Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{ullet}

Images of compatible systems of Galois representations of global function fields

Gebhard Böckle

Universität Heidelberg
Email: gebhard.boeckle@iwr.uni-heidelberg.de

BIRS Workshop p-adic Cohomology and Arithmetic Applications Oct. 1.-6.2017

Set-up

- $ightharpoonup \mathbb{F}_q$ the finite field of q elements, of characteristic p
- $ightharpoonup X/\mathbb{F}_q$ a smooth geometrically connected curve
- $F = \mathbb{F}_q(X)$ the function field of X
- ▶ |X| the set of closed points of X
- ightharpoonup $\Gamma_{\mathrm{K}}=\mathrm{Gal}(\mathrm{K}^{\mathrm{sep}}/\mathrm{K})$ for any field K ; e.g. $\Gamma_{\mathbb{F}_{\mathrm{q}}}\cong\widehat{\mathbb{Z}}$
- ▶ $\pi_1(X)$ the arithmetic fundamental group of X (have surjection $\Gamma_F \to \pi_1(X)$)
- $\pi_1^{geo}(X) := \pi_1(X_{\overline{\mathbb{F}}_q})$ the geometric fundamental group of X
- ▶ For $x \in |X|$ have $Frob_x \in \pi_1(X)$ (unique up to conjugacy)

One has the fundamental short exact sequence

$$1 \to \pi_1^{geo}(X) \to \pi_1(X) \to \Gamma_{\mathbb{F}_q} \to 1.$$

ℓ -adic étale cohomology

Let $\mathbb L$ be the set of all prime numbers $\ell \neq p$.

Let $Y \to X$ be a smooth projective variety. Consider

$$V_\ell := H^i(Y_{F^{sep}}, \mathbb{Q}_\ell)$$

 ℓ -adic étale cohomology (i fixed, $\ell \in \mathbb{L}$).

ℓ -adic étale cohomology

Let \mathbb{L} be the set of all prime numbers $\ell \neq p$.

Let $Y \rightarrow X$ be a smooth projective variety. Consider

$$V_\ell := H^i(Y_{\mathsf{F}^{\mathsf{sep}}}, \mathbb{Q}_\ell)$$

 ℓ -adic étale cohomology (i fixed, $\ell \in \mathbb{L}$).

Theorem (Grothendieck, Deligne et al.)

- $lackbox{d}:=\dim_{\mathbb{Q}_\ell}V_\ell$ is finite and independent of ℓ
- ▶ have a representation ρ_ℓ : $\pi_1(X) \to \operatorname{Aut}_{\mathbb{Q}_\ell}(V_\ell) \cong \operatorname{GL}_d(\mathbb{Q}_\ell)$.
- ▶ charpol_{Frobx|Vℓ}(T) ∈ $\mathbb{Z}[T]$ is independent of ℓ for any $x \in |X|$.
- The action of $\pi_1^{geo}(X)$ is semisimple. (i.e, every subrepresentation has a complement)

ℓ -adic étale cohomology

Let \mathbb{L} be the set of all prime numbers $\ell \neq p$.

Let $Y \to X$ be a smooth projective variety. Consider

$$V_\ell := H^i(Y_{\mathsf{F}^{\mathsf{sep}}}, \mathbb{Q}_\ell)$$

 ℓ -adic étale cohomology (i fixed, $\ell \in \mathbb{L}$).

Theorem (Grothendieck, Deligne et al.)

- $lackbox{d}:=\dim_{\mathbb{Q}_\ell}V_\ell$ is finite and independent of ℓ
- ▶ have a representation ρ_{ℓ} : $\pi_1(X) \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}) \cong \operatorname{GL}_d(\mathbb{Q}_{\ell})$.
- ▶ charpol_{Frob_x|V_ℓ}(T) ∈ $\mathbb{Z}[T]$ is independent of ℓ for any $x \in |X|$.
- The action of $\pi_1^{geo}(X)$ is semisimple. (i.e, every subrepresentation has a complement)

$$\Rightarrow G_{\ell}^{geo} := \overline{
ho_{\ell}(\pi_1^{geo}(X))}^{\mathsf{Zar}} \subset \mathsf{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}) \ \textit{is a reductive group}$$

Elliptic curves example

Let $E \to X$ be an elliptic curve. Let $W_\ell \cong \mathbb{Q}^2_\ell$ be the ℓ -adic Tate-module of E. Then

$$H^1(E_{F^{sep}},\mathbb{Q}_\ell)\cong W_\ell^*$$

as a $\pi_1(X)$ -module.

Elliptic curves example

Let $E \to X$ be an elliptic curve. Let $W_\ell \cong \mathbb{Q}^2_\ell$ be the ℓ -adic Tate-module of E. Then

$$H^1(E_{F^{sep}},\mathbb{Q}_\ell)\cong W_\ell^*$$

as a $\pi_1(X)$ -module. For $x \in |X|$ one has

$$\mathsf{charpol}_{Frob_x|W_\ell}(T) = T^2 - \mathsf{a}_\mathsf{x}(E)T + \mathsf{q}_\mathsf{x} \in \mathbb{Z}[T]$$

with $q_x=$ cardinality of the residue field \mathbb{F}_x at $x\in |X|$ and $\#E(\mathbb{F}_x)=1-a_x(E)+q_x.$

Elliptic curves example

Let $E \to X$ be an elliptic curve. Let $W_\ell \cong \mathbb{Q}^2_\ell$ be the ℓ -adic Tate-module of E. Then

$$H^1(E_{F^{sep}},\mathbb{Q}_\ell)\cong W_\ell^*$$

as a $\pi_1(X)$ -module. For $x \in |X|$ one has

$$\mathsf{charpol}_{Frob_x|W_\ell}(T) = T^2 - \mathsf{a}_\mathsf{x}(E)T + \mathsf{q}_\mathsf{x} \in \mathbb{Z}[T]$$

with q_x = cardinality of the residue field \mathbb{F}_x at $x \in |X|$ and $\#E(\mathbb{F}_x) = 1 - a_x(E) + q_x$.

If E has no complex multiplication, then

$$G_\ell^{geo} = \mathit{SL}_{2,\mathbb{Q}_\ell} ext{ and } G_\ell := \overline{
ho_\ell(\pi_1(X))}^{\mathit{Zar}} = \mathit{GL}_{2,\mathbb{Q}_\ell}$$

A result of Igusa

Theorem (Igusa, 1959)

Suppose E has no CM. Then the representation

$$\prod_{\ell \in \mathbb{L}} \rho_{\ell} \colon \pi_{1}^{geo}(X) \quad \longrightarrow \quad \prod_{\ell \in \mathbb{L}} SL_{2}(\mathbb{Z}_{\ell})$$

arising from $H^1(E_{F^{sep}}, \mathbb{Q}_{\ell})$ has open image.

