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Overview

• Equations with absorption term

• Removable singularities: previous results

• Removable singularities: new results (V., t.a. on Trans. AMS)

• Entire solutions (Galise-V. 2011, Galise-Koike-Ley-V. 2016)

• Entire subsolutions (Capuzzo Dolcetta-Leoni-V. 2014 and 2016)

:
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Equations with absorption term

• Look at non-negative solutions u of second-order elliptic
equations

F (x , u,Du,D2u)− |u|s−1u = f (x)

where Du is the gradient of u and D2u the Hessian matrix,
F (x , t, ξ,X ) is nondecreasing in X ∈ Sym(Rn), Lipschitz
continuous in ξ ∈ Rn and nonincreasing in t ∈ R, s > 1.

• Our assumptions on F will imply that, if u is an entire solution
(defined in Ω = Rn) or a solution in a proper domain Ω ⊂ Rn and
u ≥ 0 on ∂Ω, and f (x) ≤ 0, then u ≥ 0 in Ω.

• Consequently, in the case f ≤ 0, the above equation becomes

F (x , u,Du,D2u)− us = f (x)

and belongs to the more general class of equations

F [u]− g(u) = f (x)

with a superlinear absorption term g(u) ≥ 0.



Absorption Removable singularities New results Entire solutions Entire subsolutions

Equations with absorption term

• Look at non-negative solutions u of second-order elliptic
equations

F (x , u,Du,D2u)− |u|s−1u = f (x)

where Du is the gradient of u and D2u the Hessian matrix,
F (x , t, ξ,X ) is nondecreasing in X ∈ Sym(Rn), Lipschitz
continuous in ξ ∈ Rn and nonincreasing in t ∈ R, s > 1.

• Our assumptions on F will imply that, if u is an entire solution
(defined in Ω = Rn) or a solution in a proper domain Ω ⊂ Rn and
u ≥ 0 on ∂Ω, and f (x) ≤ 0, then u ≥ 0 in Ω.

• Consequently, in the case f ≤ 0, the above equation becomes

F (x , u,Du,D2u)− us = f (x)

and belongs to the more general class of equations

F [u]− g(u) = f (x)

with a superlinear absorption term g(u) ≥ 0.



Absorption Removable singularities New results Entire solutions Entire subsolutions

Equations with absorption term

• Look at non-negative solutions u of second-order elliptic
equations

F (x , u,Du,D2u)− |u|s−1u = f (x)

where Du is the gradient of u and D2u the Hessian matrix,
F (x , t, ξ,X ) is nondecreasing in X ∈ Sym(Rn), Lipschitz
continuous in ξ ∈ Rn and nonincreasing in t ∈ R, s > 1.

• Our assumptions on F will imply that, if u is an entire solution
(defined in Ω = Rn) or a solution in a proper domain Ω ⊂ Rn and
u ≥ 0 on ∂Ω, and f (x) ≤ 0, then u ≥ 0 in Ω.

• Consequently, in the case f ≤ 0, the above equation becomes

F (x , u,Du,D2u)− us = f (x)

and belongs to the more general class of equations

F [u]− g(u) = f (x)

with a superlinear absorption term g(u) ≥ 0.



Absorption Removable singularities New results Entire solutions Entire subsolutions

Removable singularities

• Let E ⊂ Ω be a closed set and u a solution of a PDE in Ω\E .
Then E will be called a removable singularity if u can be
continued as a solution in the whole Ω.

F (x , u,Du,D2u)− |u|s−1u = f (x)

• Main issues:

(i) maximal growth of a solution near an isolated singularity;

(ii) maximal size of removable singularities.

• Classical references:

Gilbarg - Serrin, J. Analyse Math. (1956)

Serrin, Arch. Rational Mech. Anal. (1964; 1965); Acta Math.
(1965)
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Removable singularities: classical results

• Theorem (isolated singularities) Let n > 2 be an integer. Let
u(x) be a classical solution of the Laplace equation ∆u = 0 in the
punctured ball Br\{0} of Rn. If u(x) = o (E(x)) as x → 0, then
E = {0} is a removable singularity.

Fundamental solution: E(x) = 1
|x |n−2 .

