From $C^{1,\gamma}$ to $C^{2,\gamma}$

Banff, 2017 April 2-7

Mostly maximum principle

Free boundary regularity in elliptic two phase problems

Fausto Ferrari

Dipartimento di Matematica Piazza di Porta S. Donato, 5, 40126 **Università di Bologna** fausto.ferrari@unibo.it

Università di Bologna

ヘロト 人間 とくほ とくほど

Fausto Ferrari

.....

Abstract.

In this talk I will deal with some recent results, obtained with Daniela De Silva and Sandro Salsa, about $C^{1,\gamma}$ regularity and higher regularity of free boundaries of solutions of some non-homogeneous elliptic two phase problems.

Daniela De Silva

Department of Mathematics, Barnard College, Columbia University, New York, NY 10027 desilva@math.columbia.edu Sandro Salsa

Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy. sandro.salsa@polimi.it

イロト イロト イヨト イヨト

Abstract.

In this talk I will deal with some recent results, obtained with Daniela De Silva and Sandro Salsa, about $C^{1,\gamma}$ regularity and higher regularity of free boundaries of solutions of some non-homogeneous elliptic two phase problems.

Daniela De Silva

Department of Mathematics, Barnard College, Columbia University, New York, NY 10027 desilva@math.columbia.edu

Sandro Salsa

Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy. sandro.salsa@polimi.it

イロト イポト イヨト イヨト

The two phase problem

$$\begin{cases} \Delta u = f_{+} & \text{in } B_{1}^{+}(u), \\ \Delta u = f_{-} & \text{in } B_{1}^{-}(u), \\ u_{\nu}^{+} = G(u_{\nu}^{-}) & \text{on } F(u) := \partial B_{1}^{+}(u) \cap B_{1}. \end{cases}$$
(1)

Here B_1 is the unit ball in \mathbb{R}^n , centered at the origin, G is an increasing function such that $G(0) > 0, f_{\pm} \in C(B_1) \cap L^{\infty}(B_1)$,

$$B_1^+(u) := \{x \in B_1 : u(x) > 0\}, \quad B_1^-(u) := \{x \in B_1 : u(x) \le 0\}^\circ.$$

 u_{ν}^{+} and u_{ν}^{-} denote the normal derivatives in the inward direction to $B_{1}^{+}(u)$ and $B_{1}^{-}(u)$ respectively.

Fausto Ferrari

Università di Bologna

This type of problem arises in a number of applied contexts: the Prandtl-Bachelor model in fluid-dynamics (see e.g. [B1],[EM]), the eigenvalue problem in magnetohydrodynamics ([FL]), or in flame propagation models ([LW]). B=Batchelor; EM= Elcrat-Miller; FL=Friedman-Liu; LW=Lederman-Wolanski

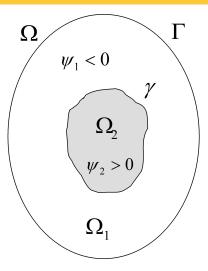
イロト イポト イヨト イヨト

A bounded 2-dimensional domain is delimited by two simple closed curves γ, Γ . For given constants $\mu < 0, \omega > 0$, consider functions ψ_1, ψ_2 satisfying

 $\Delta \psi_1 = 0$ in $\Omega_1, \psi_1 = 0$ on $\gamma, \psi_1 = \mu$ on Γ , $\Delta \psi_2 = \omega$ in $\Omega_2, \psi_2 = 0$ on γ . and $\Omega_1 := \{\psi_1 > 0\}, \Omega_2 := \{\psi_2 < 0\}.$

200

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト



Prandtl-Batchelor flow configuration

DQC

イロト イロト イヨト イヨト

 ψ_1, ψ_2 represent respectively: the stream functions of an irrotational flow in Ω_1 and of a constant vorticity flow in Ω_2 . In the model proposed by Batchelor (coming from the limit of large Reynold number in the steady Navier-Stokes equation). For the flow of this type is hypothesized that there is a jump in the tangential velocity along γ , namely

$$|\nabla \psi_2|^2 - |\nabla \psi_1|^2 = \sigma$$

for some positive constant σ .

 γ had to be determined = Free boundary.

イロト イポト イヨト イヨト

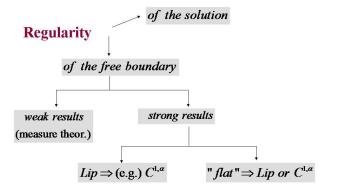
- Homogeneous case, i.e. $f_{\pm} = 0$: strong regularity properties of the f.b., Louis Caffarelli, [C1],[C2].
- Existence of Lipschitz viscosity solutions, [C3] based on [ACF]. Inhomogeneous case: Lipschitz regularity was obtained by Caffarelli, Jerison and Kenig in [CJK].
- Further results on homogeneous free boundary problem see for example: [F1,F2, CFS, FS1,Fe1, W1, W2, MT].
- In the case of the non-homogeneous setting: [DFS, DFS2, DFS3, DFS4, DFS5(submitted)]
- DFS=Daniela De Silva, F., Sandro Salsa

・ロト ・ 四ト ・ ヨト ・ ヨト

- Existence of Lipschitz viscosity solutions and weak regularity properties of the free boundary.
- Strong regularity results.
- ► Higher regularity results for the free boundary.

nan

ヘロト 人間 ト 人注 ト 人注 ト



Università di Bologna

DQC

<ロト < 四ト < 三ト < 三ト

Definitions

- $x_0 \in F(u)$ is regular from the right (resp. left) if there is a ball $B \subset B_1^+(u)$ (resp. $B_1^-(u)$), such that $B \cap F(u) = \{x_0\}$.
- $\nu = \nu (x_0)$ denotes the unit normal to ∂B at x_0 , pointing towards $B_1^+(u)$.

Definition of viscosity solution of the f.b.p.

 $u \in C(B_1)$ is a viscosity solution of f.b.p. (1) and for $G(\eta) = \sqrt{1 + \eta^2}$ if: i). $\Delta u = f_+$ in $B_1^+(u)$ and $\Delta u = f_-$ in $B_1^-(u)$; ii). *u* satisfies the f. b. condition in the following sense:

・ロト ・ 四ト ・ ヨト ・ ヨト

1). If $x_0 \in F(u)$ is regular from the right with tangent ball B then $u^+(x) > \alpha \langle x - x_0, \nu \rangle^+ + o(|x - x_0|)$ in B, with $\alpha > 0$ and $u^{-}(x) < \beta \langle x - x_0, \nu \rangle^{-} + o(|x - x_0|)$ in B^{c} , with $\beta > 0$ with equality along every nontangential domain, and $\alpha^2 - \beta^2 \leq 1.$ 2). If $x_0 \in F(u)$ is regular from the left with tangent ball *B*, then $u^{-}(x) > \beta \langle x - x_0, \nu \rangle^+ + o(|x - x_0|)$ in B, with $\beta > 0$ and

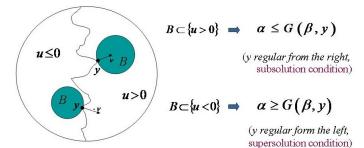
$$u^+(x) \le \alpha \langle x - x_0, \nu \rangle^- + o(|x - x_0|)$$
 in B^c , with $\alpha \ge 0$

with equality along every nontangential domain, and $\alpha^2 - \beta^2 \ge 1.$

Università di Bologna

••••

Introduction	The problem	Existence of solutions	Strong regularity	Higher regularity	From $C^{1,\gamma}$ to $C^{2,\gamma}$