A result of Igusa

Theorem (Igusa, 1959)

Suppose E has no CM. Then the representation

$$\prod_{\ell \in \mathbb{L}} \rho_{\ell} \colon \pi_{1}^{geo}(X) \quad \longrightarrow \quad \prod_{\ell \in \mathbb{L}} SL_{2}(\mathbb{Z}_{\ell})$$

arising from $H^1(E_{F^{sep}}, \mathbb{Q}_{\ell})$ has open image.

Serre (1972) proved analog for $\Gamma_K \to \prod_{\ell} GL_2(\mathbb{Z}_{\ell})$, K a number field.

A result of Igusa

Theorem (Igusa, 1959)

Suppose E has no CM. Then the representation

$$\prod_{\ell \in \mathbb{L}} \rho_{\ell} \colon \pi_{1}^{geo}(X) \quad \longrightarrow \quad \prod_{\ell \in \mathbb{L}} SL_{2}(\mathbb{Z}_{\ell})$$

arising from $H^1(E_{F^{sep}}, \mathbb{Q}_{\ell})$ has open image.

Serre (1972) proved analog for $\Gamma_K \to \prod_{\ell} GL_2(\mathbb{Z}_{\ell})$, K a number field.

Corollary
$$(Y = E \text{ and } V_{\ell} = H^{1}(...))$$

- G_{ℓ}^{geo} comes from a reductive group over \mathbb{Z}_{ℓ} .
- $ho_\ell(\pi_1(X)^{geo}) \subset SL_2(\mathbb{Q}_\ell)$ is compact open for all $\ell
 eq p$.
- $\rho_{\ell}(\pi_1(X)^{geo}) = SL_2(\mathbb{Z}_{\ell})$ for almost all ℓ .
- lacktriangledown $\pi_1(X)^{
 m geo}$ act semisimply on $H^1(E_{F^{
 m sep}},\mathbb{F}_\ell)$ for almost all ℓ
- ▶ the fields $\overline{\mathbb{F}_p}(F^{\text{sep}})^{\text{Ker }\rho_\ell}$, $\ell \in \mathbb{L}$, are 'almost independent'.

General result on ℓ -adic cohomologies

Let $Y \to X$ be smooth projective, fix i and let $V_{\ell} = H^{i}(Y_{F^{sep}}, \mathbb{Q}_{\ell})$.

Proposition (Serre '67)

$$ho_\ell(\pi_1^{geo}(X)) \subset G_\ell^{geo}(\mathbb{Q}_\ell)$$
 is open for all $\ell \in \mathbb{L}$

Theorem (Cadoret-Hui-Tamagawa '16)

General result on ℓ -adic cohomologies

Let $Y \to X$ be smooth projective, fix i and let $V_{\ell} = H^{i}(Y_{F^{sep}}, \mathbb{Q}_{\ell})$.

Proposition (Serre '67)

$$ho_\ell(\pi_1^{geo}(X)) \subset G_\ell^{geo}(\mathbb{Q}_\ell)$$
 is open for all $\ell \in \mathbb{L}$

Theorem (Cadoret-Hui-Tamagawa '16)

After replacing X by a finite étale cover one has:

- 1. $\pi_1(X)^{geo}$ acts semisimply on $H^1(Y_{F^{sep}}, \mathbb{F}_\ell)$ for almost all ℓ
- 2. for almost all $\ell \in \mathbb{L}$ there exists a reductive group $\mathfrak{G}_{\ell}^{\mathsf{geo}}/\mathbb{Z}_{\ell}$ such that $G_{\ell}^{\mathsf{geo}} = \mathfrak{G}_{\ell}^{\mathsf{geo}} \times_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ and $\rho_{\ell}(\pi_1^{\mathsf{geo}}(X))" = "\mathfrak{G}_{\ell}^{\mathsf{geo}}(\mathbb{Z}_{\ell})$

General result on ℓ -adic cohomologies

Let $Y \to X$ be smooth projective, fix i and let $V_\ell = H^i(Y_{F^{sep}}, \mathbb{Q}_\ell)$.

Proposition (Serre '67)

$$ho_\ell(\pi_1^{geo}(X)) \subset G_\ell^{geo}(\mathbb{Q}_\ell)$$
 is open for all $\ell \in \mathbb{L}$

Theorem (Cadoret-Hui-Tamagawa '16)

After replacing X by a finite étale cover one has:

- 1. $\pi_1(X)^{geo}$ acts semisimply on $H^1(Y_{F^{sep}}, \mathbb{F}_\ell)$ for almost all ℓ
- 2. for almost all $\ell \in \mathbb{L}$ there exists a reductive group $\mathfrak{G}_{\ell}^{\mathsf{geo}}/\mathbb{Z}_{\ell}$ such that $G_{\ell}^{\mathsf{geo}} = \mathfrak{G}_{\ell}^{\mathsf{geo}} \times_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ and $\rho_{\ell}(\pi_1^{\mathsf{geo}}(X))"="\mathfrak{G}_{\ell}^{\mathsf{geo}}(\mathbb{Z}_{\ell})$
- 3. $\left(\prod_{\ell\in\mathbb{L}}\rho_{\ell}\right)(\pi_{1}^{geo}(X))\subset\left(\prod_{\ell\in\mathbb{L}}\mathfrak{G}_{\ell}^{geo}(\mathbb{Z}_{\ell})\right)$ is special adelic (Hui-Larsen).

Part 2 'for all ℓ in a set of density 1' is due to Larsen ('95).

E-rational compatible systems

Let E be a number field with \mathcal{P}'_{E} its set of finite places not above p.

Definition

An E-rational *n*-dimensional compatible system ρ_{\bullet} consists of

- 1. a cont. homomorphism $\rho_{\lambda} \colon \pi_1(X) \to GL_n(E_{\lambda})$ for all $\lambda \in \mathcal{P}'_E$.
- 2. a polynomial $P_x \in E[T]$ monic of degree n for all $x \in |X|$ such that

$$\mathsf{charpol}_{\rho_{\lambda}(\mathit{Frob}_{\mathsf{x}})} = P_{\mathsf{x}} \; \mathsf{for} \; E \hookrightarrow E_{\lambda}, \forall x \in |X|, \lambda \in \mathcal{P}_{E}'$$

E-rational compatible systems

Let E be a number field with \mathcal{P}'_{E} its set of finite places not above p.

Definition

An E-rational *n*-dimensional compatible system ρ_{\bullet} consists of

- 1. a cont. homomorphism $\rho_{\lambda} \colon \pi_1(X) \to GL_n(E_{\lambda})$ for all $\lambda \in \mathcal{P}'_{E}$.
- 2. a polynomial $P_x \in E[T]$ monic of degree n for all $x \in |X|$ such that

$$\mathsf{charpol}_{\rho_{\lambda}(Frob_{x})} = P_{x} \text{ for } E \hookrightarrow E_{\lambda}, \forall x \in |X|, \lambda \in \mathcal{P}'_{E}$$

Call ρ_{\bullet} semisimple if all ρ_{λ} are semisimple.

