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The zeta function problem

Let X be a smooth variety over a finite field Fq of characteristic p,
consider

ζX(t) := exp

∑
i≥1

#X(Fqi)
ti
i


=

∏
i

det
(
1− t Frob |Hiet(X,Qℓ)

)(−1)i+1∈ Q(t)

Problem
Compute ζX from an explicit description of X.

Theoretically this is “trivial”!
The degree of ζX is bounded by the geometry of X, and we can then
enumerate X(Fqi) for enough i to pinpoint ζX.

This approach is only practical for very few classes of varieties, e.g.,
low genus curves and p small.
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Real life applications

• Cryptography/Coding Theory, we are often interested in #X(Fq)

• Isomorphism/Isogeny testing
• Computing endomorphisms of an abelian variety
• rank of the Picard lattice (and the order of the Brauer group)
• searching for Langlands correspondences
• arithmetic statistics

• Birch–Swinnerton-Dyer
• Sato–Tate
• Lang–Trotter
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Approaches

• ℓ-adic approaches, by computing the action of Frobenius on
mod-ℓ étale cohomology for many ℓ.

• We need to have an effective description of the cohomology.
• E.g.: for abelian varieties we have Schoof-Pila’s method
However, only practical if g ≤ 2 or some extra structure is available.

• Very generic algorithms derived from Dwork’s p-adic analytic
proof that ζX(t) ∈ Q(t) (Lauder–Wan; Harvey)

• p-adic methods based on Monsky–Washnitzer cohomology

Today
New p-adic method to compute ζX(t) that achieves a striking
balance between practicality and generality.
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Outline

Nondegenerate toric hypersurfaces

p-adic Cohomology

Some examples

5 / 26 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate toric hypersurfaces



Nondegenerate toric
hypersurfaces



Toric hypersurfaces

• f =
∑
α∈Zn

cαxα ∈ R[x±1 , . . . , x±n ] a Laurent polynomial

• ∆ := convex hull in Rn of the support of f
• If ∆ is “nice” we can associate to it a graded ring (and a
projective variety).

P∆ :=
⊕
d≥0

Pd, Pd := R[d∆ ∩ Zn]

X∆ := ProjP∆

and V(f) is an hypersurface in the
toric variety X∆.

Examples

∆ X∆
Conv(0, e1, . . . , en) Pn

Conv(0, e1, ℓe2, . . . , ℓen) Pn(ℓ, 1, . . . , 1)
Conv(0, e1, e2, e1 + e2) P1 × P1
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Nondegenerate toric hypersurfaces

Definition
We say that f is nondenegerate if the ideal

Jf := ⟨f, ∂1f, . . . , ∂nf⟩ , where ∂i = xi
∂

∂xi

is irrelevant in P∆.

⇐⇒ (P∆)ℓ = (Jf)ℓ for ℓ ≫ 0

⇐⇒ if for every face σ ⊂ ∆ (including ∆ itself) f restricted to the
torus associated to σ is nonsingular of codimension 1.

=⇒ Nondegeneracy is a generic condition.

7 / 26 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate toric hypersurfaces



Nondegenerate toric hypersurfaces

Definition
We say that f is nondenegerate if the ideal

Jf := ⟨f, ∂1f, . . . , ∂nf⟩ , where ∂i = xi
∂

∂xi

is irrelevant in P∆.

⇐⇒ (P∆)ℓ = (Jf)ℓ for ℓ ≫ 0

⇐⇒ if for every face σ ⊂ ∆ (including ∆ itself) f restricted to the
torus associated to σ is nonsingular of codimension 1.

=⇒ Nondegeneracy is a generic condition.

7 / 26 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate toric hypersurfaces



Nondegenerate toric hypersurfaces

Definition
We say that f is nondenegerate if the ideal

Jf := ⟨f, ∂1f, . . . , ∂nf⟩ , where ∂i = xi
∂

∂xi

is irrelevant in P∆.

⇐⇒ (P∆)ℓ = (Jf)ℓ for ℓ ≫ 0

⇐⇒ if for every face σ ⊂ ∆ (including ∆ itself) f restricted to the
torus associated to σ is nonsingular of codimension 1.

=⇒ Nondegeneracy is a generic condition.

7 / 26 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate toric hypersurfaces



Nondegenerate toric hypersurfaces

Geometric definition
The hypersurface defined by f is nondegenerate if for every face
σ ⊂ ∆ (including ∆ itself) f restricted to the torus associated to σ is
nonsingular of codimension 1.