DQC

< ロト < 回 > < 回 > < 回 > < 回 >

ヘロト 人間 ト 人 田 ト 人 田 ト

Università di Bologna

Definition of \mathcal{F}

A function $w \in \mathcal{F}$ if $w \in C(\overline{B}_1)$ and: i) *w* is a solution to

$$\begin{cases} \Delta w \leq f_+ & \text{in } B_1^+(w), \\ \Delta w \leq f_- \chi_{\{w < 0\}} & \text{in } B_1^-(w). \end{cases}$$

ii) If $x_0 \in F(u)$ is regular from the left, then, near x_0 ,

$$w^{+} \leq \alpha \langle x - x_{0}, \nu (x_{0}) \rangle^{+} + o(|x - x_{0}|), \quad \alpha \geq 0,$$

$$w^{-} \geq \beta \langle x - x_{0}, \nu (x_{0}) \rangle^{-} + o(|x - x_{0}|), \quad \beta \geq 0,$$

with

$$\alpha^2 - \beta^2 < 1.$$

iii) If $x_0 \in F(w)$ is not regular from the left, then near x_0 ,

$$w(x) = o(|x - x_0|).$$

We say that a *locally Lipschitz* function \underline{u} , defined in B_1 , is a *minorant* if:

a) \underline{u} is a weak solution to

$$\begin{array}{ll} \Delta \underline{u} \geq f_+ & \text{ in } B_1^+(\underline{u}) \\ \Delta \underline{u} \geq f_- \chi_{\{\underline{u} < 0\}} & \text{ in } B^-(\underline{u}). \end{array}$$

b) Every $x_0 \in F(u)$ is regular from the right and near x_0 ,

$$\underline{u}^{-} \leq \beta \langle x - x_{0}, \nu (x_{0}) \rangle^{+} + o(|x - x_{0}|),$$

$$\underline{u}^{+} \geq \alpha \langle x - x_{0}, \nu (x_{0}) \rangle^{-} + o(|x - x_{0}|),$$

with

$$\alpha^2 - \beta^2 > 1.$$

Università di Bologna

ヘロト 人間 とくほ とくほど

Consider the problem,

$$\begin{cases} \Delta u = f_{+} & \text{in } B_{1}^{+}(u) ,\\ \Delta u = f_{-}\chi_{\{u < 0\}} & \text{in } B_{1}^{-}(u) ,\\ |\nabla u^{+}|^{2} - |\nabla u^{-}|^{2} = 1 & \text{on } F(u) := \partial B_{1}^{+}. \end{cases}$$
(2)

2 Università di Bologna

DQC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Theorem ([DFS2])

Let ϕ be a continuous function on ∂B_1 and \underline{u} be a minorant of our free boundary problem, with boundary data ϕ . Then

 $u = \inf\{w : w \in \mathcal{F}, w \ge \underline{u} \text{ in } \overline{B_1}\}$

is a locally Lipschitz viscosity solution to (2) such that $u = \phi$ on ∂B_1 , as long as the set on the right is non-empty. The free boundary F(u)has finite (n - 1)-dimensional Hausdorff measure and there exist universal positive constants c, C, r_0 such that for every $r < r_0$ and every $x_0 \in F(u)$,

$$cr^{n-1} \leq \mathcal{H}^{n-1}(F(u) \cap B_r(x_0)) \leq Cr^{n-1}.$$

Moreover, if $F^{*}(u)$ *denotes the reduced part of* F(u)*,*

$$\mathcal{H}^{n-1}(F(u)\setminus F^*(u))=0.$$

Fausto Ferrari

Università di Bologna

nan

Theorem (Flatness $\rightarrow C^{1,\gamma}$, [DFS])

Let u be a solution of our n.h.f.b. problem. There exists a universal constant $\bar{\delta} > 0$ *such that, if* $0 \le \delta \le \bar{\delta}$ *and*

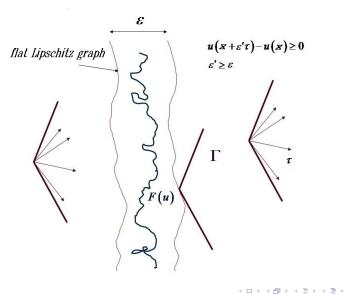
$$\{x_n \le -\delta\} \subset B_1 \cap \{u^+(x) = 0\} \subset \{x_n \le \delta\}, \quad (\delta - flatness) \quad (3)$$

then F(u) is $C^{1,\gamma}$ in $B_{1/2}$, with γ universal.

Theorem

Let u be a solution of our n.h.f.b. problem. If F(u) is a Lipschitz graph in B_1 , then F(u) is $C^{1,\gamma}$ in $B_{1/2}$, with γ universal.

イロト イポト イヨト イヨト



E Università di Bologna

DQC

Fausto Ferrari

.....

Then the basic step in the improvement of flatness. Let

$$U_{\beta}(t) = \alpha t^{+} - \beta t^{-}, \ \beta \ge 0, \ \alpha = G(\beta) \equiv \sqrt{1 + \beta^{2}}$$

and ν is a unit vector which plays the role of the normal vector at the origin. $U_{\beta}(x \cdot \nu)$ is a so-called *two plane solution*.

Sac

ヘロト 人間 トイヨト イヨト

The strategy of flatness improvement works nicely in the one phase case ($\beta = 0$) or as long as the two phases u^+, u^- are, say, comparable (nondegenerate case).

The difficulties arise when the negative phase becomes very small but at the same time not negligible (*degenerate case*.) In this case the flatness assumption gives a control of the positive phase only, through the closeness to a *one plane solution* $U_0(x_n) = x_n^+$.

For simplicity we describe the nondegenerate situation.

イロト イポト イヨト イヨト

Lemma (Main[DFS])

Let u satisfy (1) and

$$U_{\beta}(x_n - \varepsilon) \le u(x) \le U_{\beta}(x_n + \varepsilon), \quad in \quad B_1, \quad 0 \in F(u),$$

with $0 < \beta \leq L$ and

 $||f||_{L^{\infty}}(B_1) \leq \varepsilon^2 \beta.$

If $0 < r \le r_0$ for r_0 universal, and $0 < \varepsilon \le \varepsilon_0$ for some ε_0 depending on r, then

$$U_{\beta'}(x \cdot \nu_1 - r\frac{\varepsilon}{2}) \le u(x) \le U_{\beta'}(x \cdot \nu_1 + r\frac{\varepsilon}{2}) \quad in \ B_r, \tag{4}$$

with $|\nu_1| = 1$, $|\nu_1 - e_n| \leq \tilde{C}\varepsilon$, and $|\beta - \beta'| \leq \tilde{C}\beta\varepsilon$ for a universal constant \tilde{C} .

Università di Bologna

<ロト < 四ト < 三ト < 三ト

Consequence

Assume the lemma above holds. To prove the Theorem "Flatness $\rightarrow C^{1,\gamma}$ " in hypotheses of flatness conditions. We rescale considering a blow up sequence

$$u_k(x) = \frac{u(\rho_k x)}{\rho_k} \quad \rho_k = \overline{r}^k, \ x \in B_1$$
(5)

for suitable $\overline{r} \leq \min \{r_0, \frac{1}{16}\}, \tilde{\varepsilon} \leq \varepsilon_0(\overline{r})$, as required

Università di Bologna

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Consequence

Assume the lemma above holds. To prove the Theorem "Flatness $\rightarrow C^{1,\gamma}$ " in hypotheses of flatness conditions.

We rescale considering a blow up sequence

$$u_k(x) = \frac{u(\rho_k x)}{\rho_k} \quad \rho_k = \overline{r}^k, \ x \in B_1$$
(5)

for suitable $\overline{r} \leq \min \{r_0, \frac{1}{16}\}, \tilde{\varepsilon} \leq \varepsilon_0(\overline{r})$, as required

Università di Bologna

ヘロト 人間 ト 人注 ト 人注 ト

Consequence

Assume the lemma above holds. To prove the Theorem "Flatness $\rightarrow C^{1,\gamma}$ " in hypotheses of flatness conditions. We rescale considering a blow up sequence

$$u_k(x) = \frac{u(\rho_k x)}{\rho_k} \quad \rho_k = \overline{r}^k, \ x \in B_1$$
(5)

for suitable $\bar{r} \leq \min \{r_0, \frac{1}{16}\}, \tilde{\varepsilon} \leq \varepsilon_0(\bar{r})$, as required

Università di Bologna

・ロト ・ 四ト ・ ヨト ・ ヨト

We iterate to get, at the *k*th step,

$$U_{\beta_k}(x \cdot \nu_k - \rho_k \varepsilon_k) \le u_k(x) \le U_{\beta_k}(x \cdot \nu_k + \rho_k \varepsilon_k) \quad \text{in } B_{\rho_k},$$

with $\varepsilon_k = 2^{-k} \tilde{\varepsilon}, |\nu_k| = 1, |\nu_k - \nu_{k-1}| \le \tilde{C} \varepsilon_{k-1},$
 $|\beta_k - \beta_{k-1}| \le \tilde{C} \beta_{k-1} \varepsilon_{k-1}, \ \varepsilon_k \le \beta_k \le L.$

590

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Note that in the non-degenerate case, $\beta \geq \tilde{\varepsilon}$, at each step we have the correct inductive hypotheses.