Call ρ_{\bullet} pure of weight w (in \mathbb{Z}) if for each $x \in |X|$ the roots of P_x are Weil q_x numbers of weight w.

E-rational compatible systems

Let E be a number field with \mathcal{P}'_{E} its set of finite places not above p.

Definition

An E-rational *n*-dimensional compatible system ρ_{\bullet} consists of

- 1. a cont. homomorphism $\rho_{\lambda} \colon \pi_1(X) \to GL_n(E_{\lambda})$ for all $\lambda \in \mathcal{P}'_{E}$.
- 2. a polynomial $P_x \in E[T]$ monic of degree n for all $x \in |X|$ such that

$$\mathsf{charpol}_{\rho_{\lambda}(\mathit{Frob}_{x})} = P_{x} \; \mathsf{for} \; E \hookrightarrow E_{\lambda}, \forall x \in |X|, \lambda \in \mathcal{P}'_{E}$$

Call ρ_{\bullet} semisimple if all ρ_{λ} are semisimple.

Call ρ_{\bullet} pure of weight w (in \mathbb{Z}) if for each $x \in |X|$ the roots of P_x are Weil q_x numbers of weight w.

Example

The earlier system $(V_\ell)_{\ell \in \mathbb{L}}$ is \mathbb{Q} -rational and pure of weight i.

Theorem (Cadoret-Tamagawa '13, Böckle-Gajda-Petersen '13) If $E = \mathbb{Q}$, there exists $X' \to X$ finite such that $\left(\prod_{\ell \in \mathbb{L}} \rho_{\ell}\right) \left(\pi_{1}^{geo}(X')\right) = \prod_{\ell \in \mathbb{L}} \left(\rho_{\ell}(\pi_{1}^{geo}(X'))\right).$

Analog of a similar result by Serre in the number field case.

Theorem (Cadoret-Tamagawa '13, Böckle-Gajda-Petersen '13) If $E = \mathbb{Q}$, there exists $X' \to X$ finite such that $\left(\prod_{\ell \in \mathbb{L}} \rho_{\ell}\right) \left(\pi_{1}^{geo}(X')\right) = \prod_{\ell \in \mathbb{L}} \left(\rho_{\ell}(\pi_{1}^{geo}(X'))\right).$

Analog of a similar result by Serre in the number field case.

For arbitrary E: can apply the result to the \mathbb{Q} -rational system defined by $\rho_\ell = \prod_{\lambda \mid \ell} \rho_\lambda$.

Proposition (classical)

Given a sequence of Frobenius polynomials $(P_x)_{x \in |X|}$ there is up to conjugacy at most one semisimple compatible system with these P_x .

Proposition (classical)

Given a sequence of Frobenius polynomials $(P_x)_{x \in |X|}$ there is up to conjugacy at most one semisimple compatible system with these P_x .

There exists $X' \to X$ finite such that $G_{\lambda}^{(geo)} := \overline{\rho_{\lambda}^{(geo)}(\pi_1(X'))}^{Zar}$ is connected for all λ .

Proposition (classical)

Given a sequence of Frobenius polynomials $(P_x)_{x \in |X|}$ there is up to conjugacy at most one semisimple compatible system with these P_x .

There exists $X' \to X$ finite such that $G_{\lambda}^{(geo)} := \overline{\rho_{\lambda}^{(geo)}(\pi_1(X'))}^{Zar}$ is connected for all λ .

Theorem (Deligne '80)

 G_{λ}^{geo} is semisimple and $G^{geo,o} = ([G_{\lambda}, G_{\lambda}])^o$ for all λ .

Proposition (classical)

Given a sequence of Frobenius polynomials $(P_x)_{x \in |X|}$ there is up to conjugacy at most one semisimple compatible system with these P_x .

Theorem (Serre '81, Larsen-Pink '92)

There exists $X' \to X$ finite such that $G_{\lambda}^{(geo)} := \overline{\rho_{\lambda}^{(geo)}(\pi_1(X'))}^{Zar}$ is connected for all λ .

Theorem (Deligne '80)

 G_{λ}^{geo} is semisimple and $G^{geo,o}=([G_{\lambda},G_{\lambda}])^o$ for all λ .

From now on consider only ρ_{\bullet} which are **semisimple and** *E*-rational, and such that all $G_{\lambda}^{(geo)}$ are **connected**. $[\rho_{\bullet} \leadsto \rho_{\bullet}^{ss}]$ Then all $G_{\lambda}^{(geo)}$ are reductive (semisimple).

Conjecture (Larsen-Pink '95)

There exists G/E reductive such that $G \times_E E_{\lambda} = G_{\lambda}$ for all $\lambda \in \mathcal{P}'_E$.

Conjecture (Larsen-Pink '95)

There exists G/E reductive such that $G \times_E E_{\lambda} = G_{\lambda}$ for all $\lambda \in \mathcal{P}'_E$.

Theorem (Cheewhye Chin '04)

Over some finite extension $E' \supset E$ the above conjecture holds. (Call the group M/E' the Chin group).

Conjecture (Larsen-Pink '95)

There exists G/E reductive such that $G \times_E E_{\lambda} = G_{\lambda}$ for all $\lambda \in \mathcal{P}'_E$.

Theorem (Cheewhye Chin '04)

Over some finite extension $E' \supset E$ the above conjecture holds. (Call the group M/E' the Chin group).

Fix for each $\lambda \in \mathcal{P}_E'$ an \mathcal{O}_{λ} -lattice $\Lambda_{\lambda} \subset E_{\lambda}^n$ stable under $\pi_1(X)$.

Theorem (Larsen-Pink '95)

Let $\mathfrak{G}_{\lambda}^{(geo)}/\mathcal{O}_{\lambda}$ be the Zariski closure of $G_{\lambda}^{(geo)}$ in $Aut_{\mathcal{O}_{\lambda}}(\Lambda_{\lambda})$.

Then the group scheme $\mathfrak{G}_{\lambda}^{(geo)}$ is smooth over \mathcal{O}_{λ} for almost all λ .

Wishlist for reduction of ρ_{\bullet}

Using the lattices Λ_{λ} , can assume

$$\rho_{\lambda} \colon \pi_1(X) \to GL_n(\mathcal{O}_{\lambda})$$

Define k_{λ} as the residue field of E_{λ} , denote the reduction of ρ_{λ} to k_{λ} by $\bar{\rho}_{\lambda} \colon \pi_{1}(X) \to GL_{n}(k_{\lambda})$.

Wishlist for reduction of ρ_{\bullet}

Using the lattices Λ_{λ} , can assume

$$\rho_{\lambda} \colon \pi_1(X) \to GL_n(\mathcal{O}_{\lambda})$$

Define k_{λ} as the residue field of E_{λ} , denote the reduction of ρ_{λ} to k_{λ} by $\bar{\rho}_{\lambda} : \pi_{1}(X) \to GL_{n}(k_{\lambda})$.