• Theorem (non-isolated singularities) Let n > 2 be an integer.
Let u(x) be a bounded classical solutions u(x) of the Laplace
equation ∆u = 0 in Ω\E . If E ⊂ Ω is a compact set with Riesz
capacity Cn−2(E ) = 0, then E is a removable singularity.
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Removable singularities: uniformly elliptic operators

• Pure second order:

Labutin (Viscosity Solutions of Differential Equations and Related
Topics, Ishii ed., Kyoto (2002), introduce a capacity ”ad hoc” to
characterize the size of removable singular sets.

Harvey-Lawson (Indiana Univ. Math. J. 2014, Riesz capacity)

• Theorem (Amendola, Galise, V., Differential Integral Equations,
2013) Let the exponent α∗ = (n − 1)λΛ − 1 ≥ 0. Assume:

F = F (ξ,X ) uniformly elliptic (λ,Λ)

|F (η,X )− F (ξ,X )| ≤ b|η − ξ| ∀ξ, η ∈ Rn.

Let u(x) be a bounded solution of equation

F (Du,D2u) = f (x) in Ω\E
with f (x) continuous in Ω. The singular set E is removable if:

Cα∗(E ) = 0, for b = 0; Cα(E ) = 0 with α ∈ (0, α∗), for b > 0 .
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Removable singularities: absorption terms

• A well known theorem
(Brezis-Veron, Arch. Rat. Mech. Anal., 1980/81)

Let n ≥ 3. For The isolated singularities of solutions of equation

∆u − |u|s−1u = 0

are removable for s ≥ n
n−2 .

Already known by Loewner-Nirenberg (Contribution to Analysis,
1974) for s ≥ n+2

n−2 .

NO CONDITION ON THE GROWTH OF THE SOLUTIONS

• Generalized by Labutin (Arch. Ration. Mech. Anal., 2000) to
fully nonlinear uniformly elliptic equations (λ,Λ)

F (D2u)− |u|s−1u = 0

for n > 1 + Λ
λ with s ≥ λ(n − 1) + Λ

λ(n − 1)− Λ
.
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Relaxing ellipticity assumptions on the main term

• Upper Partial Sum of Hessian eigenvalues, picking the largest
p ≤ n eigenvalues ek (nondecreasing order) of D2u:

P+
p (D2u) =

n∑
k=n−p+1

ek(D2u) = sup
W∈Gp

Tr|
W

(D2u).

[Gp:= Grassmanian of p-dim subspaces;
Tr:= trace operator]

• Convention: F degenerate elliptic iff X ≤ Y ⇒ F (X ) ≤ F (Y )

[X ≤ Y ⇔ Y − X positive semidefinite]

• Dual operator: Lower Partial Sum of Hessian eigenvalues

P−p (X ) = −P+
p (−X ) = inf

W∈Gp
Tr|

W
(X ) =

p∑
k=1

ek(D2u)

• Notice: P+
p is subadditive, P−p superadditive.
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Motivation
• Case p = n: P±n (D2u) = ∆u (uniformly elliptic).

• Remind: F uniformly elliptic iff

X ≤ Y ⇒ λTr(Y − X ) ≤ F (Y )− F (X ) ≤ ΛTr(Y − X )

[0 < λ ≤ Λ ellipticity constants]

• Case p < n: P±p is not uniformly elliptic.

For instance, see below: n = 2; p = 1.

X =

(
1 0
0 0

)
≤
(

1 0
0 1

)
= Y ⇒ inf

X≤Y

e2(Y )− e2(X )

Tr(Y − X )
= 0.

• Geometric problems related to mean partial curvatures:
Sha (Invent. Math. 1987), Wu (Indiana Univ. Math. J. 1987)

• Related papers:
Harvey-Lawson (Comm. Pure Appl. Math. 2009, Surv. Differ. Geom.

2013, Indiana Univ. Math. J. 2014), Caffarelli-Li-Nirenberg (Comm.

Pure Appl. Math. 2013)
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Removability without absorption term

• Theorem (Caffarelli-Li-Nirenberg, 2013) Let 2 ≤ p ≤ n be an
integer. If u(x) is a bounded solution of equation

P−p (D2u) = f (x) in Ω\E
with f (x) continuous in Ω, and E ⊂ M, a closed smooth manifold
s.t. dim(M) = p − 2, then E is a removable singularity.