Starting with $\beta = \beta_0 \ge \varepsilon_0 = \tilde{\varepsilon}$, if $k \ge 1$ and $\beta_{k-1} \ge \varepsilon_{k-1}$, then

$$\beta_k \geq \beta_{k-1}(1 - \tilde{C}\varepsilon_{k-1}) \geq 2^{-k+1}\tilde{\varepsilon} \left(1 - \tilde{C}2^{-k+1}\tilde{\varepsilon}\right)$$

$$\geq 2^{-k}\tilde{\varepsilon} = \varepsilon_k.$$

Sac

◆□> ◆□> ◆注> ◆注>

Thus, since

$$f_k(x) = \rho_k f(\rho_k x), \ x \in B_1$$

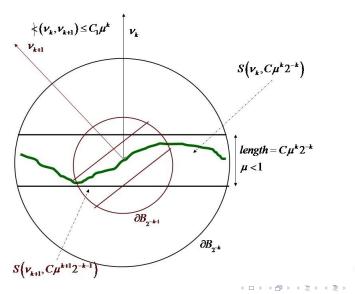
(recall that $\bar{\eta} = \tilde{\varepsilon}^3$)

$$\|f_k\|_{L^{\infty}(B_1)} \le \rho_k \tilde{\varepsilon}^3 \le \tilde{\varepsilon}_k^2 \beta_k = \tilde{\varepsilon}_k^2 \min\left\{\alpha_k, \beta_k\right\}.$$

The figure below describes the step from k to k + 1.

5900

イロト イロト イヨト イヨト



E Università di Bologna

DQC

This implies that F(u) is $C^{1,\gamma}$ at the origin. Repeating the procedure for points in a neighborhood of x = 0, (all estimates are universal), we conclude that there exists a unit vector $\nu_{\infty} = \lim \nu_k$ and C > 0, $\gamma \in (0, 1]$, both universal, such that, in the coordinate system $e_1, ..., e_{n-1}, \nu_{\infty}, \nu_{\infty} \perp e_j, e_j \cdot e_k = \delta_{jk}, F(u)$ is $C^{1,\gamma}$ graph, say $x_n = g(x')$, with g(0') = 0 and

$$\left|g\left(x'\right)-
u_{\infty}\cdot x'\right|\leq C\left|x'\right|^{1+\gamma}$$

in a neighborhood of x = 0.

Università di Bologna

イロト イポト イヨト イヨト

Proof of Lemma (Main)[DFS]

We argue by contradiction.

Step 1. Fix $r \le r_0$, to be chosen suitably. Assume that for a sequence $\varepsilon_k \to 0$ there is a sequence u_k of solutions of our free boundary problem in B_1 , with right hand side f_k such that $\|f_k\|_{L^{\infty}(B_1)} \le \varepsilon_k^2 \min\{\alpha_k, \beta_k\}$, and

$$U_{\beta_k}(x_n - \varepsilon_k) \le u_k(x) \le U_{\beta_k}(x_n + \varepsilon_k) \quad \text{in } B_1, \ 0 \in F(u_k), \quad (6)$$

with $0 \le \beta_k \le L$, $\alpha_k = \sqrt{1 + \beta_k^2}$, but the conclusion of Lemma (Main) does not hold for every $k \ge 1$.

Università di Bologna

イロト イポト イヨト イヨト

Construct the corresponding sequence of renormalized functions

$$\tilde{u}_k(x) = \begin{cases} \frac{u_k(x) - \alpha_k x_n}{\alpha_k \varepsilon_k}, & x \in B_1^+(u_k) \cup F(u_k) \\\\ \frac{u_k(x) - \beta_k x_n}{\beta_k \varepsilon_k}, & x \in B_1^-(u_k). \end{cases}$$

Up to a subsequence $\beta_k \to \tilde{\beta}$ so that $\alpha_k \to \tilde{\alpha} = \sqrt{1 + \tilde{\beta}^2}$. At this point we need compactness to show that the graphs of \tilde{u}_k converge in the Hausdorff distance to a Hölder continuous \tilde{u} in $B_{1/2}$. The compactness is provided by the Harnack inequality stated in the following Theorem (Harnack)

....

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Harnack type, [DFS])

Let u be a solution of our f.b.p. in B_1 with Lipschitz constant L. There exists a universal $\tilde{\varepsilon} > 0$ such that, if $x_0 \in B_1$ and u satisfies the following condition:

$$U_{\beta}(x_{n}+a_{0}) \leq u(x) \leq U_{\beta}(x_{n}+b_{0}) \quad in \ B_{r}(x_{0}) \subset B_{1}$$
(7)

with $||f||_{L^{\infty}(B_2)} \leq \varepsilon^2 \min\{\alpha, \beta\}, \quad 0 < \beta \leq L, \text{ and } 0 < b_0 - a_0 \leq \varepsilon r$ for some $0 < \varepsilon \leq \tilde{\varepsilon}$, then

 $U_{\beta}(x_n + a_1) \le u(x) \le U_{\beta}(x_n + b_1)$ in $B_{r/20}(x_0)$

with $a_0 \le a_1 \le b_1 \le b_0$ *and* $b_1 - a_1 \le (1 - c) \varepsilon r$ *and* 0 < c < 1 *universal.*

Università di Bologna

イロト イポト イヨト イヨト

Fausto Ferrari

••••

From $C^{1,\gamma}$ to $C^{2,\gamma}$

Corollary (Harnack type, [DFS])

Let u satisfies at some point $x_0 \in B_2$

$$U_{\beta}(x_n + a_0) \le u(x) \le U_{\beta}(x_n + b_0)$$
 in $B_1(x_0) \subset B_2$, (8)

for some $0 < \beta \leq L$, with $b_0 - a_0 \leq \varepsilon$, and let $||f||_{L^{\infty}(B_2)} \leq \varepsilon^2 \min\{\alpha, \beta\}, \quad 0 < \beta \leq L$ holds, for $\varepsilon \leq \overline{\varepsilon}, \overline{\varepsilon}$ universal. Let us define in $B_1(x_0)$,

$$\tilde{u}_{\varepsilon}(x) = \begin{cases} \frac{u(x) - \alpha x_n}{\alpha \varepsilon}, & \text{ in } B_2^+(u) \cup F(u) \\\\ \frac{u(x) - \beta x_n}{\beta \varepsilon}, & \text{ in } B_2^-(u) \end{cases}$$

Then for all $x \in B_1(x_0)$, with $|x - x_0| \ge \varepsilon/\overline{\varepsilon}$

$$|\tilde{u}_{\varepsilon}(x) - \tilde{u}_{\varepsilon}(x_0)| \leq C|x - x_0|^{\gamma}.$$

200

Fausto Ferrari

•••••

Indeed, if *u* satisfies (7) with, say r = 1, then we can apply Harnack inequality repeatedly and obtain

$$U_{\beta}(x_n + a_m) \le u(x) \le U_{\beta}(x_n + b_m)$$
 in $B_{20^{-m}}(x_0)$,

with

$$b_m - a_m \le (1 - c)^m \varepsilon$$

for all *m*'s such that

$$(1-c)^m 20^m \varepsilon \le \bar{\varepsilon}.$$

Università di Bologna

Sac

・ロト ・ 一下・ ・ ヨト ・ ヨト・

Fausto Ferrari

.....