Wishlist (for almost all λ)

- 1. $\bar{\rho}_{\lambda}$ is semisimple.
- 2. the reduction $\mathfrak{G}_{k_{\lambda}}^{(geo)} = \mathfrak{G}_{\lambda}^{(geo)} \times_{\mathcal{O}_{\lambda}} k_{\lambda}$ is reductive.
- 3. recover $\mathfrak{G}_{k_{\lambda}}^{(geo)}$ from the finite group $\bar{\rho}_{\lambda}(\pi_{1}^{(geo)}(X))$.

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0).

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0).

$$\exists$$
 exp, log in $GL_n^{unip}(\overline{\mathbb{F}_\ell}) \xrightarrow[\exp]{\log} M_{n \times n}^{nilp}(\overline{\mathbb{F}_\ell})$ as truncated power series, if $\ell > n$.

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0).

$$\exists$$
 exp, log in $GL_n^{unip}(\overline{\mathbb{F}_\ell}) \xrightarrow{\log} M_{n \times n}^{nilp}(\overline{\mathbb{F}_\ell})$ as truncated power series, if $\ell > n$. For $u \in GL_n^{unip}(\overline{\mathbb{F}_\ell})$, $t \in \overline{\mathbb{F}_\ell}$ set $u^t := \exp(t \cdot \log u)$.

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0).

$$\exists$$
 exp, log in $GL_n^{unip}(\overline{\mathbb{F}_\ell}) \xrightarrow[\exp]{\log} M_{n \times n}^{nilp}(\overline{\mathbb{F}_\ell})$ as truncated power series,

$$\text{if } \ell > n. \ \ \text{For } u \in GL_n^{unip}(\overline{\mathbb{F}_\ell}), \ t \in \overline{\mathbb{F}_\ell} \ \text{set} \ u^t := \exp(t \cdot \log u).$$

Definition (Nori envelope/Serre saturation)

The Nori envelope of a subgroup $H \subset GL_n(\overline{\mathbb{F}_\ell})$ is

$$H^{sat} = \overline{\langle u^t \mid u \in H \cap GL_n^{unip}(\overline{\mathbb{F}_\ell}), t \in \overline{\mathbb{F}_\ell} \rangle \cdot H}^{Zar}$$

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0).

$$\exists$$
 exp, log in $GL_n^{unip}(\overline{\mathbb{F}_\ell}) \xrightarrow[\exp]{\log} M_{n \times n}^{nilp}(\overline{\mathbb{F}_\ell})$ as truncated power series,

if
$$\ell > n$$
. For $u \in GL_n^{unip}(\overline{\mathbb{F}_\ell})$, $t \in \overline{\mathbb{F}_\ell}$ set $u^t := \exp(t \cdot \log u)$.

Definition (Nori envelope/Serre saturation)

The Nori envelope of a subgroup $H \subset GL_n(\overline{\mathbb{F}_\ell})$ is

$$H^{sat} = \overline{\langle u^t \mid u \in H \cap GL_n^{unip}(\overline{\mathbb{F}_\ell}), t \in \overline{\mathbb{F}_\ell} \rangle \cdot H}^{Zar}$$

Lemma

If H lies in $GL_n(\mathbb{F}_{\ell^e})$, then H^{sat} is defined over \mathbb{F}_{ℓ^e} .

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0).

$$\exists$$
 exp, log in $GL_n^{unip}(\overline{\mathbb{F}_\ell}) \xrightarrow[\exp]{\log} M_{n \times n}^{nilp}(\overline{\mathbb{F}_\ell})$ as truncated power series,

if
$$\ell > n$$
. For $u \in GL_n^{unip}(\overline{\mathbb{F}_\ell})$, $t \in \overline{\mathbb{F}_\ell}$ set $u^t := \exp(t \cdot \log u)$.

Definition (Nori envelope/Serre saturation)

The Nori envelope of a subgroup $H \subset GL_n(\overline{\mathbb{F}_\ell})$ is

$$H^{sat} = \overline{\langle u^t \mid u \in H \cap GL_n^{unip}(\overline{\mathbb{F}_\ell}), t \in \overline{\mathbb{F}_\ell} \rangle \cdot H}^{Zar}$$

Lemma

If H lies in $GL_n(\mathbb{F}_{\ell^e})$, then H^{sat} is defined over \mathbb{F}_{ℓ^e} .

Example
$$SL_n(\mathbb{F}_{\ell^e})^{sat} = SL_{n,\mathbb{F}_{\ell^e}}$$
.

A square matrix is unipotent (nilpotent) if all eigenvalues are 1 (0).

$$\exists$$
 exp, log in $GL_n^{unip}(\overline{\mathbb{F}_\ell}) \xrightarrow[\exp]{\log} M_{n \times n}^{nilp}(\overline{\mathbb{F}_\ell})$ as truncated power series,

if
$$\ell > n$$
. For $u \in GL_n^{unip}(\overline{\mathbb{F}_\ell})$, $t \in \overline{\mathbb{F}_\ell}$ set $u^t := \exp(t \cdot \log u)$.

Definition (Nori envelope/Serre saturation)

The Nori envelope of a subgroup $H \subset GL_n(\overline{\mathbb{F}_\ell})$ is

$$H^{sat} = \overline{\langle u^t \mid u \in H \cap GL_n^{unip}(\overline{\mathbb{F}_\ell}), t \in \overline{\mathbb{F}_\ell} \rangle \cdot H}^{Zar}$$

Lemma

If H lies in $GL_n(\mathbb{F}_{\ell^e})$, then H^{sat} is defined over \mathbb{F}_{ℓ^e} .

Example
$$SL_n(\mathbb{F}_{\ell^e})^{sat} = SL_{n,\mathbb{F}_{\ell^e}}$$
.

Theorem (Serre)

If H acts semisimply on $\overline{\mathbb{F}_\ell}^n$, then H^{sat} is reductive.

The main theorem

Let ρ_{\bullet} , G_{λ} , Λ_{λ} , \mathfrak{G}_{λ} be as above.

The main theorem

Let ρ_{\bullet} , G_{λ} , Λ_{λ} , \mathfrak{G}_{λ} be as above.

Theorem 1 (Böckle-Gajda-Petersen)

After passing to a finite cover of X, for all but finitely many $\lambda \in \mathcal{P}_E'$ the following hold:

- 1. $\mathfrak{G}_{k_{\lambda}}^{geo} \subset GL_{n,k_{\lambda}}$ is saturated, i.e, $\mathfrak{G}_{k_{\lambda}}^{geo} = (\mathfrak{G}_{\lambda}^{geo}(k_{\lambda}))^{sat}$.
- 2. $\bar{\rho}_{\lambda}$ is semisimple as a representation of $\pi_1^{geo}(X)$.
- 3. $\mathcal{H}_{k_{\lambda}}^{geo} := \bar{\rho}_{\lambda}(\pi_{1}^{geo}(X))^{sat}$ is reductive and defined over k_{λ} .
- 4. $\mathcal{H}_{k_{\lambda}}^{geo} \subseteq \mathfrak{G}_{k_{\lambda}}^{geo}$ is an equality.