Example
Let C be a plane curve in P2, then C is nondegenerate if:

• C does not pass through the points (1, 0, 0), (0, 1, 0), (0, 0, 1);
• C intersects the coordinate axes x = 0, y = 0, z = 0 transversally;
• C is smooth on the complement of the coordinate axes.
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Examples

Vertices of ∆ Resulting hypersurface

0,de1,de2 Smooth plane curve of genus
(
d− 1
2

)
0, (2g+ 1)e1, 2e2 Odd hyperelliptic curve of genus g

0,ae1,be2 Ca,b-curve
0, 4e1, 4e2, 4e3 Quartic K3 surface
0, 2e1, 6e2, 6e3 Degree 2 K3 surface
0, 5e1, . . . , 5e5 Quintic Calabi-Yau threefold
0, 3e1, . . . , 3e6 Cubic fourfold

Remark
There are 4319 reflexive polyhedra that give rise to K3 surfaces.
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p-adic Cohomology



Goal

Setup

• f =
∑

α∈Zn cαxα ∈ Fq[x±1 , . . . , x
±
n ] a Laurent polynomial

• Z := V(f) = {x ∈ X∆ : f(x) = 0} a nondegenerate hypersurface

Goal
Compute

ζZ(t) := exp

∑
i≥1

#Z(Fqi)ti/i

 ∈ Q(t)

=
∏
i

det
(
1− t Frob |Hiet(X,Qℓ)

)(−1)i+1
= Q(t)(−1)

n
n−1∏
i=0

(
1

1− qit

)bi
,

where Q(t) = det
(
1− q−1t Frob |Hnet(X∆\Z,Qℓ)

)
∈ 1+ Z[t].
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Master plan

Setup

• f =
∑

α∈Zn cαxα ∈ Fq[x±1 , . . . , x
±
n ] a Laurent polynomial

• Z := V(f) = {x ∈ X∆ : f(x) = 0} a nondegenerate hypersurface
• U := X∆\Z
• σ := p-th power Frobenius

Goal
Compute the matrix representing the action of σ in H†,n(U) with
enough p-adic precision.
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Overall picture

Goal
Compute the matrix representing the action of σ in H†,n(U) with
enough p-adic precision.

HndR(UQp)
∼
id

// H†,n(U)

σ

		

explicit description over C
[Dwork–Griffiths, Batyrev–Cox]

��

�
�
�

de Rham cohomology
with overconvergent power series

��

�
�
�

cohomology relations
+

commutative algebra
=⇒

basis for HndR(UQq) =
{
xβω/f i

}
β

with ω := dx1
x1 ∧ · · · ∧ dxn

xn ∈ Ωn

+
reduction algorithm
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Generic algorithm – Abbott–Kedlaya–Roe type

HndR(UQq)
∼
id

// H†,n(U)

σ

		

1. Compute
{
xβ
fmω

}
β

a monomial basis for HndR(UQq)

with ω := dx1
x1 ∧ · · · ∧ dxn

xn ∈ Ωn

2. In H†,n compute a series approximation for

σ

(
xβ
fmω

)
= pn x

pβ

f pmω
∑
i≥0

(
−m
i

)(
σ(f)− f p

f p

)i

3. Write the approximation in terms of basis elements, i.e., apply
the de Rham relations
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Explicit description of HndR

Set ω := dx1
x1 ∧ · · · ∧ dxn

xn ∈ Ωn(T ≃ (Q∗
q)
n).

For g ∈ Pm we have

g f
fm+1ω =

g
f ω

mg ∂if
fm+1ω ≡ (∂ig)f

fm+1 ω for i = 1, . . . ,n

If h ∈ (Jf)m+1 := ⟨f, ∂1f, . . . , ∂nf⟩m+1 then

m h
fm+1ω = mc0f+

∑
i ci∂if

fm+1 ≡
mc0f+

∑
i ∂ici

fm =
h̃
fmω with h̃ ∈ Pm

The nondenegeracy condition =⇒ Pℓ ⊂ (Jf)ℓ for ℓ > n

=⇒ we may always reduce the pole order to n or less

Same equations hold for UQq , if g ∈ Pintm := R[int(m∆) ∩ L].
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g f
fm+1ω =

g
f ω

mg ∂if
fm+1ω ≡ (∂ig)f

fm+1 ω for i = 1, . . . ,n, and m > 0 in HndR(UQq ∩ T).