Introduction The problem Existence of solutions **Strong regularity** Higher regularity From
$$C^{1,\gamma}$$
 to $C^{2,\gamma}$

This implies that for all such *m*'s, the oscillation of the renormalized functions \tilde{u}_k in $B_r(x_0)$, $r = 20^{-m}$, is less than $(1 - c)^m = 20^{-\gamma m} = r^{\gamma}$. Since in the proof of Lemma (Harnack type),

 $-1 \leq \tilde{u}_k(x) \leq 1$, for $x \in B_1$,

・ロト ・ 四ト ・ ヨト ・ ヨト

we can implement previous corollary and use Ascoli-Arzela theorem to obtain that as $\varepsilon_k \to 0$ the graphs of the \tilde{u}_k converge (up to a subsequence) in the Hausdorff distance to the graph of a Hölder continuous function \tilde{u} over $B_{1/2}$.

Thus the improvement of flatness process in the nondegenerate case can be concluded.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Step 2: Transmission problem. \tilde{u} solves the "linearized problem" ($\tilde{\alpha} \neq 0$)

$$\begin{cases} \Delta \tilde{u} = 0 & \text{in } B_1 \cap \{x_n \neq 0\}, \\ \tilde{\alpha}^2 (\tilde{u}_n)^+ - \tilde{\beta}^2 (\tilde{u}_n)^- = 0 & \text{on } B_1 \cap \{x_n = 0\}. \end{cases}$$
(9)

Università di Bologna

DQC

イロト イロト イヨト イヨト

Moreover according with the following result

Theorem (Regularity of the transmission problem)

Let \tilde{u} be a viscosity solution to (9) in B_1 such that $\|\tilde{u}\|_{\infty} \leq 1$. Then $\tilde{u} \in C^{\infty}(\bar{B}_1^{\pm})$ and in particular, there exists a universal constant \bar{C} such that

$$|\tilde{u}(x) - \tilde{u}(0) - (\nabla_{x'}\tilde{u}(0) \cdot x' + \tilde{p}x_n^+ - \tilde{q}x_n^-)| \le \bar{C}r^2, \quad in \ B_r \quad (10)$$

for all $r \le 1/2$ and with $\tilde{\alpha}^2 \tilde{p} - \tilde{\beta}^2 \tilde{q} = 0.$

Università di Bologna

イロト イロト イヨト イヨト

Step 3 (Contradiction). We can prove the last step. We can show that (for *k* large and $r \le r_0$)

$$\widetilde{U}_{\beta'_k}(x \cdot \nu_k - \varepsilon_k \frac{r}{2}) \le \widetilde{u}_k(x) \le \widetilde{U}_{\beta'_k}(x \cdot \nu_k + \varepsilon_k \frac{r}{2}), \text{ in } B_r$$

where again we are using the notation:

$$\widetilde{U}_{\beta'_k}(x) = \left\{ egin{array}{c} rac{U_{\beta'_k}(x) - lpha_k x_n}{lpha_k arepsilon_k}, & x \in B_1^+(U_{\beta'_k}) \cup F(U_{\beta'_k}) \\ rac{U_{\beta'_k}(x) - eta_k x_n}{eta_k arepsilon_k}, & x \in B_1^-(U_{\beta'_k}). \end{array}
ight.$$

Università di Bologna

nan

ヘロト 人間 トイヨト イヨト

This will clearly imply that

$$U_{\beta'_k}(x \cdot \nu_k - \varepsilon_k \frac{r}{2}) \le u_k(x) \le U_{\beta'_k}(x \cdot \nu_k + \varepsilon_k \frac{r}{2}), \text{ in } B_r$$

leading to a contradiction with the assumption that the thesis of the Lemma (Main) is false.

Sac

イロト イロト イヨト イヨト

Fausto Ferrari

.....

Indeed, recalling the Theorem (Regularity of the transmission problem), it is sufficient to show that in B_r :

$$\widetilde{U}_{\beta_k'}(x \cdot \nu_k - \varepsilon_k \frac{r}{2}) \le (x' \cdot \nu' + \widetilde{p}x_n^+ - \widetilde{q}x_n^-) - Cr^2$$

and

$$\widetilde{U}_{eta_k'}(x\cdot
u_k+arepsilon_krac{r}{2})\geq (x'\cdot
u'+ ilde{p}x_n^+- ilde{q}x_n^-)+Cr^2.$$

This can be shown after some elementary calculations as long as $r \leq r_0, r_0$ universal, and $\varepsilon \leq \varepsilon_0 (r)$.

Sac

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem ([DFS5 submitted])

Let u be a (Lipschitz) viscosity solution to (1) in B_1 . There exists a universal constant $\bar{\eta} > 0$ such that, if

$$\{x_n \leq -\eta\} \subset B_1 \cap \{u^+(x) = 0\} \subset \{x_n \leq \eta\}, \quad \text{for } 0 \leq \eta \leq \bar{\eta},$$

$$(11)$$
then $F(u)$ is C^{2,γ^*} in $B_{1/2}$ for a small γ^* universal, with the C^{2,γ^*}

norm bounded by a universal constant.

Università di Bologna

<ロト < 四ト < 三ト < 三ト

Theorem ([DFS5 submitted])

Let k be a nonnegative integer. Assume that $f_{\pm} \in C^{k,\gamma}(B_1)$. Then $F(u) \cap B_{1/2}$ is C^{k+2,γ^*} . If f_{\pm} are C^{∞} or real analytic in B_1 , then $F(u) \cap B_{1/2}$ is C^{∞} or real analytic, respectively.

Università di Bologna

イロト イポト イヨト イヨト

Fausto Ferrari

.....

We exploit an idea contained in a paper by Kinderlehrer, Nirenberg, Spruck ([KNS]). For σ small, the partial hodograph map

For σ small, the partial hodograph map

$$y' = x', \quad y_n = u^+(x)$$

is 1 - 1 from $B_1^+(u) \cap B_{\sigma}(0)$ onto a neighborhood of the origin $U \subset \{y_n \ge 0\}$, and flattens F(u) into a set $\Sigma \subset \{y_n = 0\}$.

<ロト < 四ト < 三ト < 三ト

The inverse mapping is the partial Legendre transformation

$$x' = y', \quad x_n = \psi(y),$$

where ψ satisfies $y_n = u^+(y', \psi(y)), y \in U$. The free boundary is the graph of $x_n = \psi(y', 0)$.

nan

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Differentiating we get

$$dy_n = \left(\nabla' u^+ + \partial_{x_n} u^+ \nabla' \psi\right) \cdot dy' + \partial_{x_n} u^+ \partial_{y_n} \psi dy_n$$

from which

$$\partial_{x_n} u^+(y,\psi(y)) = \frac{1}{\partial_{y_n}\psi(y)}, \quad \nabla' u^+(y,\psi(y)) = -\frac{\nabla'\psi(y)}{\partial_{y_n}\psi(y)}$$

in U.

・ロト・ABF ABF ABF B のへの

Università di Bologna

Fausto Ferrari

•••••

Moreover $\Delta u^+ = f_+$ transforms into

$$\mathcal{F}_{1}(\psi) := -\frac{\partial_{y_{n}y_{n}}\psi}{(\partial_{y_{n}}\psi)^{3}} + \sum_{j=1}^{n-1} \left(-\partial_{y_{j}}\frac{\partial_{y_{j}}\psi}{\partial_{y_{n}}\psi} + \frac{\partial_{y_{j}}\psi}{\partial_{y_{n}}\psi}\partial_{y_{n}}\frac{\partial_{y_{j}}\psi}{\partial_{y_{n}}\psi} \right) = f_{+}(y',\psi(y))$$

in U.