Corollary

Suppose the Chin group M of ρ_{\bullet} is absolutely simple, the Chin representation $M \hookrightarrow GL_n$ is the adjoint representation, and E is minimal (as defined by Pink). Then

$$\Big(\prod_{\ell\in\mathbb{L}}
ho_\lambda\Big)(\pi_1(\mathsf{X}))\subset\prod_{\ell\in\mathbb{L}}\mathfrak{G}_\lambda(\mathcal{O}_\lambda)$$

is special adelic in the sense of Hui-Larsen.

Note here M is semisimple \Rightarrow have result not only for $\pi_1^{geo}(X)$.

Global Langlands over function fields I

Let \overline{X} be the smooth compactification of X. Denote by N an effective divisor of \overline{X} with support in $\overline{X} \setminus X$.

Theorem (L. Lafforgue (any n), Drinfeld (n = 2))

Part I:

Let Π be a cuspidal automorphic representation for GL_{n/\mathbb{A}_F} of level N, central character $\tau \colon \pi_1(X) \to GL_1(\overline{\mathbb{Q}})$ of finite order, Hecke field E_0 , and Hecke polynomial $P_{\Pi,x} \in E_0[T]$ at all $x \in |X|$.

Then for some $E\supset E_0$ there exists an E-rational compatible system $\rho_\lambda\colon \pi_1(X)\to GL_n(E_\lambda)$, for $\lambda\in \mathcal{P}_E'$,

with Frobenius polynomials $(P_{\Pi,x})_{x\in |X|}$, such that $\det \rho_{\bullet} = \tau$, and ρ_{\bullet} is absolutely irreducible and pure of weight zero.

Global Langlands over function fields II

Theorem (L. Lafforgue (any n), Drinfeld (n = 2))

Part II: Let $\rho \colon \pi_1(X) \to GL_n(\overline{\mathbb{Q}_\ell})$ be continuous and absolutely irreducible with finite order determinant τ and conductor at most N.

Then there exists a cuspidal automorphic representation for GL_{n/\mathbb{A}_F} of level N, and central character τ such that

$$\rho = \iota \circ \rho_{\Pi,\lambda}$$

for some continuous embedding $\iota \colon E_{\lambda} \hookrightarrow \mathbb{Q}_{\ell}$. In particular, ρ is a member of a compatible system.

Global Langlands over function fields II

Theorem (L. Lafforgue (any n), Drinfeld (n = 2))

Part II: Let $\rho \colon \pi_1(X) \to GL_n(\overline{\mathbb{Q}_\ell})$ be continuous and absolutely irreducible with finite order determinant τ and conductor at most N.

Then there exists a cuspidal automorphic representation for GL_{n/\mathbb{A}_F} of level N, and central character τ such that

$$\rho = \iota \circ \rho_{\Pi,\lambda}$$

for some continuous embedding $\iota \colon E_{\lambda} \hookrightarrow \mathbb{Q}_{\ell}$. In particular, ρ is a member of a compatible system.

Part III: The above correspondence is compatible with the local Langlands correspondence at all $x \in |\overline{X}| \setminus |X|$.

Consequences I

Corollary (Passage to irreducibility and trivial determinant)

Let ρ_{\bullet} be E-rational semisimple compatible.

1. After possible enlarging E, one has

$$\rho_{\bullet} = \rho_{\bullet,1} \oplus \ldots \oplus \rho_{\bullet,r}$$

for absolutely irreducible compatible systems $\rho_{ullet,i}$

Consequences I

Corollary (Passage to irreducibility and trivial determinant)

Let ρ_{\bullet} be E-rational semisimple compatible.

1. After possible enlarging E, one has

$$\rho_{\bullet} = \rho_{\bullet,1} \oplus \ldots \oplus \rho_{\bullet,r}$$

for absolutely irreducible compatible systems $\rho_{ullet,i}$

2. After possibly passing to a finite cover $X' \to X$, can write

$$\rho_{\bullet,i} = \rho'_{\bullet,i} \otimes \tau_{\bullet,i}$$

with $\tau_{\bullet,i}$ one-dimensional and $\rho'_{\bullet,i}$ pure of weight zero.

Further reduction steps reduce Theorem 1 to the case: ρ_{\bullet} is absolutely irreducible, det $\rho_{\bullet}=1$, all G_{λ} are connected.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Consequences II

Corollary (Conductor)

The conductor of the ρ_{λ} in a semisimple compatible system ρ_{\bullet} is independent of λ .

Consequences II

Corollary (Conductor)

The conductor of the ρ_{λ} in a semisimple compatible system ρ_{\bullet} is independent of λ .

Let $\tau \colon \pi_1(X) \to GL_1(\overline{\mathbb{Q}})$ be fixed and continuous. Let N be fixed as before.

Corollary (Finiteness)

For any N and n there are only finitely many absolutely irreducible n-dimensional compatible systems ρ_{\bullet} with conductor bounded by N and det $\rho_{\bullet} = \tau$.

Consequences of de Jong's and Gaitsgory's results

Using mainly results of de Jong and Gaitsgory one has

Theorem 2 (B.-Harris-Khare-Thorne)

Suppose $G \hookrightarrow GL_n$ is reductive over $W(\mathbb{F}_{\ell^e})$ and $\ell > 2 \dim G_{\lambda}$.

Let $\bar{\rho} \colon \pi_1(X) \to G(\mathbb{F}_{\ell^e}) \hookrightarrow GL_n(\mathbb{F}_{\ell^e})$ be absolutely irreducible.

Let $\chi \colon \pi_1(X) \to GL_1(W(\mathbb{F}_{\ell^e}))$ be a continuous lift of $\det \bar{\rho}$.

Then $\bar{\rho}$ has a lift $\rho \colon \pi_1(X) \to G(W(\mathbb{F}_{\ell^e}))$ with $\det \rho = \chi$.

Moreover if \bar{N} is the conductor of $\bar{\rho}$, and \bar{T} that of χ , then the conductor of ρ can be bounded $\bar{N} + n \cdot \bar{T} + n(\bar{X} \setminus X)$.

Residually compatible systems

Let $\mathcal{P} \subset \mathcal{P}_E'$ be infinite.

Write $\mathfrak{p}_{\lambda}\subset\mathcal{O}_{E}$ for the maximal ideal defined by $\lambda\in\mathcal{P}_{E}'$.