If h ∈ (Jf)m+1 := ⟨f, ∂1f, . . . , ∂nf⟩m+1 then

m h
fm+1ω = mc0f+

∑
i ci∂if

fm+1 ≡
mc0f+

∑
i ∂ici

fm =
h̃
fmω with h̃ ∈ Pm

The nondenegeracy condition =⇒ Pℓ ⊂ (Jf)ℓ for ℓ > n

=⇒ we may always reduce the pole order to n or less

Same equations hold for UQq , if g ∈ Pintm := R[int(m∆) ∩ L].
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Generic algorithm – Abbott–Kedlaya–Roe

HndR(UQp)
∼
id

// H†,n(UFp)

σ

		

1. Compute
{
xβ
fmω

}
β∈Pintm \(Jf)m,m≤n

a monomial basis for HndR(UQp)

2. In H†,n compute a series approximation for

σ

(
xβ
fmω

)
= pn x

pβ

f pmω
∑
i≥0

(
−m
i

)(
σ(f)− f p

f p

)i

3. Write the approximation in terms of basis elements, i.e., apply
the reduction algorithm
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A sparse representation of Frobenius

Unfortunately, the truncation of the series expansion to K terms

σ

(
xβ
fmω

)
≈ pn x

pβω

f pm
K−1∑
i=0

(
−m
i

)(
σ(f)− f p

f p

)i

involves dense polynomials of degree p(K− 1) in n variables, and
thus an unavoidable factor of pn in the runtime.

But there is another way...

By expanding
(
σ(f)− fp

fp

)i
with the binomial theorem, swapping the

summation order, we are able to rewrite in a sparse way.

K−1∑
i=0

(
−m
i

)(
σ(f)− f p

f p

)i
= · · · =

K−1∑
i=0

(
−m
i

)(
m+ K− 1
K− i− 1

)
σ(f)if−p(m+i)
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Schematically

Abbott–Kedlaya–Roe vs C.–Harvey–Kedlaya∑K−1
i=0

(−m
i
) (σ(f)−f p

f p

)i ∑K−1
i=0

(−m
i
)(m+K−1

K−i−1
)
σ(f)if−p(m+i)

(pdK)n+O(1) terms (dK)n+O(1) terms

ρ : Pℓ+1 7−→ Pℓ

ℓ
gω
f ℓ+1 ≡

ρ(g)ω
f ℓ

π : Pn 7−→ Pn

ℓxα+β gω
f ℓ+1 ≡ xβ π(g)ωf ℓ , xα ∈ P1

“slice” 7→ “slice” “dot” 7→ “dot”
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Generic algorithm – C.–Harvey–Kedlaya

HndR(U)
∼
id

// H†,n(UFp)

σ

		

1. Compute
{
xβ
fmω

}
β

a monomial basis for HndR(UQq)

2. In H†,n compute a sparse approximation for

σ

(
xβ
fmω

)
≈ pn x

pβ

f pm
N−1∑
i=0

(
−m
i

)(
m+ N− 1
N− i− 1

)
σ(f)if−p(m+i)

3. Apply sparse reduction algorithm to reduce expansion to basis
elements.

• Involves multiplying together O(p) matrices of size
#(n∆ ∩ L) ∼ nn vol∆

• In a more convolved process, we can reduce the matrix size to
n! vol∆, saving a factor of en ≈ nn/n! (e.g. 220⇝ 64)

For large p, all the work is in step 3
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Some Remarks

• Complexity
First version of our new algorithm has complexity roughly

p1+o(1) vol(∆)O(n)

and space complexity is only

logp vol(∆)O(n).

This allows us to handle examples with much larger p than any
found in the literature.