Università di Bologna

Concerning the negative part, let C be a constant larger than

$$\partial_{y_{n}}\psi=\frac{1}{\partial_{x_{n}}u^{+}\left(y',\psi\left(y\right)\right)}$$

on Σ . Introduce the reflection map

$$x' = y', \quad x_n = \psi(y) - Cy_n,$$

which is 1-1 from a neighborhood of the origin $U_1 \subseteq U$ onto $\overline{B_1^-}(u) \cap B_{\sigma}(0)$ (choosing σ smaller, if necessary).

Fausto Ferrari

....

∢ □ ≻ ∢ ि ≻ ∢ ≣ ≻ ∢ ≣ ≻ Universit

Università di Bologna

Define in U_1

$$\phi(\mathbf{y}) = u^{-}(\mathbf{y}', \psi(\mathbf{y}) - C\mathbf{y}_n).$$

Differentiating we get

$$\nabla'\phi \cdot dy' + \partial_{y_n}\phi dy_n = (\nabla'u^- + \partial_{x_n}u^-\nabla'\psi) \cdot dy' + \partial_{x_n}u^-(\partial_{y_n}\psi - C)dy_n$$

from which

2 Università di Bologna

590

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Introduction	The problem	Existence of solutions	Strong regularity	Higher regularity	From $C^{1,\gamma}$ to $C^{2,\gamma}$

$$\partial_{x_n}u^-=rac{\partial_{y_n}\phi}{\partial_{y_n}\psi-C},\quad
abla'u^-=
abla'\phi-rac{\partial_{y_n}\phi}{\partial_{y_n}\psi-C}
abla'\psi.$$

The equation $\Delta u^{-} = f_{-}$ in $\overline{B_{1}^{-}}(u) \cap B_{\sigma}(0)$ transforms into the equation

Università di Bologna

Sac

ヘロト ヘロト ヘヨト ヘヨト

Introduction	The problem	Existence of solutions	Strong regularity	Higher regularity	From $C^{1,\gamma}$ to $C^{2,\gamma}$

$$\begin{aligned} \mathcal{F}_{2}(\phi,\psi) &\equiv \frac{1}{\partial_{y_{n}}\psi - C} \partial_{y_{n}} \left(\frac{\partial_{y_{n}}\phi}{\partial_{y_{n}}\psi - C} \right) + \sum_{j=1}^{n-1} \partial_{y_{j}} \left(\partial_{y_{j}}\phi - \frac{\partial_{y_{n}}\phi}{\partial_{y_{n}}\psi - C} \partial_{y_{j}}\psi \right) \\ &- \sum_{j=1}^{n-1} \frac{\partial_{y_{j}}\psi}{\partial_{y_{n}}\psi - C} \partial_{y_{n}} \left(\partial_{y_{j}}\phi - \frac{\partial_{y_{n}}\phi}{\partial_{y_{n}}\psi - C} \partial_{y_{j}}\psi \right) \\ &= f_{-}(y',\psi(y) - Cy_{n}) \end{aligned}$$

Università di Bologna

in U_1 .

Fausto Ferrari

•••••

Thus, in U_1 we have the following nonlinear system

$$\begin{cases} \mathcal{F}_{1}(\psi) = f_{+}(y',\psi(y)) \\ \mathcal{F}_{2}(\phi,\psi) = f_{-}(y',\psi(y) - Cy_{n}). \end{cases}$$
(12)

The free boundary conditions

$$u^+ = u^-$$
 and $|\nabla u^+|^2 - |\nabla u^-|^2 = 1$, on $F(u)$

become

3 Università di Bologna

DQC

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Introduction	The problem	Existence of solutions	Strong regularity	Higher regularity	From $C^{1,\gamma}$ to $C^{2,\gamma}$

$$\begin{cases} \phi(y',0) = 0 \\ \frac{1 + |\nabla'\psi(y',0)|^2}{(\partial_{y_n}\psi(y',0))^2} - \frac{(\partial_{y_n}\phi(y',0))^2}{(\partial_{y_n}\psi(y',0) - C)^2} \\ - ||\nabla'\phi(y',0) - \frac{\partial_n\phi(y',0)}{\partial_{y_n} - C}\nabla'\psi(y',0)||_{\mathbb{R}^{n-1}}^2 = 1. \end{cases}$$

Università di Bologna

▲□▶▲□▶▲□▶▲□▶ ▲□▶

That is, after a simple computation,

$$\begin{cases} \phi(y',0) = 0\\ \left(1 + |\nabla'\psi(y',0)|^2\right) \left(\frac{1}{\left(\partial_{y_n}\psi(y',0)\right)^2} - \frac{\left(\partial_{y_n}\phi(y',0)\right)^2}{\left(\partial_{y_n}\psi(y',0) - C\right)^2}\right) = 1. \end{cases}$$

2 Università di Bologna

590

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Introduction

Linearization at y = 0 gives (setting $A = C - \partial_{y_n} \psi(0)$,)

$$\begin{split} \mathcal{L}_{1}(\psi) &= |\nabla u^{+}(0)|^{2} \partial_{y_{n}y_{n}} \psi + \sum_{k=1}^{n-1} \partial_{y_{k}y_{k}} \psi = 0, \\ \mathcal{L}_{2}(\psi, \phi) &= \frac{1}{A^{2}} \partial_{y_{n}y_{n}} \phi + \sum_{k=1}^{n-1} \partial_{y_{k}y_{k}} \phi \\ &- |\nabla u^{-}(0)| \left(\frac{1}{A^{2}} \partial_{y_{n}y_{n}} \psi + \sum_{k=1}^{n-1} \partial_{y_{k}y_{k}} \psi \right) = 0, \\ \mathcal{B}_{1}(\phi) &= \phi = 0 \\ \mathcal{B}_{2}(\psi, \phi) &= \left(|\nabla u^{+}(0)|^{3} + \frac{1}{A} |\nabla u^{-}(0)|^{2} \right) \partial_{y_{n}} \psi - \frac{1}{A} |\nabla u^{-}(0)| \partial_{y_{n}} \phi = 0. \end{split}$$

3 Università di Bologna

DQC

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

This system is elliptic with coercive boundary conditions under the natural choices of weights $s_1 = s_2 = 0$ and $t_1 = t_2 = 2$ for \mathcal{L}_1 and \mathcal{L}_2 and $r_1 = -2$, $r_2 = -1$ for \mathcal{B}_1 and \mathcal{B}_2 , respectively. Indeed

$$\operatorname{order} \mathcal{L}_j = s_j + t_j = 2 \qquad (j = 1, 2)$$

and

order
$$\mathcal{B}_1 = t_1 + r_1 = 0$$
, order $\mathcal{B}_2 = t_2 + r_2 = 1$.

The theorem follows from the results of [ADN] see [M].

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Given $\omega \in \mathbb{R}^n$, with $|\omega| = 1$, and let S_{ω} be an orthonormal basis containing ω . Let $M \in S^{n \times n}$ satisfy

$$M\omega = 0$$

and define

$$P_{M,\omega}(x) = x \cdot \omega - \frac{1}{2}x^T M x.$$

Let $\alpha > 0, \beta \ge 0, a, b \in \mathbb{R}^n$. We define

$$V_{M,\omega,a,b}^{\alpha,\beta}(x) = \alpha(1+a\cdot x)P_{M,\omega}^+(x) - \beta(1+b\cdot x)P_{M,\omega}^-(x).$$

Università di Bologna

nan

・ロト ・ 四ト ・ ヨト ・ ヨト

Introduction The problem Existence of solutions Strong regularity Higher regularity From
$$C^{1,\gamma}$$
 to $C^{2,\gamma}$

These are our two-phase polynomials, one-phase if $\beta = 0$. In the particular case when $M = 0, a = b = 0, \omega = e_n$ we obtain the two-plane function:

$$U_{\beta}(x) = \alpha x_n^+ - \beta x_n^-.$$

The unit vector ω establishes the "direction of flatness".