• Theorem (Harvey-Lawson, 2014) The same holds true under the
capacitary assumption Cp−2(E ) = 0.

• Remark. The above results generalize what is known for the
Laplace operator ∆u = P±n (D2u) to the partial Laplacians
P±p (D2u) with p < n simply substituting p to the dimension n.
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New results with absorption term

• Theorem 1 (isolated singularities) Let n and p be positive
integers such that 3 ≤ p ≤ n, and Ω be a domain of Rn. For
x0 ∈ Ω, set Ω0 = {x ∈ Ω : x 6= x0}. Suppose F is a continuous
degenerate elliptic operator satisfying

P−p (Y − X ) ≤ F (Y )− F (X ) ≤ P+
p (Y − X )

and f is a continuous function in Ω.

For s ≥ p
p−2 , any continuous viscosity solution u(x) of equation

F (D2u)− |u|s−1u = f (x)

in Ω0 can be extended to a solution in all Ω.

• Remark. For n = 2 this returns the result of Brezis-Veron: no
condition on the solution u(x).
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Comments and generalizations

• The partial Laplacians P±p fit the assumptions of Theorem 1.

• Optimal exponent. If 1 < s < p
p−2 , taking

C s−1 = (ps − 2) (ps − p) with ps = 2s
s−1 , we get a solution

u(x) = C |x |−
2

s−1

of equation
P+
p (D2u)− |u|s−1u = 0 in Ṙn

which cannot be continued across zero.

• Generalizations to more general absorption terms. The
conclusion of Theorem 1 continues to hold true for equations

F (D2u)− g(u) = f (x),

where g is any continuous real function such that

lim inf
u→±∞

g(u)

|u|
2

p−2 u
> 0 .
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Further generalizations

• Degenerate elliptic operators of Pucci type (Galise-V., Differential

Integral Equations 2016):

P̃−p (X ) = λ

p∑
i=1

e+
i (X )− Λ

p∑
i=1

e−i (X ) = inf
W∈Gp

λI
W
≤A

W
≤ΛI

W

Tr(A
W
X

W
),

P̃+
p (X ) = Λ

n∑
i=n−p+1

e+
i (X )− λ

n∑
i=n−p+1

e−i (X ) = sup
W∈Gp

λI
W
≤A

W
≤ΛI

W

Tr(A
W
X

W
).

• Case p = n: Pucci extremal operators P̃±p =M±λ,λ.

• General case p ≤ n, λ ≤ 1 ≤ Λ: P̃−p ≤ P−p ≤ P+
p ≤ P̃+

p .

• Highly degenerate elliptic Pucci maximal operator, the sum of
positive eigenvalues of the Hessian matrix (Diaz 2012):

M+
0,1(D2u) = e+

1 (D2u) + · · ·+ e+
n (D2u).



Absorption Removable singularities New results Entire solutions Entire subsolutions

Non-isolated singularities

• Theorem 2 Let n and p be positive integers such that
3 ≤ p ≤ n. Let also k ∈ N be such that n − p + 2 ≥ 0.
Let E be a closed set in Rn such that E ⊂ Ω ∩ Γ, where Γ is a
smooth manifold in Rn of codimension k ∈ (n − p + 2, n), and set
ΩE ≡ Ω\E . Suppose F is a degenerate elliptic operator as in
Theorem 1 with f ∈ C (Ω).

For s ≥ p−(n−k)
p−(n−k)−2 , any continuous viscosity solution u(x) of

equation
F (D2u)− |u|s−1u = f (x)

in ΩE can be extended to a solution in all Ω.

• Remark 1. In the limit case k = n this returns the result of
Theorem 1 for isolated singularities.

• Remark 2. As far as we know, this is new also when F is
uniformly elliptic.
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Sketch of the proof (isolated singularities)

• Fundamental solution of the equation P+
p (D2u) = 0:

Ep(x) = |x |−(p−2).

