'_{\lambda}: \pi_1(X) \to \mathfrak{H}_{\lambda}(W(k_{\lambda})) \hookrightarrow GL_n(W(k_{\lambda}))$ of $\overline{\rho}_{\lambda}$. Have $\rho'_{\lambda} \cong \rho_{\Pi_{\lambda},\lambda}$ for some Π_{λ} . The number of possible Π_{λ} is finite. $\Rightarrow \rho_{\Pi,\lambda} = \rho'_{\lambda}$ for one Π and almost all λ . Also have $\overline{\rho}_{\bullet} = \overline{\rho}_{\Pi,\bullet}$ (and thus $P_x = P'_x \ \forall x \in |X|) \Rightarrow \rho_{\bullet} \cong \rho_{\Pi,\bullet}$. Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet} The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems **Proof of parts of the main theorem**

Conclusion

Corollary

$$\mathcal{H}_{k_{\lambda}} = \mathfrak{G}_{k_{\lambda}}$$
 for almost all λ .

Proof.

We know already that $\mathcal{H}_{k_{\lambda}} \subseteq \mathfrak{G}_{k_{\lambda}}$.

By passing to a finite cover $X' \to X$ one can achieve that all groups $\bar{\rho}_{\lambda}(\pi_1(X))$ are ℓ_{λ} -generated. This does not change $\mathfrak{G}_{k_{\lambda}}$. By Lemma 2 we have dim $\mathcal{H}_{k_{\lambda}} = \dim \mathcal{G}_{\lambda} = \dim \mathfrak{G}_{k_{\lambda}}$.

An *M*-compatible system

To end, let me explain the idea of the reduction step: Theorem 1' (ρ_{\bullet} absolutely irreducible) implies Theorem 1. Theorem (B.-Harris-Khare-Thorne, building on Chin) Suppose ρ_{\bullet} is semisimple, say with Chin group M over E. After enlarging E there is an M-compatible system $\rho_{\lambda}^{M} \colon \pi_{1}(X) \to M(E_{\lambda}), \lambda \in \mathcal{P}'_{E}$, and a representation $\alpha \colon M \to GL_{n}$, defined over E, such that $\alpha \circ \rho_{\lambda}^{M} = \rho_{\lambda}$ for all $\lambda \in \mathcal{P}'_{E}$ The system ρ_{\bullet}^{M} is unique up to conjugacy.

Note *M*-compatible means that for all λ and *x* the conjugacy class of $\rho_{\lambda}^{M}(Frob_{x})$ lies in $M(\overline{\mathbb{Q}})$ and is independent of λ .

Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet}

Changing the given representation

Say $\rho_{\bullet} = \bigoplus_{i} \rho_{i,\bullet}$ with $\rho_{i,\bullet}$ absolutely irreducible of weight zero. Let ρ_{\bullet}^{M} and α be as above, so that $\rho_{\bullet} = \alpha \circ \rho_{\bullet}^{M}$.

Let $\beta: M \to SL_m$ be almost faithful and irreducible (over *E*). Then $\rho'_{\bullet} := \beta \circ \rho^M_{\bullet}$ is absolutely irreducible of weight zero. Apply Theorem 1' to $\rho'_{\bullet} \Rightarrow$ almost all $\mathfrak{G}'_{\lambda}/\mathcal{O}_{\lambda}$ are semisimple To finish off: compare \mathfrak{G}_{λ} to \mathfrak{G}'_{λ} via the three representations

Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{\bullet}

Thank you!