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Overview

e Equations with absorption term

e Removable singularities: previous results

e Removable singularities: new results (V., t.a. on Trans. AMS)
e Entire solutions (Galise-V. 2011, Galise-Koike-Ley-V. 2016)

e Entire subsolutions (Capuzzo Dolcetta-Leoni-V. 2014 and 2016)
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Equations with absorption term

e Look at non-negative solutions u of second-order elliptic
equations
F(x,u, Du, D?u) — |ul*"1u = f(x)

where Du is the gradient of u and D?u the Hessian matrix,
F(x,t,&, X) is nondecreasing in X € Sym(R"), Lipschitz
continuous in £ € R” and nonincreasing in t € R, s > 1.
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Equations with absorption term

e Look at non-negative solutions u of second-order elliptic
equations

F(x,u, Du, D?u) — |ul*"1u = f(x)
where Du is the gradient of u and D?u the Hessian matrix,
F(x,t,&, X) is nondecreasing in X € Sym(R"), Lipschitz
continuous in £ € R” and nonincreasing in t € R, s > 1.

e Our assumptions on F will imply that, if v is an entire solution
(defined in Q = R") or a solution in a proper domain Q2 C R” and
u>0on 02, and f(x) <0, then u>0in Q.
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Equations with absorption term

e Look at non-negative solutions u of second-order elliptic
equations
F(x,u, Du, D?u) — |ul*"1u = f(x)

where Du is the gradient of u and D?u the Hessian matrix,
F(x,t,&, X) is nondecreasing in X € Sym(R"), Lipschitz
continuous in £ € R” and nonincreasing in t € R, s > 1.

e Our assumptions on F will imply that, if v is an entire solution
(defined in Q = R") or a solution in a proper domain Q2 C R” and
u>0on 02, and f(x) <0, then u>0in Q.

e Consequently, in the case f < 0, the above equation becomes
F(x, u, Du, D*u) — u® = f(x)
and belongs to the more general class of equations
Flu] — g(u) = f(x)
with a superlinear absorption term g(u) > 0.
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Removable singularities

e Let E C Q be a closed set and u a solution of a PDE in Q\E.
Then E will be called a remowable singularity if u can be
continued as a solution in the whole €.

F(x,u, Du, D*u) — |u]*"tu = f(x)
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e Let E C Q be a closed set and u a solution of a PDE in Q\E.
Then E will be called a remowable singularity if u can be
continued as a solution in the whole €.

F(x,u, Du, D*u) — |u]*"tu = f(x)
e Main issues:
(i) maximal growth of a solution near an isolated singularity;

(ii) maximal size of removable singularities.
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Removable singularities

e Let E C Q be a closed set and u a solution of a PDE in Q\E.
Then E will be called a remowable singularity if u can be
continued as a solution in the whole €.

F(x,u, Du, D*u) — |u]*"tu = f(x)
e Main issues:
(i) maximal growth of a solution near an isolated singularity;

(ii) maximal size of removable singularities.

o Classical references:
Gilbarg - Serrin, J. Analyse Math. (1956)

Serrin, Arch. Rational Mech. Anal. (1964; 1965); Acta Math.
(1965)
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Removable singularities: classical results

e Theorem (isolated singularities) Let n > 2 be an integer. Let
u(x) be a classical solution of the Laplace equation Au = 0 in the
punctured ball B\{0} of R". If u(x) = o(&(x)) as x — 0, then
E = {0} is a removable singularity.

Fundamental solution: £(x) =

|X|n72'
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Removable singularities: classical results

e Theorem (isolated singularities) Let n > 2 be an integer. Let
u(x) be a classical solution of the Laplace equation Au = 0 in the
punctured ball B\{0} of R". If u(x) = o(&(x)) as x — 0, then
E = {0} is a removable singularity.

Fundamental solution: £(x) = 2
e Theorem (non-isolated singularities) Let n > 2 be an integer.
Let u(x) be a bounded classical solutions u(x) of the Laplace
equation Au =0 in Q\E. If E C Q is a compact set with Riesz
capacity C,_»(E) =0, then E is a removable singularity.
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Removable singularities: uniformly elliptic operators
e Pure second order:

Labutin (Viscosity Solutions of Differential Equations and Related
Topics, Ishii ed., Kyoto (2002), introduce a capacity "ad hoc” to
characterize the size of removable singular sets.