• Upper bound for subsolutions u(x) of equation
P+
p (D2u)− |u|s−1u = f (x) in B∗R (via Osserman barrier functions):

u(x) ≤ A|x |−
2

s−1 + max
|z−x |≤ 1

2
|x |
{f −(z)}

1
s in ḂR/2 .

• If 2
s−1 < p − 2, or s > p

p−2 , then u(x) goes to infinity less rapidly
than Ep(x) around the origin and a comparison argument shows
that u(x) is bounded above in ḂR/2.

• Corresponding estimates from below hold for supersolutions so
that solutions are bounded around the origin and we are done.

• Case s = p
p−2 : u±(x) = o(Ep(x) is proved by viscosity since a

solution u of equation P+
p (D2u)− |u|s−1u = f (x) in Bρ provides a

solution w(y) = ρp−2u(x) of the same equation with ρpf (x)
instead of f (x) via the transformation y = y0 + x−x0

ρ in B1.
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Existence of entire solutions

• Entire solutions are defined in the whole Rn.

• If u ∈ C (Ω) is a viscosity solution of equation

F [u]− |u|s−1u = f (x)

in a bounded domain Ω of Rn, it can be plainly continued to an
entire solutions if entire solutions exists and u is the restriction of
one of this solutions to Ω.

• Existence of entire solutions have been obtained by:

Brezis (Appl. Math. Optim. 1984) for the Laplace operator;

Esteban - Felmer - Quaas (Proc. Edinburgh Math. Soc. 2010) for
pure second order fully nonlinear uniformly elliptic operators;

Galise - V. (Int. J. Differ. Equations 2011) for the generalization
to the dependence on x and on the gradient;

Galise - Koike - Ley - V. (J. Math. Anal. Appl. 2016) in the case
of superlinear dependence on the gradient.
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Uniqueness of entire solutions

• Theorem 1 (Galise-V.) The equation

F (x ,D2u) + H(x ,Du)− |u|s−1u = f (x)

with F (x ,O) = 0 and H(x , 0) = 0 has a unique entire solution
under the following assumptions:

• F uniformly elliptic (λ,Λ)

• H Lipschitz continuous in the gradient variable, uniformly with
respect to x

• F satisfies C 1,1-estimates in the sense that for a solution
u ∈ C 2(Br0) ∩ C (B r0) of the equation F (x ,D2u) = 0 we have the
estimate

‖u‖C1,1(Br0 ) ≤ C‖u‖L∞(∂Br0 )

for positive constants C and r0.
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• For a suitable universal constant θ > 0 (see Caffarelli, Annals)

sup
0<r<r0

(∫
Br (x)
− |βF (x , y)|ndy

) 1
n

≤ θ

for every x ∈ Rn where

βF (x , y) = sup
X∈Sn
X 6=O

|F (x , 0, 0,X )− F (y , 0, 0,X )|
‖X‖

• f continuous

• Remark 1. This yields uniqueness for the prototype equation

P+
λ,Λ(D2u)± |Du| − |u|s−1u = f (x)

• Remark 2. If f ≤ 0 then u ≥ 0.
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Superlinear gradient terms

• Theorem 2 (Galise-Koike-Ley-V.) The equation

F (x ,D2u) + H(x ,Du)− |u|s−1u = f (x)

with F (x ,O) = 0 and H(x , 0) = 0 has a unique entire solution
under the following assumptions:

• F uniformly elliptic (λ,Λ), continuous in x with a modulus ωR

(Crandall-Ishii-Lions) s.t. for in x , y ∈ BR

F (x ,X )− F (y ,Y ) ≤ ωR(|x − y |+ ε−1|x − y |2)

whenever

−3

ε

(
I 0
0 I

)
≤
(

X 0
0 −Y

)
≤ 3

ε

(
I −I
−I I

)
:

• for m ∈ (1, 2] and s > m

|H(x , p + q)− H(y , p)| ≤ ω(|x − y |)(|p|m + 1)

+ γ1|q|+ γm(|p|m−1 + |q|m−1)|q|
with a modulus ω and constants γ1, γm.
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• F satisfies the homogeneity assumption

F (x , σX ) = σF (x ,X ) for all σ ∈ (0, 1)

• H satisfies the concavity type assumption

σH(x , σ−1p)− H(x , p) ≤ (1− σ)(−c |p|m + A) for σ ∈ (σ0, 1)

with c ,A > 0 and σ0 ∈ (0, 1)

• f is continuous and

lim sup
|x |→∞

f −(x)

|x |ρ
<∞ for ρ <


m(s−1)
(m−1)s if 1 < m ≤ 2s

s+1

2(s−m)
s(m−1) if 2s

s+1 < m .