Definition

An E-rational *n*-dim. residually compatible system $\bar{\rho}_{\bullet}$ over \mathcal{P} is

- 1. a cont. homomorphism $\bar{\rho}_{\lambda} \colon \pi_1(X) \to GL_n(k_{\lambda})$ for all $\lambda \in \mathcal{P}$.
- 2. a Polynomial $\bar{P}_x \in \mathcal{O}_E[\frac{1}{p}][T]$ monic of degree n for all $x \in |X|$ such that

$$\mathsf{charpol}_{\bar{\rho}_{\lambda}(\mathit{Frob}_{x})} \equiv \bar{P}_{x} \; (\mathsf{mod} \; \mathfrak{p}_{\lambda}), \; \forall x \in |X|, \lambda \in \mathcal{P}$$

Residually compatible systems

Let $\mathcal{P} \subset \mathcal{P}'_{\mathcal{E}}$ be infinite.

Write $\mathfrak{p}_{\lambda}\subset\mathcal{O}_{E}$ for the maximal ideal defined by $\lambda\in\mathcal{P}_{E}'$.

Definition

An *E*-rational *n*-dim. residually compatible system $\bar{\rho}_{\bullet}$ over \mathcal{P} is

- 1. a cont. homomorphism $\bar{\rho}_{\lambda} \colon \pi_1(X) \to GL_n(k_{\lambda})$ for all $\lambda \in \mathcal{P}$.
- 2. a Polynomial $\bar{P}_x \in \mathcal{O}_E[\frac{1}{p}][T]$ monic of degree n for all $x \in |X|$ such that

$$\mathsf{charpol}_{\bar{\rho}_{\lambda}(\mathit{Frob}_{\mathsf{x}})} \equiv \bar{P}_{\mathsf{x}} \; (\mathsf{mod} \; \mathfrak{p}_{\lambda}), \; \forall \mathsf{x} \in |X|, \lambda \in \mathcal{P}$$

Lemma 1

For any residually compatible system $\bar{\rho}_{\bullet}$ of bounded conductor there exists a unique semisimple compatible system ρ_{\bullet} over some $E' \supset E$ such that $\bar{P}_x = P_x \ \forall x \in |X|$. Moreover if all $\bar{\rho}_{\lambda}$ are reducible, then so is ρ_{\bullet} .

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Proof of Lemma 1

Over some finite extension k'_{λ} of k_{λ} have

$$ar{
ho}^{\mathsf{ss}}_{\lambda} = ar{
ho}_{\lambda,1} \oplus \ldots \oplus ar{
ho}_{\lambda,n_{\lambda}}$$

with $\bar{\rho}_{\lambda,i}$ absolutely irreducible.

Over some finite extension k'_{λ} of k_{λ} have

$$ar{
ho}_{\lambda}^{ss} = ar{
ho}_{\lambda,1} \oplus \ldots \oplus ar{
ho}_{\lambda,n_{\lambda}}$$

with $\bar{\rho}_{\lambda,i}$ absolutely irreducible.

Use knowledge of eigenvalues of $Frob_x$ via \bar{P}_x for one x to ensure: there is a finite set of lists (τ_1,\ldots,τ_s) of finite order characters such that each $(\det \bar{\rho}_{\lambda,1},\ldots,\det \bar{\rho}_{\lambda,n_{\lambda}})$ is one list mod \mathfrak{p}_{λ}

Use Theorem 2 to obtain a lift $\rho_{\lambda,1} \oplus \ldots \oplus \rho_{\lambda,n_{\lambda}}$ with det $\rho_{\lambda,i} = \tau_i$.

Over some finite extension k'_{λ} of k_{λ} have

$$\bar{\rho}_{\lambda}^{ss} = \bar{\rho}_{\lambda,1} \oplus \ldots \oplus \bar{\rho}_{\lambda,n_{\lambda}}$$

with $\bar{\rho}_{\lambda,i}$ absolutely irreducible.

Use knowledge of eigenvalues of $Frob_x$ via \bar{P}_x for one x to ensure: there is a finite set of lists (τ_1, \ldots, τ_s) of finite order characters such that each $(\det \bar{\rho}_{\lambda,1}, \ldots, \det \bar{\rho}_{\lambda,n_{\lambda}})$ is one list mod \mathfrak{p}_{λ}

Use Theorem 2 to obtain a lift $\rho_{\lambda,1} \oplus \ldots \oplus \rho_{\lambda,n_{\lambda}}$ with det $\rho_{\lambda,i} = \tau_i$.

Finiteness of lists and of partitions of n and conductor bound in Theorem 2 (for GL_{n_i}) shows:

Over some finite extension k'_{λ} of k_{λ} have

$$\bar{\rho}_{\lambda}^{ss} = \bar{\rho}_{\lambda,1} \oplus \ldots \oplus \bar{\rho}_{\lambda,n_{\lambda}}$$

with $\bar{\rho}_{\lambda,i}$ absolutely irreducible.

Use knowledge of eigenvalues of $Frob_x$ via \bar{P}_x for one x to ensure: there is a finite set of lists (τ_1, \ldots, τ_s) of finite order characters such that each $(\det \bar{\rho}_{\lambda,1}, \ldots, \det \bar{\rho}_{\lambda,n_{\lambda}})$ is one list mod \mathfrak{p}_{λ}

Use Theorem 2 to obtain a lift $\rho_{\lambda,1} \oplus \ldots \oplus \rho_{\lambda,n_{\lambda}}$ with det $\rho_{\lambda,i} = \tau_i$.

Finiteness of lists and of partitions of n and conductor bound in Theorem 2 (for GL_{n_i}) shows:

there exist automorphic representations Π_1, \ldots, Π_s (for GL_{n_i, \mathbb{A}_F}) such that $\bigoplus_j \rho_{\Pi_i, \lambda} \equiv \bar{\rho}_{\lambda} \mod \mathfrak{p}_{\lambda}$ for infinitely many $\lambda \in \mathcal{P}$.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Absolute irreducibility

Corollary (Drinfeld)

Suppose ρ_{\bullet} is absolutely irreducible. Then $\bar{\rho}_{\lambda}$ is absolutely irreducible for almost all $\lambda \in \mathcal{P}_{\mathsf{F}}'$.

Absolute irreducibility

Corollary (Drinfeld)

Suppose ρ_{\bullet} is absolutely irreducible. Then $\bar{\rho}_{\lambda}$ is absolutely irreducible for almost all $\lambda \in \mathcal{P}_F'$.

Proof.

Suppose infinitely many $\bar{\rho}_{\lambda}$ are reducible. They form a residually compatible reducible system. By Lemma 1 the latter arises from a reducible compatible system ρ_{\bullet}' .