Harvey-Lawson (Indiana Univ. Math. J. 2014, Riesz capacity)
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Removable singularities: uniformly elliptic operators
e Pure second order:

Labutin (Viscosity Solutions of Differential Equations and Related
Topics, Ishii ed., Kyoto (2002), introduce a capacity "ad hoc” to
characterize the size of removable singular sets.

Harvey-Lawson (Indiana Univ. Math. J. 2014, Riesz capacity)

e Theorem (Amendola, Galise, V., Differential Integral Equations,
2013) Let the exponent a* = (n—1)2 —1 > 0. Assume:

F = F(&, X) uniformly elliptic (X, \)
IF(n, X) — F(&,X)| < bl — €] V&7 €R".
Let u(x) be a bounded solution of equation
F(Du,D?u) = f(x) in Q\E
with f(x) continuous in Q. The singular set E is removable if:
Cox(E) =0, for b=10; Co(E) =0 with a € (0,a™),for b>0.
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Removable singularities: absorption terms

e A well known theorem

(Brezis-Veron, Arch. Rat. Mech. Anal., 1980/81)

Let n > 3. For The isolated singularities of solutions of equation
Au—|uftu=0

are removable for s > 5.

Already known by Loewner-Nirenberg (Contribution to Analysis,

1974) for s > o2
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Removable singularities: absorption terms
e A well known theorem
(Brezis-Veron, Arch. Rat. Mech. Anal., 1980/81)
Let n > 3. For The isolated singularities of solutions of equation
Au—|u*tu=0
are removable for s > 5.
Already known by Loewner-Nirenberg (Contribution to Analysis,

1974) for s > o2
NO CONDITION ON THE GROWTH OF THE SOLUTIONS
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Removable singularities: absorption terms
e A well known theorem
(Brezis-Veron, Arch. Rat. Mech. Anal., 1980/81)
Let n > 3. For The isolated singularities of solutions of equation
Au—|uftu=0

are removable for s > 5.
Already known by Loewner-Nirenberg (Contribution to Analysis,
1974) for s > o2

NO CONDITION ON THE GROWTH OF THE SOLUTIONS

e Generalized by Labutin (Arch. Ration. Mech. Anal., 2000) to
fully nonlinear uniformly elliptic equations (A, A)
F(D?u) — |u**u=0

A(n—1)+A

/\ .
forn>1+xw|th52m.
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Relaxing ellipticity assumptions on the main term

e Upper Partial Sum of Hessian eigenvalues, picking the largest
p < n eigenvalues e (nondecreasing order) of D?u:

P;(D2u) = Z ex(D?u) = sup Tr|, (D?u).
k=n—p+1 Wegp

[Gp:= Grassmanian of p-dim subspaces;
Tr:= trace operator|
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Relaxing ellipticity assumptions on the main term

e Upper Partial Sum of Hessian eigenvalues, picking the largest
p < n eigenvalues e (nondecreasing order) of D?u:

P;(D2u) = Z ex(D?u) = sup Tr|, (D?u).
k=n—p+1 Wegp

[Gp:= Grassmanian of p-dim subspaces;
Tr:= trace operator|

e Convention: F degenerate ellipticiff X <Y = F(X)<F(Y)
[X <Y & Y — X positive semidefinite]

e Dual operator: Lower Partial Sum of Hessian eigenvalues

Py (X) = =Py (=X) = wnf Trl, (X) = > ex(D?u)
P k=1

e Notice: P, is subadditive, P, superadditive.
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Motivation
e Case p=n: P (D?u) = Au (uniformly elliptic).
e Remind: F uniformly elliptic iff
X<Y = ATHY =X) < F(Y) = F(X) <ATHY - X)

[0 < A < A ellipticity constants]
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Motivation
e Case p=n: P (D?u) = Au (uniformly elliptic).
e Remind: F uniformly elliptic iff
X<Y = ATr(Y-=X)<F(Y)=F(X)<ATr (Y = X)
[0 < A < A ellipticity constants]
e Case p< n: Pf,c is not uniformly elliptic.
For instance, see below: n=2; p=1.

C(33)<(9)r -

o
—_
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Motivation
e Case p=n: P (D?u) = Au (uniformly elliptic).
e Remind: F uniformly elliptic iff
X<Y = ATr(Y-=X)<F(Y)=F(X)<ATr (Y = X)
[0 < A < A ellipticity constants]
e Case p< n: Pf,c is not uniformly elliptic.