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

We shall need to work with a subclass, strictly related to problem (1), at least at the origin. We denote by $\mathcal{V}_{f\pm}$ the class of functions of the form $V_{M,\omega,a,b}^{\alpha,\beta}$ for which

$$2\alpha a \cdot \omega - \alpha trM = f_{+}(0)$$
$$2\beta b \cdot \omega - \beta trM = f_{-}(0) \quad \text{if } \beta \neq 0,$$
$$\alpha^{2} - \beta^{2} = 1, \quad \text{if } \beta \neq 0,$$

 $\langle \alpha \rangle$

and

$$\alpha^2 a \cdot \omega^{\perp} = \beta^2 b \cdot \omega^{\perp}, \quad \forall \omega^{\perp} \in S_{\omega}.$$

Università di Bologna

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

The role of the last condition is to make $V_{M,\omega,a,b}^{\alpha,\beta}$ an "almost" viscosity subsolution.

When $\beta = 0$, then there is no dependence on *b* and $a \cdot \omega^{\perp} = 0$. Thus, we drop the dependence on β , *b* and f_{-} in our notation above and we indicate the dependence on $a_{\omega} := a \cdot \omega$.

イロト 人間 トイヨト イヨト

We introduce the following definitions.

Definition ([DFS5])

Let
$$V = V_{M,\omega,a,b}^{\alpha,\beta}$$
. We say that u is (V, ϵ, δ) flat in B_1 if
 $V(x - \epsilon \omega) \le u(x) \le V(x + \epsilon \omega)$ in B_1

and

 $|a|, |b'|, ||M|| \le \delta \epsilon^{1/2}, \quad |b_n| \le \delta^2, \quad |b_n|||M|| \le \delta^2 \epsilon.$

Fausto Ferrari

3 Università di Bologna

Sac

Definition ([DFS5])

Let $V = V_{M,\omega,a,b}^{\alpha,\beta}$. We say that u is (V, ϵ, δ) flat in B_r if the rescaling $u_r(x) := \frac{u(rx)}{r}$

is $(V_r, \frac{\epsilon}{r}, \delta)$ flat in B_1 .

Notice that if u is (V, ϵ, δ) flat in B_r then

$$V(x - \epsilon \omega) \le u(x) \le V(x + \epsilon \omega)$$
 in B_r .

The parameter ϵ measures the level of polynomial approximation and δ is a flatness parameter (also controlling the $C^{0,\gamma}$ norms of f_+ and f_-).

Università di Bologna

Fausto Ferrari

••••

To obtain uniform point wise C^{2,γ^*} regularity both for the solution and the free boundary in $B_{1/2}$ we have to show that u is $(V_k, \lambda_k^{2+\gamma^*}, \delta)$ flat in B_{λ_k} for $\lambda_k = \eta^k$ and all $k \ge 0$, for some δ, η small and a sequence of V_k converging to a final profile V_0 .

イロト イポト イヨト イヨト

The starting point in the proof of Theorem 8 is to show that the flatness condition (3) allows us to normalize our solution so that a rescaling $u_{\bar{r}}$ of u is close to a one or two-phase polynomial. This kind of dichotomy parallels in a sense what happens in the *flatness to* $C^{1,\gamma}$ case but at a quadratic order of approximation. Set

$$u_r(x) := \frac{u(rx)}{r}, \quad f_{\pm r}(x) = rf_{\pm}(rx), \quad x \in B_1.$$

Università di Bologna

イロト イポト イヨト イヨト

Lemma

There exist universal constants $\bar{\epsilon}, \bar{\delta}, \bar{\lambda}$ such that if u satisfies (3) with $\bar{\eta} = \bar{\eta}(\bar{\epsilon})$ then either of these flatness conditions holds with $\bar{r} = \bar{r}(\bar{\epsilon})$.

1. Non-degenerate case: $u_{\bar{r}}$ is $(V, \bar{\lambda}^{2+\gamma}, \bar{\delta})$ flat in B_1 , with $V = V_{0,e_n,a,b}^{\alpha,\beta} \in \mathcal{V}_{f_{\pm}}, a' = b' = 0, \quad \beta \geq \frac{1}{2}\bar{\delta}^{1/2}\bar{\lambda}^{2+\gamma}, and$

$$|f_{+\bar{r}}(x) - f_{+\bar{r}}(0)| \le \bar{\delta}|x|^{\gamma} \quad |f_{-\bar{r}}(x) - f_{-\bar{r}}(0)| \le \beta \bar{\delta}|x|^{\gamma}.$$

2. Degenerate case: $u_{\bar{r}}^+$ is $(V, \bar{\lambda}^{2+\gamma}, \bar{\delta})$ flat in B_1 , for $V = V_{0,e_n,a_n}^1 \in \mathcal{V}_{f_+}$,

$$|u_{\bar{r}}^{-} + \frac{1}{2}f_{-\bar{r}}(0)x_{n}^{2}| \le \bar{\delta}^{1/2}\bar{\lambda}^{2+\gamma} \quad in \ B_{1}^{-}(u_{\bar{r}})$$

and

$$\|f_{-\bar{r}}\|_{\infty} \leq \bar{\delta}, \quad |f_{\pm\bar{r}}(x) - f_{\pm\bar{r}}(0)| \leq \bar{\delta}|x|^{\gamma}.$$

900

We describe the dichotomy as follows.

Case 1. (nondegenerate configuration). The two phases have comparable size and $u_{\bar{r}}$ is trapped between two translations of a genuine two-phase polynomials, with a positive slope β (not too small).

イロト イポト イヨト イヨト

Case 2. (degenerate configuration). The negative phase that has either zero slope or a small one (but not negligible) with respect to $u_{\bar{r}}^+$, and $u_{\bar{r}}^+$ is trapped between two translations of a one-phase polynomial. Note that this situation cannot occur if $f_- \ge 0$ unless u^- is identically zero.

nan

Next we examine how the initial flatness corresponding to cases 1 and 2 above improves successively at a smaller scale.

We construct the following two "subroutines", to be implemented in the course of the final iteration towards C^{2,γ^*} regularity.

The first one provides a *two-phase* $C^{2,\gamma}$ flatness improvement: if u is $(V, \bar{\lambda}^{2+\gamma}, \bar{\delta})$ flat in B_{λ} then u is $(\bar{V}, (\eta \bar{\lambda})^{2+\gamma}, \bar{\delta})$ flat in $B_{\bar{\lambda}\eta}$, with \bar{V} close to V. This result applies to the non-degenerate case.

イロト イポト イヨト イヨト

Introduction The problem Existence of solutions Strong regularity Higher regularity From
$$C^{1,\gamma}$$
 to $C^{2,\gamma}$
Theorem
Two-phase flatness improvement. There exist $\bar{\eta}, \bar{\delta}, \bar{\lambda}$ universal, such that, if for $\beta > 0$
 u is $(V, \lambda^{2+\gamma}, \bar{\delta})$ flat in $B_{\lambda}, \lambda \leq \bar{\lambda}$ (13)
with $V = V_{M,e_n,a,b}^{\alpha,\beta} \in V_{f\pm},$,
 $|f_{+}(x) - f_{+}(0)| \leq \bar{\delta}|x|^{\gamma}, |f_{-}(x) - f_{-}(0)| \leq \beta \bar{\delta}|x|^{\gamma}$ (14)
and
 $|\nabla u^{+}|^{2} - |\nabla u^{-}|^{2} = 1 \quad on F(u) \cap B_{2/3\lambda}$
then
 u is $(\bar{V}, (\bar{\eta}\lambda)^{2+\gamma}, \bar{\delta})$ in $B_{\bar{\eta}\lambda}$ (15)
with $\bar{V} = V_{M,\bar{\nu},\bar{a},\bar{b}}^{\bar{\alpha},\bar{\beta}} \in V_{f\pm}$ and $|\beta - \bar{\beta}| \leq C\lambda^{1+\gamma}$ for C universal.

The second one provides a *one-phase* flatness improvement. It will be used with the degenerate case, i.e. when the flatness of the free boundary only guarantees closeness of the positive part u^+ to a quadratic profile. More precisely if u^+ is $(V, \bar{\lambda}^{2+\gamma}, \bar{\delta})$ flat in B_{λ} and $|\nabla u^+|$ is close to α on F(u), then u^+ enjoys a $C^{2,\gamma}$ flatness improvement, with \bar{V} close to V.