• Implementation
• Projective hypersurfaces (∼2014): C++ with NTL and Flint
Soon available in Sage

• Toric hypersurfaces: beta version in C++ with NTL
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Some examples



Example: random dense K3 surface

X ⊂ P3Fp for p = 49999 given by

− 9x4 − 10x3y− 9x2y2 + 2xy3 − 7y4 + 6x3z+ 9x2yz− 2xy2z+ 3y3z
+ 8x2z2 + 6y2z2 + 2xz3 + 7yz3 + 9z4 + 8x3w+ x2yw− 8xy2w− 7y3w
+ 9x2zw− 9xyzw+ 3y2zw− xz2w− 3yz2w+ z3w− x2w2 − 4xyw2

− 3xzw2 + 8yzw2 − 6z2w2 + 4xw3 + 3yw3 + 4zw3 − 5w4 = 0

In 1h5m5s, we obtain

ZX(t) = ((1− t)(1− pt)(1− p2t)Q(t)

where

pQ(t/p)p =(1− t)(p+ 63115t+ 14796t2 + 42361t3 + 49443t4

+ 11718t5 + 42046t6 + 51501t7 + 20534t8 + 27146t9

+ 38370t10 + 27146t11 + 20534t12 + · · ·+ pt20)
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Example: a quartic surface in the Dwork pencil

Consider the surface X in P3Fp for p = 49999 given by

x40 + · · ·+ x43 + x0x1x2x3 = 0.

In 4.3s, we compute that

ZX(t) =
1

(1− t)(1− pt)(1− p2t)R1(pt)3R2(pt)6S(t)

where the “interesting” factor

S(t) = (1− pT)(1+ 95902t+ p2t2).

In this case, the monomials generate a sublattice of index 42 in Z3.
The polynomials R1 and R2 arise from the action of Frobenius on the
Picard lattice; by a p-adic formula of de la Ossa–Kadir,

R1(t) = (1± t)(1± t), R2(t) = 1− T2.
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Example: a quintic threefold in the Dwork pencil

Consider the threefold X in P4Fp for p = 1000003 given by

x50 + · · ·+ x54 + x0x1x2x3x5 = 0.

In 667s, we compute that

ZX(t) =
R1(pt)20R2(pt)30S(t)

(1− t)(1− pt)(1− p2t)(1− p3t)

where the “interesting” factor

S(t) = 1+ 74132440T+ 748796652370pT2 + 74132440p3T3 + p6T4.

and R1 and R2 are the numerators of the zeta functions of certain
curves (given by a formula of Candelas–de la Ossa–Rodriguez
Villegas).
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Example: another family of K3 surfaces

Consider now the surface X in the weighted projective space
P(8, 5, 4, 3)Fp for p = 49999 given by taking the closure of the affine
surface

yz5 + xz4 + y4 + z4 + x2 + 1 = 0.

In 120s, we compute that

ZX(t) =
1

(1− t)(1− pt)(1− p2t)R(pt)S(t)

where

pS(p−1t) = p− 14662t− 31559t2 − 5620t3 − 31559t4 − 14662t5 + pt6.

This example is from Miles Reid’s list of 95 families of nondegenerate
toric surfaces which are K3 surfaces.
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Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion of the toric surface over Fp
with p = 71 given by

x3y+ y4 + z4 − 12xyz+ 1 = 0.

In 0.14s, we compute that the “interesting” factor of ζX(t) is

1− 75t− 55pt2 + 134p2t3 − 55p3t4 − 75p4t5 + p6t6.

This example (from arXiv:1612.09249) can be confirmed using Magma:

EulerFactor(HypergeometricData([1/12,1/6,5/12,7/12,
10/12,11/12],[0,0,0,1/3,1/2,2/3]),2ˆ10 * 3ˆ6, 71);
However, we can handle much larger p (e.g., p = 49999), for which
Magma can only compute the coefficient of t.
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Example: another Calabi–Yau threefold

Let X be the closure in the weighted projective space
P(10, 11, 16, 19, 21)Fp for p = 49999 of the affine threefold

y7 + x2zw+ zyzw+ y2zw+ z3w+ w3 + xz+ yz = 0.

In 401s, we we compute that the “interesting” factor of ζX is

1+ 6423186t+ 2211095838pt2 − 127485903944p2t3

+2211095838p4t4 + 6423186p6T5 + p9T6

By analogy with the Reid list, one can classify Calabi–Yau threefolds
arising as hypersurfaces in weighted projective spaces; there are 7555
such families. See
http://hep.itp.tuwien.ac.at/~kreuzer/CY/.
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Other versions

• Space-time tradeoff
We can reduce the time dependence on p to

p0.5+o(1) vol(∆)O(n)

• Average polynomial time
Given an hypersurface defined over Q, we may compute the zeta
functions of its reductions modulo various primes at once. The
average time complexity for each prime p < N is

log(N)4+o(1) vol(∆)O(n)

These have not been implemented yet.
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Questions?
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