For instance, see below: n=2; p=1.

e (30)<(5 )y - e

e Geometric problems related to mean partial curvatures:
Sha (Invent. Math. 1987), Wu (Indiana Univ. Math. J. 1987)

e Related papers:

Harvey-Lawson (Comm. Pure Appl. Math. 2009, Surv. Differ. Geom.
2013, Indiana Univ. Math. J. 2014), Caffarelli-Li-Nirenberg (Comm.
Pure Appl. Math. 2013)



New results

Removability without absorption term

e Theorem (Caffarelli-Li-Nirenberg, 2013) Let 2 < p < n be an
integer. If u(x) is a bounded solution of equation

P,;(Dzu) =f(x) in Q\E
with f(x) continuous in Q, and E C M, a closed smooth manifold
s.t. dim(M) = p — 2, then E is a removable singularity.

e Theorem (Harvey-Lawson, 2014) The same holds true under the
capacitary assumption C,_»(E) = 0.

e Remark. The above results generalize what is known for the
Laplace operator Au = P,j,E(D2u) to the partial Laplacians
P> (D?u) with p < n simply substituting p to the dimension .
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New results with absorption term

e Theorem 1 (isolated singularities) Let n and p be positive
integers such that 3 < p < n, and Q be a domain of R". For
xo € Q, set Qo = {x € Q:x+# x0}. Suppose F is a continuous
degenerate elliptic operator satisfying

P(Y = X) < F(Y) = F(X) < PH(Y = X)
and f is a continuous function in 2.
For s > p—f2, any continuous viscosity solution u(x) of equation
F(D?u) — |u]*tu = f(x)

in Qg can be extended to a solution in all Q.
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New results with absorption term

e Theorem 1 (isolated singularities) Let n and p be positive
integers such that 3 < p < n, and Q be a domain of R". For
xo € Q, set Qo = {x € Q:x+# x0}. Suppose F is a continuous
degenerate elliptic operator satisfying

P, (Y =X)<F(Y)—F(X) < P;F(Y—X)
and f is a continuous function in Q.
For s > p—f2, any continuous viscosity solution u(x) of equation
F(D2u) — |u|s_1u = f(x)
in Qg can be extended to a solution in all Q.

e Remark. For n = 2 this returns the result of Brezis-Veron: no
condition on the solution u(x).
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Comments and generalizations

e The partial Laplacians Pi fit the assumptions of Theorem 1.
e Optimal exponent. If 1 < s < p takmg
Cs71 = (ps — 2) (ps — p) with ps = 25 1, we get a solution
u(x) = C|x|7a
of equation _
P;'(D2u) —|u'u=0 in R"
which cannot be continued across zero.

¢ Generalizations to more general absorption terms. The
conclusion of Theorem 1 continues to hold true for equations

F(D?u) — g(u) = f(x),
where g is any continuous real function such that
g(u)

2

lulP=2u

liminf >0.
u—=+oo
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Further generalizations

e Degenerate elliptic operators of Pucci type (Galise-V., Differential
Integral Equations 2016):

P P
Pr(X)= A () =AD e (X) = jnf Tr(A,X,),
=1 i=1 My, <A, <A,
PAX)=AY e (X)-AY & (X)= sup Tr(A,X,).
i=n—p+1 i=n—p+1 Weg,
P P My, <A, <A,

e Case p = n: Pucci extremal operators P;E = Mf)\.

e General case p < n, A <1 <A ﬁp—gPp—gP;gﬁ;;.

e Highly degenerate elliptic Pucci maximal operator, the sum of
positive eigenvalues of the Hessian matrix (Diaz 2012):

Mg (D?u) = e (D?u) + -+~ + ef (D).



New results

Non-isolated singularities

e Theorem 2 Let n and p be positive integers such that
3<p<n. Letalso k € N be such thatn—p+2 > 0.

Let E be a closed set in R" such that E C QN T, whereT is a
smooth manifold in R" of codimension k € (n — p+ 2,n), and set
Qe = Q\E. Suppose F is a degenerate elliptic operator as in
Theorem 1 with f € C(Q).

For s > % any continuous viscosity solution u(x) of
equation
F(D?u) — |u]*tu = f(x)

in Qg can be extended to a solution in all €.



New results

Non-isolated singularities

e Theorem 2 Let n and p be positive integers such that
3<p<n. Letalso k € N be such thatn—p+2 > 0.

Let E be a closed set in R" such that E C QN T, wherel is a
smooth manifold in R" of codimension k € (n — p+ 2,n), and set

Qe = Q\E. Suppose F is a degenerate elliptic operator as in
Theorem 1 with f € C(Q).