イロト イポト イヨト イヨト

Introduction The problem Existence of solutions Strong regularity Higher regularity From
$$C^{1,\gamma}$$
 to $C^{2,\gamma}$
Theorem
There exist $\bar{\eta}, \bar{\delta}, \bar{\lambda}$ such that if for $\beta = 0$
 u^+ is $(V, \lambda^{2+\gamma}, \bar{\delta})$ flat in $B_{\lambda}, \lambda \leq \bar{\lambda}$ (16)
with $V = V^{\alpha}_{M,e_n,a_n} \in V_{f_+},$
 $|f_+(x) - f_+(0)| \leq \bar{\delta}|x|^{\gamma}$ (17)
and
 $||\nabla u^+| - \alpha| \leq \bar{\delta}^{1/2} \lambda^{1+\gamma}$ on $F(u) \cap B_{2/3\lambda},$ (18)
in the viscosity sense, then

Strong regularity

Higher regularity

$$u^+$$
 is $(\bar{V}, (\bar{\eta}\lambda)^{2+\gamma}, \bar{\delta})$ flat in $B_{\bar{\eta}\lambda}$ (19)

with
$$\overline{V} = V^{\alpha}_{\overline{M},\overline{\nu},\overline{a}_{\overline{\nu}}} \in V_{f_+}$$
.

The problem

Existence of solutions

Fausto Ferrari

Università di Bologna

5900

The achievement of the improvements above relies on a higher order refinement of the Harnack inequalities. This gives the necessary compactness to pass to the limit in a sequence of renormalized functions of u of the type (e.g. in the genuine two-phase case)

$$\tilde{v}^{\epsilon}(x) = \begin{cases} \frac{v(x) - \alpha(1 + a \cdot x)P_{M,e_n}}{v(x) - \beta(1 + b \cdot x)P_{M,e_n}}, & x \in B_1^+(u) \cup F(u) \\ \frac{v(x) - \beta(1 + b \cdot x)P_{M,e_n}}{\beta\epsilon}, & x \in B_1^-(u), & \beta > 0 \\ 0, & x \in B_1^-(u), & \beta = 0. \end{cases}$$
(20)

Università di Bologna

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

and obtain a limiting transmission or Neumann problem. From the regularity of the solution of this problem we get the information to improve the two-phase or one-phase approximation for u or u^+ respectively, and hence their flatness.

Università di Bologna

イロト イポト イヨト イヨト

Now we can start iterating. As we have seen, according to Case 1 above, after a suitable rescaling, we face a first dichotomy "degenerate versus nondegenerate".

In the latter case the two-phase subroutine of Proposition 13 can be applied indefinitely to reach pointwise C^{2,γ^*} regularity for some universal γ^* .

イロト イポト イヨト イヨト

When *u* falls into the degenerate case a *new kind of dichotomy* appears. First of all, to run the *one-phase* subroutine in Proposition 14 we need to make sure that the closeness of u^- to a purely quadratic profile makes u^+ to be a (viscosity) solution of a one-phase free boundary problem with $|\nabla u_{\nu}^+|$ close to an appropriate α on F(u). At this point two alternatives occur at a smaller scale:

イロト 人間 トイヨト イヨト

Introduction	The problem	Existence of solutions	Strong regularity	Higher regularity	From $C^{1,\gamma}$ to $C^{2,\gamma}$

- D1 : either u^- is closer to a purely quadratic profile at a proper $C^{2,\gamma}$ rate and u^+ enjoys a $C^{2,\gamma}$ flatness improvement;
- D2 : or u^- is closer (at a $C^{2,\gamma}$ rate) to a one-phase polynomial profile with a small non-zero slope but u^+ only enjoys an "intermediate" C^2 flatness improvement.

A D F A B F A B F A B F

To give a precise statement it is convenient to introduce a new class $Q_{f_{-}}$ of functions, defined as

$$Q_{p,q,\omega,M} = (x \cdot \omega - \frac{1}{2}x^T M x)(p + q \cdot x) - \frac{1}{2}(f_-(0) + ptrM)(x \cdot \omega)^2,$$

with $p \in \mathbb{R}, q \in \mathbb{R}^n, M \in S^{n \times n}$, such that

$$q \cdot \omega = 0, \quad M\omega = 0, \quad \|M\| \le 1.$$

Sac

イロト イポト イヨト イヨト

Introduction

The problem Existence

Existence of solutions

Strong regularity

Higher regularity

From $C^{1,\gamma}$ to $C^{2,\gamma}$

In the degenerate case, we use these functions to approximate u^- in a $C^{2,\gamma}$ fashion at a smaller and smaller scale. We have the following facts.

There exist universal constants $\bar{\lambda}, \bar{\delta}, \bar{\eta}$ such that if

$$u^+$$
 is $(V, \lambda^{2+\gamma}, \bar{\delta})$ flat in $B_{\lambda}, \lambda \leq \bar{\lambda}$ (21)

with
$$V = V^1_{M,e_n,a_n} \in \mathcal{V}_{f_+},$$

 $|f_{\pm}(x) - f_{\pm}(0)| \le \overline{\delta} |x|^{\gamma}, \quad ||f_-||_{\infty} \le \overline{\delta}$ (22)

and

$$|u^{-} - Q_{0,0,e_n,0}| \le \bar{\delta}^{1/2} \lambda^{2+\gamma}, \quad \text{in } B_{\lambda}^{-}(u)$$
 (23)

then either one of the following holds: D1. There exists $\bar{V} = V_{\bar{M},\bar{\mathbf{e}},\bar{a}_{\bar{\mathbf{e}}}}^1 \in \mathcal{V}_{f_+}$, such that

$$u^+$$
 is $(\bar{V}, (\bar{\eta}\lambda)^{2+\gamma}, \bar{\delta})$ flat in $B_{\bar{\eta}\lambda}$, (24)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Università di Bologna

and

$$|u^{-} - Q_{0,0,\bar{\mathbf{e}},0}| \le \bar{\delta}^{1/2} (\bar{\eta}\lambda)^{2+\gamma}, \quad \text{in } B^{-}_{\bar{\eta}\lambda}(u);$$
 (25)

D2. There exists $V^* = V^{\alpha^*}_{M^*, \mathbf{e}^*, \mathbf{e}^*_{\mathbf{e}^*}} \in \mathcal{V}_{f_+}$, such that

 u^+ is $(V^*, \bar{\eta}^2 \lambda^{2+\gamma}, \bar{\delta})$ flat in $B_{\bar{\eta}\lambda}$,

and

$$|u^- - Q_{p^*,q^*,\mathbf{e}^*,M^*}| \le \overline{\delta}^{1/2} (\overline{\eta}\lambda)^{2+\gamma}, \quad \text{in } B^-_{\overline{\eta}\lambda}(u),$$

for $(\alpha^*)^2 - (p^*)^2 = 1$ and $p^* < 0, |p^*| \sim (\bar{\delta}^{1/2} \lambda^{1+\gamma}), |q^*| = O(\bar{\delta}^{1/2} \lambda^{\gamma}).$

Università di Bologna

nan

・ロト ・ 四ト ・ ヨト ・ ヨト

If D1 occurs indefinitely we are done. If it does not, we prove that the intermediate improvement in D2 is kept for a while, at smaller and smaller scale. The final and crucial step is to prove that, at a given universally small enough scale, the $C^{2,\gamma}$ one-phase approximation of u^- , together with the intermediate C^2 flatness improvement of u^+ , is good enough to recover a full C^{2,γ^*} two-phase improvement of u with a universal $\gamma^* < \gamma$.