Now
$$P'_x = P_x$$
 for all $x \in |X|$ gives a contradiction.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Recall: Main Theorem in the absolutely irreducible case

Suppose ρ_{\bullet} is absolutely irreducible and the G_{λ} are connected semisimple. Need to show:

Recall: Main Theorem in the absolutely irreducible case

Suppose ρ_{\bullet} is absolutely irreducible and the G_{λ} are connected semisimple. Need to show:

Theorem 1' (Böckle-Gajda-Petersen)

After passing to a finite cover of X, for all but finitely many $\lambda \in \mathcal{P}_E'$ the following hold:

- 1. $\mathfrak{G}_{k_{\lambda}} \subset GL_{n,k_{\lambda}}$ is saturated.
- 2. $\bar{\rho}_{\lambda}$ is absolutely irreducible. (Drinfeld).
- 3. $\mathcal{H}_{k_{\lambda}} := \bar{\rho}_{\lambda}(\pi_1(X))^{sat}$ is semisimple and defined over k_{λ} .
- 4. $\mathcal{H}_{k_{\lambda}} \subseteq \mathfrak{G}_{k_{\lambda}}$ is an equality.

Recall: Main Theorem in the absolutely irreducible case

Suppose ρ_{\bullet} is absolutely irreducible and the G_{λ} are connected semisimple. Need to show:

Theorem 1' (Böckle-Gajda-Petersen)

After passing to a finite cover of X, for all but finitely many $\lambda \in \mathcal{P}_E'$ the following hold:

- 1. $\mathfrak{G}_{k_{\lambda}} \subset GL_{n,k_{\lambda}}$ is saturated.
- 2. $\bar{\rho}_{\lambda}$ is absolutely irreducible. (Drinfeld).
- 3. $\mathcal{H}_{k_{\lambda}} := \bar{\rho}_{\lambda}(\pi_1(X))^{sat}$ is semisimple and defined over k_{λ} .
- 4. $\mathcal{H}_{k_{\lambda}} \subseteq \mathfrak{G}_{k_{\lambda}}$ is an equality.

Part 2 was just shown. Part 1 I will not discuss.

Part 3 follows from part 2 and an earlier quoted result of Serre.

The inclusion in 4 follows from 1 and the definitions.

Saturated image and the Chin group

Recall $\mathcal{H}_{k_{\lambda}} = \bar{\rho}_{\lambda}(\pi_1(X))^{sat}$.

Lemma 2

Suppose ρ_{\bullet} is E-rational absolutely irreducible with det $\rho_{\bullet} = 1$. Assume $\bar{\rho}_{\lambda}(\pi_1(X))$ is ℓ_{λ} -generated ($\ell_{\lambda} = Char \, k_{\lambda}$) for almost all λ .

Then for almost all $\lambda \in \mathcal{P}$ there exists a semisimple group $\mathfrak{H}_{\lambda}/W(k_{\lambda})$ with generic fiber G_{λ} and special fiber $\mathcal{H}_{k_{\lambda}}$.

For $\ell_{\lambda} \gg 0$ we have:

- $\mathcal{H}_{k_{\lambda}}$ is semisimple by Theorem 1'(iii).
- ▶ $\dim \mathcal{H}_{k_{\lambda}} \leq \dim \mathfrak{G}_{k_{\lambda}} = \dim G_{\lambda}$.
- ▶ $\mathcal{H}_{k_{\lambda}}$ is connected because $\bar{\rho}_{\lambda}(\pi_1(X))$ is ℓ -generated.
- ► The irreducible representation $\bar{r}: \mathcal{H}_{k_{\lambda}} \hookrightarrow GL_n$ over k_{λ} is of low weight $(\ell_{\lambda}\text{-restricted})$ because $\mathcal{H}_{k_{\lambda}}$ is saturated.

For $\ell_{\lambda} \gg 0$ we have:

- $\mathcal{H}_{k_{\lambda}}$ is semisimple by Theorem 1'(iii).
- ▶ $\dim \mathcal{H}_{k_{\lambda}} \leq \dim \mathfrak{G}_{k_{\lambda}} = \dim G_{\lambda}$.
- ▶ $\mathcal{H}_{k_{\lambda}}$ is connected because $\bar{\rho}_{\lambda}(\pi_1(X))$ is ℓ -generated.
- ▶ The irreducible representation $\bar{r}: \mathcal{H}_{k_{\lambda}} \hookrightarrow GL_n$ over k_{λ} is of low weight $(\ell_{\lambda}\text{-restricted})$ because $\mathcal{H}_{k_{\lambda}}$ is saturated.

Using results of Jantzen (and Serre):

There is a lift $r : \mathfrak{H}_{\lambda} \hookrightarrow GL_n$ of \overline{r} to $W(k_{\lambda})$ with \mathfrak{H}_{λ} semisimple.

By Theorem 2 there is a lift

$$\rho'_{\lambda} \colon \pi_1(X) \to \mathfrak{H}_{\lambda}(W(k_{\lambda})) \hookrightarrow GL_n(W(k_{\lambda})) \text{ of } \bar{\rho}_{\lambda}.$$

Have $\rho'_{\lambda} \cong \rho_{\Pi_{\lambda},\lambda}$ for some Π_{λ} .

For $\ell_{\lambda} \gg 0$ we have:

- $\mathcal{H}_{k_{\lambda}}$ is semisimple by Theorem 1'(iii).
- ▶ $\dim \mathcal{H}_{k_{\lambda}} \leq \dim \mathfrak{G}_{k_{\lambda}} = \dim G_{\lambda}$.
- ▶ $\mathcal{H}_{k_{\lambda}}$ is connected because $\bar{\rho}_{\lambda}(\pi_1(X))$ is ℓ -generated.
- ▶ The irreducible representation $\bar{r}: \mathcal{H}_{k_{\lambda}} \hookrightarrow GL_n$ over k_{λ} is of low weight $(\ell_{\lambda}\text{-restricted})$ because $\mathcal{H}_{k_{\lambda}}$ is saturated.

Using results of Jantzen (and Serre):

There is a lift $r : \mathfrak{H}_{\lambda} \hookrightarrow GL_n$ of \overline{r} to $W(k_{\lambda})$ with \mathfrak{H}_{λ} semisimple.

By Theorem 2 there is a lift

$$ho_{\lambda}' \colon \pi_1(X) o \mathfrak{H}_{\lambda}(W(k_{\lambda})) \hookrightarrow \mathit{GL}_n(W(k_{\lambda})) ext{ of } \bar{\rho}_{\lambda}.$$

Have $\rho'_{\lambda} \cong \rho_{\Pi_{\lambda},\lambda}$ for some Π_{λ} . The number of possible Π_{λ} is finite.

$$\Rightarrow \rho_{\Pi,\lambda} = \rho'_{\lambda}$$
 for one Π and almost all λ .

For $\ell_{\lambda} \gg 0$ we have:

- $\mathcal{H}_{k_{\lambda}}$ is semisimple by Theorem 1'(iii).
- ▶ $\dim \mathcal{H}_{k_{\lambda}} \leq \dim \mathfrak{G}_{k_{\lambda}} = \dim G_{\lambda}$.
- $ightharpoonup \mathcal{H}_{k_{\lambda}}$ is connected because $\bar{\rho}_{\lambda}(\pi_1(X))$ is ℓ -generated.
- ▶ The irreducible representation $\bar{r}: \mathcal{H}_{k_{\lambda}} \hookrightarrow GL_n$ over k_{λ} is of low weight $(\ell_{\lambda}\text{-restricted})$ because $\mathcal{H}_{k_{\lambda}}$ is saturated.