For s > % any continuous viscosity solution u(x) of
equation
F(D?u) — |u]*tu = f(x)

in Qg can be extended to a solution in all €.

e Remark 1. In the limit case k = n this returns the result of
Theorem 1 for isolated singularities.

e Remark 2. As far as we know, this is new also when F is
uniformly elliptic.



New results

Sketch of the proof (isolated singularities)

o Fundamental solution of the equation P} (D?u) = 0:
Ep(x) = x| P72,
e Upper bound for subsolutions u(x) of equation
P;(Dzu) — |ul*7tu = f(x) in B} (via Osserman barrier functions):
u(x) < A|x]_ﬁ +  max {f*(z)}% in BR/z.
lz—x|<3 |x]
elf S5 <p—2,0rs> p— then u(x) goes to infinity less rapidly
than 5 ( ) around the origin and a comparison argument shows
that u(x) is bounded above in Bg /.

e Corresponding estimates from below hold for supersolutions so
that solutions are bounded around the origin and we are done.

o Case s = F5: u*(x) = o(Ep(x) is proved by viscosity since a

solution u of equation 73+(D2 ) — |uls7tu = f(x) in B, provides a
solution w(y) = pP~2 (x) of the same equation with pPf(x)
instead of f(x) via the transformation y = yp + = XO in By.
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Existence of entire solutions

e Entire solutions are defined in the whole R".

o If ue C(Q) is a viscosity solution of equation
Flu] = ul u = f(x)
in a bounded domain Q of R”, it can be plainly continued to an

entire solutions if entire solutions exists and u is the restriction of
one of this solutions to Q.

e Existence of entire solutions have been obtained by:

Brezis (Appl. Math. Optim. 1984) for the Laplace operator;
Esteban - Felmer - Quaas (Proc. Edinburgh Math. Soc. 2010) for
pure second order fully nonlinear uniformly elliptic operators;
Galise - V. (Int. J. Differ. Equations 2011) for the generalization
to the dependence on x and on the gradient;

Galise - Koike - Ley - V. (J. Math. Anal. Appl. 2016) in the case
of superlinear dependence on the gradient.



Entire solutions

Uniqueness of entire solutions

e Theorem 1 (Galise-V.) The equation

F(x, D?u) + H(x, Du) — |u]*tu = f(x)
with F(x,0) =0 and H(x,0) = 0 has a unique entire solution
under the following assumptions:
e F uniformly elliptic (\,\)
e H Lipschitz continuous in the gradient variable, uniformly with
respect to x
e [ satisties C 1’1—£5timates in the sense that for a solution
u € C?(B,,) N C(B,,) of the equation F(x,D?u) = 0 we have the
estimate

lullcris,) < Cllulli=(as,)

for positive constants C and ry.



Entire solutions

e For a suitable universal constant 8 > 0 (see Caffarelli, Annals)

sup (f !ﬁp(x,y)l”dy> <9
0<r<n B,,(x)

for every x € R" where

F(x,0,0,X)— F(y,0,0, X
e (x.y) = sup X000 F(.0.0.20)

Xesn 1 X]]
XZ0

e f continuous

e Remark 1. This yields uniqueness for the prototype equation
P;A(D2u)i |Du| — |u]*~tu = f(x)

e Remark 2. If f <0 then v > 0.
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Superlinear gradient terms
e Theorem 2 (Galise-Koike-Ley-V.) The equation
F(x,D?u) + H(x, Du) — |ul*"1u = f(x)

with F(x, O) = 0 and H(x,0) = 0 has a unique entire solution
under the following assumptions:

e F uniformly elliptic (\,\), continuous in x with a modulus wg
(Crandall-Ishii-Lions) s.t. for in x,y € Bg

Fx, X) = F(y,Y) S wr(Ix =yl + e x = yP)

whenever

3/1 0 X 0 3 I =1
_6<0/>§<0—Y>§5(—I />'
e forme (1,2] and s > m

[H(x, p+q) = H(y, p)| < w(lx = y[)(Ip|" + 1)

+ 1lgl +m(lpl™ 7 + g™ gl
with a modulus w and constants 1, Ym.