A D F A B F A B F A B F

Introduction The problem Existence of solutions Strong regularity

Higher regularity

More precisely, at the beginning u^+ is $(V, \bar{\lambda}^{2+\gamma}, \bar{\delta})$ flat while u^- is $C^{2,\gamma}$ close to a pure quadratic profile. This closeness improves at a $C^{2,\gamma}$ rate until (possibly) the slope of the approximating polynomial Q is no longer zero, say at scale λ . However, to obtain the desired full flatness of u, we need to reach a scale $\rho = \lambda r$ for $r \sim \lambda^{1+1/\gamma}$. It is necessary to exploit also the information that the flatness of u^+ is in fact improving at a C^2 rate for a little while, hence allowing us to continue the iteration on the negative side and to obtain that u^- is $C^{2,\gamma}$ close to a nondegenarate configuration at an even smaller scale. We have seen that in the case of the $C^{1,\gamma}$ estimates this issue is not present. The key result is the following:

ヘロト 人間 トイヨト イヨト

•••••

Introduction	The problem	Existence of solutions	Strong regularity	Higher regularity	From $C^{1,\gamma}$ to $C^{2,\gamma}$		
Theo	orem						
There	e exist $\bar{\lambda}, \bar{\delta},$	γ^* universal suc	h that if				
	u^+ is $(V, r^2 \lambda^{2+\gamma}, \bar{\delta})$ flat in $B_{r\lambda}, \lambda \leq \bar{\lambda}$						
with and) · n) ·	$v_n \in \mathcal{V}_{f_+}, for r su$			$2\lambda^{1+\gamma}),$		
		$-Q_{p,q,e_n,M} \leq ar{\delta}$					
for α	$p^2 - p^2 = 1$	and $p < 0, p \sim$	$\delta^{1/2}\lambda^{1+\gamma}, q $	$= O(\delta^{1/2}\lambda^{\gamma})$, then		
		u is $(\bar{V}, (r\lambda)^2$	$^{+\gamma^{*}},ar{\delta})$ flat in	$B_{r\lambda}$			
with	$\bar{V} = V_{M,e_n,a}^{lpha,eta}$	$_{,b} \in \mathcal{V}_{f\pm}, \beta = p $.				

Università di Bologna

From this point on we can go back to the two-phase subroutine to reach pointwise C^{2,γ^*} regularity.

Fausto Ferrari

Università di Bologna

Sac

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

[ADN]: Agmon S., Douglis A., Nirenberg L., *Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I.*, Comm. Pure Appl. Math. 12, 1959, 623–727.

[ACF]: Alt H.W., Caffarelli L.A., Friedman A., *Variational problems with two phases and their free boundaries*. Trans. Amer. Math. Soc. **282** (1984), no. 2, 431–461.

[B1]: Batchelor G.K., *On steady laminar flow with closed streamlines at large Reynolds number*, J. Fluid.Mech. **1** (1956), 177–190.

[C1]: Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $C^{1,\alpha}$, Rev. Mat. Iberoamericana **3** (1987) no. 2, 139–162.

[C2]: Caffarelli L.A., *A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz*, Comm. Pure Appl. Math. **42** (1989), no.1, 55–78.

イロト イポト イヨト イヨト

....

From $C^{1,\gamma}$ to $C^{2,\gamma}$

[C3]: Caffarelli L.A., *A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness and dependence on x*, Ann. Sc. Norm. (1988), serie IV, Vol XV, 583–602.

[CFS]: Cerutti, M. C.; Ferrari, F.; Salsa, S. *Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are* $C^{1,\gamma}$ Arch. Ration. Mech. Anal. 171 (2004), no. 3, 329–348

[CJK]: Caffarelli L.A., Jerison D., Kenig C.E., *Some new monotonicity theorems with applications to free boundary problems*, Ann. of Math. (2) **155** (2002), no. 2, 369–404.

[CJK2]: Caffarelli L.A., Jerison D., Kenig C.E., *Global energy minimizers for free boundary problems and full regularity in three dimensions*. Noncompact problems at the intersection of geometry, analysis, and topology, 83–97, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004.

[D]: De Silva D., Free boundary regularity for a problem with right = 2000 Fausto Ferrari Università di Bologna

[DJ]: De Silva D., Jerison, D. *A singular energy minimizing free boundary*, J. Reine Angew. Math. **635** (2009), 1-21.

[DFS]: De Silva D., Ferrari F., Salsa S., *Two-phase problems with distributed source: regularity of the free boundary*, Anal. PDE 7 (2014), no. 2, 267–310.

[DFS2]: De Silva D., Ferrari F., Salsa S., *Perron's solutions for two-phase free boundary problems with distributed sources,* Nonlinear Anal. 121 (2015), 382–402.

[DFS3]: De Silva D., Ferrari F., Salsa S. *Free boundary regularity for fully nonlinear non-homogeneous two-phase problems*, J. Math. Pures Appl. (9) 103 (2015), no. 3, 658–694.

イロト イポト イヨト イヨト

[**DFS4**]: De Silva D., Ferrari F., Salsa S. *Regularity of the free* boundary for two-phase problems governed by divergence form equations and applications, Nonlinear Analysis, 138 (2016) 3-30. [DFS5]: De Silva D., Ferrari F., Salsa S. Regularity of higher order in two-phase free boundary problems, submitted. [E]: Engelstein M., A two phase free boundary problem for the harmonic measure. arXiv:1409.4460. [EM]: Elcrat A.R, Miller K.G., Variational formulas on Lipschitz domains, Trans. Amer. Math. Soc. 347 (1995), 2669–2678. [F1]: Feldman M., Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J. 50 (2001), no.3, 1171-1200

Università di Bologna

イロト イポト イヨト イヨト

[F2]: Feldman M., *Regularity for nonisotropic two-phase problems with Lipshitz free boundaries*, Differential Integral Equations 10 (1997), no.6, 1171–1179.

[Fe1]: Ferrari F., *Two-phase problems for a class of fully nonlinear elliptic operators, Lipschitz free boundaries are* $C^{1,\gamma}$, Amer. J. Math. 128 (2006), 541–571.

[FS1]: Ferrari F., Salsa S., *Regularity of the free boundary in two-phase problems for elliptic operators*, Adv. Math. 214 (2007), 288–322.

[FL]: Friedman A., Liu Y. A free boundary problem arising in magnetoydrodynamic system, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 22 (1994), 375–448.Feldman M., Regularity for nonisotropic two-phase problems with Lipshitz free boundaries, Differential Integral Equations 10 (1997), no.6, 1171–1179.

イロト イポト イヨト イヨト

•••••

イロト イロト イヨト イ

[JS]: Jerison D., Savin O., *Some remarks on stability of cones for the one-phase free boundary problem*, Geom. Funct. Anal. 25 (2015), no. 4, 1240–1257.

[KNS]: Kinderlehrer D., Nirenberg L., Spruck J., *Regularity in elliptic free-boundary problems I*, Journal d'Analyse Mathematique, Vol 34 (1978) 86-118.

[LW]: Lederman C., Wolanski N., *A two phase elliptic singular perturbation problem with a forcing term*, J. Math. Pures Appl. (9) **86** (2006), no. 6, 552–589.

[LN]: Lewis J., Nystrom K., *Regularity of Lipschitz free boundaries in two phases Problems for the p Laplace operator*, Adv. in Math. 225, (2010) 2565-2597.

[LN1]: Lewis J, Nystrom K., *Regularity of flat free boundaries in two-phase problems for the p-Laplace operator*, Ann. Inst. H. PoincarŽ Anal. Non Lineaire 29 (2012), no. 1, 83–108.

Introduction

Existence of solutions

[M]: Morrey C. B. Jr., *Multiple integrals in the calculus of variations*, Reprint of the 1966 edition Classics in Mathematics. Springer-Verlag, Berlin, 2008. x+506 pp.

[MT]: Moreira, D. R.; Teixeira, E. V. A singular perturbation free boundary problem for elliptic equations in divergence form. Calc. Var. Partial Differential Equations 29 (2007), no. 2, 161–190. **[W1]**: Wang P.Y., Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are $C^{1,\alpha}$, Comm. Pure Appl. Math. 53 (2000), 799–810.

[W2]: Wang P.Y., *Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz*, Comm. Partial Differential Equations 27 (2002), 1497–1514.

イロト イポト イヨト イヨト