• Remark.This yields uniqueness for the prototype equation

P+
λ,Λ(D2u) + c1|Du| − cm|Du|m − |u|s−1u = f (x),

when cm(x) is a bounded uniformly continuous function which
satisfies cm(x) ≥ c > 0 (concave Hamiltonian).

• Motivation. A superlinear gradient term arise for the value functions u

in stochastic control problems (Lasry-P.L.Lions, Math. Ann. 1989).
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Continuation through Rn

• Suppose F and f are defined for all x ∈ Rn and satisfy the
assumptions of the previous theorems so that there exists a unique
entire solution ũ.
If u ∈ C (Ω) is a solution of equation

F [u]− |u|s−1u = f (x)

with f ≤ 0 in a bounded domain Ω ⊂ Rn and u ≥ 0 on ∂Ω, then
u ≥ 0 in Ω by the maximum principle.

• Looking back at the construction of ũ, the sequence of solutions
uk of the Dirichlet problems{

F [u]− |u|s−1u = f (x) in Bk

u = 0 on ∂Bk

in the balls Bk ⊃ Ω is non-decreasing and

ũ(x) = lim
k→∞

uk(x) in Rn.
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A necessary and sufficient condition

• In order u has an entire continuation, u has to be equal to the
unique entire solution ũ in Ω.
Therefore, letting ϕ(x) the trace of u(x) on ∂Ω, a necessary
condition in order u has an entire continuation is that

ϕ(x) = lim
k→∞

uk(x) on ∂Ω.

• The above condition is also sufficient.
In fact, the entire solution ũ is equal to limk→∞ uk , by
construction, and therefore equal to ϕ, by assumption, on ∂Ω.
Thus both ũ(x) and u(x) are solution of the Dirichlet problem{

F [v ]− |v |s−1v = f (x) in Ω

v = ϕ on ∂Ω .

and again by comparison principle ũ = u in Ω so that ũ is actually
an entire continuation of u.
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Absorption terms and subsolutions

• Suppose now f ≥ 0 and more generally a continuous
non-negative g function on [0,∞), so that a non-negative solution
of equation

F [u]− g(u) = f (x)

is in turn a subsolution of the associated homogeneous equation:

F [u]− g(u) ≥ 0.

• Theorem (Felmer-Quaas-Sirakov, J. Differential Equations 2013)
Let g , h ∈ C [0,∞) be strictly increasing with g(0) = 0 = h(0)
and set

G (t) =

∫ t

0
g(s)ds.

If at least one of conditions∫ +∞

1

dt√
G (t)

<∞,
∫ +∞

1

dt

h(t)
<∞

is satisfied, then the differential inequality
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M+
λ,Λ(D2u)− h(|Du|)− g(u) ≥ 0

cannot have entire solutions. The same holds true for equation

M+
λ,Λ(D2u) + h(|Du|)− g(u) ≥ 0

if the following condition holds true:∫ ∞
1

ds

K−1(G (s))
<∞,

being

K (s) =

∫ s

0
h(t) dt + 2ns2.

• Remark. If h ≡ 0, this is the well known Keller-Osserman condition
of non-existence: for instance, g(t) >> t1+ε with ε > 0, as t →∞.
This can be weakened in the case of a negative gradient term while it has
to be strenghtened in the case of positive sign.

If h(t) = tq with q > 1, then K−1(t) ≈ t
1

q+1 , and the condition is

satisfied for instance g(t) ≥ tα with α = q+1
2 > 1.
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A slightly different absorption term

• Suppose now to consider the equation

F [u]− g(u) = f (x).

where g(u) ≥ 0, so absorption independently of the sign of u.
Again supposing f ≥ 0, a solution u is in turn a subsolution of the
associated homogeneous equation:

F [u]− g(u) ≥ 0.