Entire solutions

e [ satisfies the homogeneity assumption
F(x,0X)=0F(x,X) forallo € (0,1)
e H satisfies the concavity type assumption
oH(x,071p) — H(x,p) < (1 — o)(—c|p|™ + A) for o € (09,1)
with ¢, A > 0 and og € (0,1)

e f is continuous and

m(s—1) . 2
£~ (x) mns H1<m< g
lim sup PP <oo for p< 2s—m)
x X s—m
|x|—00 ST if s+1 <m.

e Remark.This yields uniqueness for the prototype equation

P;A(D2u) + c1|Du| — | Du|™ = |u)*"ru = f(x),
when ¢p(x) is a bounded uniformly continuous function which
satisfies ¢y(x) > ¢ > 0 (concave Hamiltonian).

e Motivation. A superlinear gradient term arise for the value functions u
in stochastic control problems (Lasry-P.L.Lions, Math. Ann. 1989).



Entire solutions

Continuation through R”

e Suppose F and f are defined for all x € R" and satisfy the
assumptions of the previous theorems so that there exists a unique
entire solution .

If ue C(Q) is a solution of equation

Flu] = |ul ™ u = f(x)
with £ < 0 in a bounded domain Q C R” and v > 0 on 019, then
u > 0in Q by the maximum principle.



Entire solutions

Continuation through R”

e Suppose F and f are defined for all x € R" and satisfy the
assumptions of the previous theorems so that there exists a unique
entire solution .

If ue C(Q) is a solution of equation

Flu] = |ul ™ u = f(x)
with £ < 0 in a bounded domain Q C R” and v > 0 on 019, then
u > 0in Q by the maximum principle.

e Looking back at the construction of i, the sequence of solutions
ug of the Dirichlet problems

Flu] — |ul*"tu = f(x) in By
u=20 on 0By
in the balls By D Q is non-decreasing and

i(x) = kli_}moo ug(x) in R
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A necessary and sufficient condition

e In order u has an entire continuation, v has to be equal to the
unique entire solution & in Q.

Therefore, letting (x) the trace of u(x) on 0L, a necessary
condition in order u has an entire continuation is that

o(x) = kIme uk(x) on 0.



Entire solutions

A necessary and sufficient condition

e In order u has an entire continuation, v has to be equal to the
unique entire solution & in Q.

Therefore, letting (x) the trace of u(x) on 0L, a necessary
condition in order u has an entire continuation is that

o(x) = lim uk(x) on 0.
k—o00
e The above condition is also sufficient.
In fact, the entire solution i is equal to limg_ o Uk, by

construction, and therefore equal to ¢, by assumption, on 0€2.
Thus both i(x) and u(x) are solution of the Dirichlet problem

Flv] —|v[*~lv = f(x) inQ
V=0 on 01.

and again by comparison principle i = v in € so that 7 is actually
an entire continuation of u.
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Absorption terms and subsolutions

e Suppose now f > 0 and more generally a continuous
non-negative g function on [0, c0), so that a non-negative solution

of equation
et Flul - g(u) = (x)

is in turn a subsolution of the associated homogeneous equation:
Flu] — g(u) = 0.
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Absorption terms and subsolutions

e Suppose now f > 0 and more generally a continuous
non-negative g function on [0, c0), so that a non-negative solution

of equation
Flu] — g(u) = f(x)
is in turn a subsolution of the associated homogeneous equation:
Flu] — g(u) = 0.

e Theorem (Felmer-Quaas-Sirakov, J. Differential Equations 2013)
Let g, h € C[0,00) be strictly increasing with g(0) = 0 = h(0)

and set "
G(t) = /0 2(5)ds.

If at least one of conditions

/+oo dt “ /-i-oodt<oo
1 G(t) "1 h(1)

is satisfied, then the differential inequality




Entire subsolutions

M A(D?u) — h(|Dul) — g(u) > 0

cannot have entire solutions. The same holds true for equation
M A(D?u) + h(|Dul) — g(u) = 0

if the following condition holds true:

[,
1 KTHG(s))

K(s) = /Os h(t) dt + 2ns°.

e Remark. If h =0, this is the well known Keller-Osserman condition
of non-existence: for instance, g(t) >> t'*¢ with ¢ > 0, as t — oo.

This can be weakened in the case of a negative gradient term while it has
to be strenghtened in the case of positive sign.

If h(t) = t9 with g > 1, then K~1(t) ~ ta1, and the condition is
satisfied for instance g(t) > t* with o = %1 > 1.

being
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A slightly different absorption term

e Suppose now to consider the equation

Flu] — g(u) = f(x).
where g(u) > 0, so absorption independently of the sign of v.
Again supposing f > 0, a solution u is in turn a subsolution of the
associated homogeneous equation:

Flu] - g(u) > 0.