Using results of Jantzen (and Serre):

There is a lift $r \colon \mathfrak{H}_{\lambda} \hookrightarrow GL_n$ of \overline{r} to $W(k_{\lambda})$ with \mathfrak{H}_{λ} semisimple.

By Theorem 2 there is a lift

$$ho_{\lambda}' \colon \pi_1(X) o \mathfrak{H}_{\lambda}(W(k_{\lambda})) \hookrightarrow \mathit{GL}_n(W(k_{\lambda})) ext{ of } \bar{\rho}_{\lambda}.$$

Have $\rho'_{\lambda} \cong \rho_{\Pi_{\lambda},\lambda}$ for some Π_{λ} . The number of possible Π_{λ} is finite.

$$\Rightarrow \rho_{\Pi,\lambda} = \rho'_{\lambda}$$
 for one Π and almost all λ .

Also have
$$\bar{\rho}_{\bullet} = \bar{\rho}_{\Pi,\bullet}$$
 (and thus $P_x = P_x' \ \forall x \in |X|$) $\Rightarrow \rho_{\bullet} \cong \rho_{\Pi,\bullet}$.

The global Langlands correspondence Consequences of global Langlands and Lifting Residually compatible systems Proof of parts of the main theorem

Conclusion

Corollary

 $\mathcal{H}_{k_{\lambda}} = \mathfrak{G}_{k_{\lambda}}$ for almost all λ .

Proof.

We know already that $\mathcal{H}_{k_{\lambda}} \subseteq \mathfrak{G}_{k_{\lambda}}$.

By passing to a finite cover $X' \to X$ one can achieve that all groups $\bar{\rho}_{\lambda}(\pi_1(X))$ are ℓ_{λ} -generated. This does not change $\mathfrak{G}_{k_{\lambda}}$.

By Lemma 2 we have dim
$$\mathcal{H}_{k_{\lambda}} = \dim G_{\lambda} = \dim \mathfrak{G}_{k_{\lambda}}$$
.

Motivation and results of CHT Formulation of our results Automorphic input and proofs Reduction to absolutely irreducible ρ_{ullet}

An *M*-compatible system

To end, let me explain the idea of the reduction step: Theorem 1' (ρ_{\bullet} absolutely irreducible) implies Theorem 1.

An *M*-compatible system

To end, let me explain the idea of the reduction step: Theorem 1' (ρ_{\bullet} absolutely irreducible) implies Theorem 1.

Theorem (B.-Harris-Khare-Thorne, building on Chin)

Suppose ρ_{\bullet} is semisimple, say with Chin group M over E.

After enlarging E there is an M-compatible system

$$\rho_{\lambda}^{M} \colon \pi_{1}(X) \to M(E_{\lambda}), \ \lambda \in \mathcal{P}'_{E},$$

and a representation $\alpha \colon M \to GL_n$, defined over E, such that

$$\alpha \circ \rho_{\lambda}^{M} = \rho_{\lambda} \text{ for all } \lambda \in \mathcal{P}_{E}'$$

An *M*-compatible system

To end, let me explain the idea of the reduction step: Theorem 1' (ρ_{\bullet} absolutely irreducible) implies Theorem 1.

Theorem (B.-Harris-Khare-Thorne, building on Chin)

Suppose ρ_{\bullet} is semisimple, say with Chin group M over E.

After enlarging E there is an M-compatible system

$$\rho_{\lambda}^{M} \colon \pi_{1}(X) \to M(E_{\lambda}), \ \lambda \in \mathcal{P}'_{E},$$

and a representation $\alpha \colon M \to GL_n$, defined over E, such that $\alpha \circ \rho_{\lambda}^M = \rho_{\lambda}$ for all $\lambda \in \mathcal{P}_E'$

Note M-compatible means that for all λ and x the conjugacy class of $\rho_{\lambda}^{M}(Frob_{x})$ lies in $M(\overline{\mathbb{Q}})$ and is independent of λ .

Also, ho_{ullet}^M is unique up to conjugacy, because $ho_{\lambda}^M(\pi_1(X))^{Zar}=M$

Say $\rho_{\bullet} = \bigoplus_{i} \rho_{i,\bullet}$ with $\rho_{i,\bullet}$ absolutely irreducible of weight zero. Let ρ_{\bullet}^{M} and α be as above, so that $\rho_{\bullet} = \alpha \circ \rho_{\bullet}^{M}$.

Say $\rho_{\bullet} = \bigoplus_{i} \rho_{i,\bullet}$ with $\rho_{i,\bullet}$ absolutely irreducible of weight zero. Let ρ_{\bullet}^{M} and α be as above, so that $\rho_{\bullet} = \alpha \circ \rho_{\bullet}^{M}$.

Let $\beta: M \to SL_m$ be almost faithful and irreducible (over E).

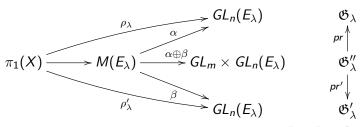
```
Say \rho_{\bullet} = \bigoplus_{i} \rho_{i,\bullet} with \rho_{i,\bullet} absolutely irreducible of weight zero. Let \rho_{\bullet}^{M} and \alpha be as above, so that \rho_{\bullet} = \alpha \circ \rho_{\bullet}^{M}.
```

Let $\beta \colon M \to SL_m$ be almost faithful and irreducible (over E). Then $\rho'_{\bullet} := \beta \circ \rho^M_{\bullet}$ is absolutely irreducible of weight zero. Apply Theorem 1' to $\rho'_{\bullet} \Rightarrow$ almost all $\mathfrak{G}'_{\lambda}/\mathcal{O}_{\lambda}$ are semisimple

Say $\rho_{\bullet} = \bigoplus_{i} \rho_{i,\bullet}$ with $\rho_{i,\bullet}$ absolutely irreducible of weight zero. Let ρ_{\bullet}^{M} and α be as above, so that $\rho_{\bullet} = \alpha \circ \rho_{\bullet}^{M}$.

Let $\beta\colon M\to SL_m$ be almost faithful and irreducible (over E). Then $\rho'_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}:=\beta\circ\rho^M_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ is absolutely irreducible of weight zero. Apply Theorem 1' to $\rho'_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}\Rightarrow$ almost all $\mathfrak{G}'_\lambda/\mathcal{O}_\lambda$ are semisimple

To finish off: compare \mathfrak{G}_{λ} to \mathfrak{G}'_{λ} via the three representations



 $\begin{array}{c} \text{Motivation and results of CHT} \\ \text{Formulation of our results} \\ \text{Automorphic input and proofs} \\ \text{Reduction to absolutely irreducible } \rho_{\bullet} \end{array}$

Thank you!