• This goes back to a well known result by Keller, Osserman 1957
in the case that F [u] = ∆u: if f : R→ R is positive, continuous
and nondecreasing, then the existence of entire subsolutions is
equivalent to ∫ +∞

1

dt√
G (t)

=∞.
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Recent results

Theorem 1 Let 1 ≤ p ≤ n and f : R→ R be positive, continuous
and nondecreasing. Let F be either uniformly elliptic or P+

p .
Then the inequality

F (D2u)− g(u) ≥ 0

has entire viscosity solutions if and only if f satisfies the
opposite Keller-Osserman condition:∫ ∞

1

dt√
G (t)

=∞, G (t) =

∫ t

0
g(s)ds.

Theorem 2 Assuming in addition f is strictly increasing, then

M+
0,1(D2u) ≥ f (u)

has entire viscosity solutions if and only if f satisfies the
opposite Keller-Osserman condition.

[Capuzzo Dolcetta - Leoni - V., Bull. Inst. Math. Acad. Sinica, 2014]
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Subtracting a positive superlinear gradient term

Theorem 4 (Capuzzo Dolcetta - Leoni - V, Math. Ann. 2016)

Let 1 ≤ p ≤ n, 0 < q ≤ 2 and g , k be continuous non-negative
nondecreasing functions, with g positive, strictly increasing and
k such that

lim
t→+∞

k(t) > 0.

Suppose F uniformly elliptic or F =M+
0,1. There exist entire

viscosity subsolutions of equation

F (D2u)− g(u)− k(u) |Du|q ≥ 0

if and only if∫ ∞
1

dt√
G (t)

=∞, q ≤ 1,

∫ ∞
1

dt

(K+(t))1/(2−q)
=∞ , (−)

where K+(t) =
∫ t

0 k+(s)ds.
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Adding a positive superlinear gradient term

Theorem 5 (Capuzzo Dolcetta - Leoni - V, Math. Ann. 2016)

Let 0 < q ≤ 2 and g , k be continuous nondecreasing functions,
with g positive, strictly increasing, and k ≤ 0.
Suppose F uniformly elliptic or F =M+

0,1. There exists entire
viscosity subsolutions of equation

F (D2u)− g(u) + k(u) |Du|q ≥ 0

if and only if

∫ ∞
1

∫ t

0
e
−2
∫ t
s

(
k−(τ)
g(τ)

)2/q

g(τ) dτ
g(s) ds

−1/2

dt =∞ .

If in addition k ≤ −ε < 0, the above is equivalent to:∫ ∞
1

dt

(tg(t))1/2
dt + ε1/q

∫ ∞
1

dt

g(t)1/q
= ∞ . (−)
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Bernstein-Nagumo condition

• We are investigating the case q > 2.

• Our results depend on the maximal solutions of an ODE

ϕ′′ = h(x , ϕ, ϕ′).

and is based on the fact that on the boundary of the maximal
interval the solutions become unbounded together with their first
derivatives.

• According to a well known result of Nagumo, this is true up to h
has a quadratic growth in the derivative.

• For higher order growth there exist bounded maximal solutions
with unbounded derivarive on the boundary of the maximal
interval.

• As before, in the case of superquadratic growth in the gradient,
we expect non-existence of entire solutions when substracting, but
this requires a different technique.
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Beyond Nagumo (q > 2)

• Assume f , g to be nondecreasing continuous positive functions
with f strictly increasing.

• The maximal solutions of IVP{
ϕ′′(r) + p−1

r ϕ′(r) = f (ϕ(r)) + g(ϕ(r))|Dϕ(r)|q, r > 0
ϕ(0) = t0, ϕ′(0) = 0 ,

defined in a finite interval [0,R], are bounded even though
ϕ′(r)→∞ as r → R−.

• Actually, ϕ is Hölder continuous with exponent α = q−2
q−1 .

• As a consequence, the subsolutions of equation

G (D2u) = f (u) + g(u)|Du|q,
which are on the other side Hölder continuous with the same
exponent (Capuzzo Dolcetta-Leoni-Porretta, Trans. AMS 2010),
cannot be defined throghout the whole space.
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