Entire subsolutions

A slightly different absorption term

e Suppose now to consider the equation

Flu] — g(u) = f(x).
where g(u) > 0, so absorption independently of the sign of v.
Again supposing f > 0, a solution u is in turn a subsolution of the
associated homogeneous equation:

Flu] — g(u) = 0.
e This goes back to a well known result by Keller, Osserman 1957

in the case that Flu] = Au: if f : R — R is positive, continuous
and nondecreasing, then the existence of entire subsolutions is

equivalent to
/+<>o dt
= 0.
1 G(t)
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Recent results

Theorem 1 Let 1 < p<n and f : R — R be positive, continuous
and nondecreasing. Let F be either uniformly elliptic or P;r.
Then the inequality

F(D?u) —g(u) >0
has entire viscosity solutions if and only if f satisfies the
opposite Keller-Osserman condition:

/100 Cét(t):oo, G(t):/otg(s)ds.
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Recent results

Theorem 1 Let 1 < p<n and f : R — R be positive, continuous
and nondecreasing. Let F be either uniformly elliptic or P;r.
Then the inequality

F(D?*u) — g(u) >0

has entire viscosity solutions if and only if f satisfies the
opposite Keller-Osserman condition:

/100 Cét(t):oo, G(t):/otg(s)ds.

Theorem 2 Assuming in addition f is strictly increasing, then

Mg 1(D?u) = f(u)
has entire viscosity solutions if and only if f satisfies the
opposite Keller-Osserman condition.

[Capuzzo Dolcetta - Leoni - V., Bull. Inst. Math. Acad. Sinica, 2014]
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Subtracting a positive superlinear gradient term

Theorem 4 (Capuzzo Dolcetta - Leoni - V, Math. Ann. 2016)

Let 1< p<n, 0<q<2andg,k be continuous non-negative
nondecreasing functions, with g positive, strictly increasing and
k such that

lim k(t) > 0.

t—+o00

Suppose F uniformly elliptic or F = ./\/lafl. There exist entire
viscosity subsolutions of equation

F(D?u) — g(u) — k(u) [Dul? > 0
if and only if

o0

dt oe dt
1 /G(t) =00, gl /1 (K+(t))Y/(2=a) =0 (5)

where K*(t) = [o k*(s)ds.
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Adding a positive superlinear gradient term

Theorem 5 (Capuzzo Dolcetta - Leoni - V, Math. Ann. 2016)

Let 0 < g <2 and g, k be continuous nondecreasing functions,
with g positive, strictly increasing, and k < 0.

Suppose F uniformly elliptic or F = MS"I. There exists entire
viscosity subsolutions of equation

F(D?u) — g(u) + k(u) |Du|? >0
if and only if

-1/2

_ 2/q
%) t ot k(1) ) dr
/ / e Zfs( g(T)) elr)d g(s)ds dt = o00.
1 0

If in addition k < —e < 0, the above is equivalent to:

< dt 1/q " dt ~ B
| w2 g e O



Entire subsolutions

Bernstein-Nagumo condition

e We are investigating the case g > 2.

e Our results depend on the maximal solutions of an ODE

" = h(x,,¢").

and is based on the fact that on the boundary of the maximal
interval the solutions become unbounded together with their first
derivatives.

e According to a well known result of Nagumo, this is true up to h
has a quadratic growth in the derivative.

e For higher order growth there exist bounded maximal solutions
with unbounded derivarive on the boundary of the maximal
interval.

e As before, in the case of superquadratic growth in the gradient,
we expect non-existence of entire solutions when substracting, but
this requires a different technique.



Entire subsolutions

Beyond Nagumo (g > 2)

e Assume f, g to be nondecreasing continuous positive functions
with f strictly increasing.

e The maximal solutions of IVP

{ '(r) + B2 o (r) = £((r)) + g((n)| Dep(r)|?, r >0
¢(0) =to, #'(0)=0,

defined in a finite interval [0, R], are bounded even though
o(r) > oc0asr— R™.

e Actually, ¢ is Holder continuous with exponent @ = q—:2.

Q

e As a consequence, the subsolutions of equation
G(D?u) = f(u) + g(u)|Dul?,
which are on the other side Holder continuous with the same

exponent (Capuzzo Dolcetta-Leoni-Porretta, Trans. AMS 2010),
cannot be defined throghout the whole space.
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