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The harmonic map flow from R2 into S2.

ut = ∆u + |∇u|2u in Ω× (0,T ) (HMF)

u = ϕ on ∂Ω× (0,T )

u(·, 0) = u0 in Ω

u : Ω× [0,T )→ S2, u0 : Ω̄→ S2 smooth, ϕ = u0

∣∣
∂Ω

.
Ω smooth, bounded domain in R2 or entire space.



Some characteristics of this flow:

• The equation is the negative L2-gradient flow for the Dirichlet
energy E (u) :=

∫
Ω |∇u|2dx . along smooth solutions u(x , t):

d

dt
E (u(·, t)) = −

∫
Ω
|ut(·, t)|2 ≤ 0 .

• The equation satisfies |u(x , t)| = 1 at all times if initial and
boundary conditions do.

• The problem has blowing-up families of energy invariant steady
states in entire space (entire harmonic maps).



Harmonic maps in R2 are solutions of

∆u + |∇u|2u = 0, |u| = 1 in R2

Example:

U0(x) =

(
2x

1+|x |2
|x |2−1
1+|x |2

)
, x ∈ R2.

The 1-corrotational harmonic maps:

Uλ,x0,Q(x) = QU0

(
x − x0

λ

)
with Q a linear orthogonal transformation of R3.

E2(Uλ,x0,Q) = E (U) for all λ, x0.



• Local existence and uniqueness of a classical solution of (HMF):
Eeels-Sampson (1966), Struwe (1984), K.C. Chang (1985)

• Struwe (1984): There exists a global H1-weak solution of
(HMF), where just for a finite number of points in space-time loss
of regularity occurs.

• At those times jumps down in energy occur. This solution is
unique within the class of weak solutions with degreasing energy,
(Freire, 2002).
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If T > 0 designates the first instant at which smoothness is lost,
we must have

‖∇u(·, t)‖∞ → +∞

Several works have clarified the possible blow-up profiles as t ↑ T .

The following fact follows from results by Struwe 1984, Qing 1995 ,
Ding-Tian 1995 , Wang 1996, Lin-Wang 1998 and Qing-Tian 1997



Along a sequence tn → T and points q1, . . . , qk ∈ Ω, not
necessarily distinct, u(x , tn) blows-up occurs at exactly those k
points in the form of bubbling. Precisely, we have

u(x , tn) − u∗(x)−
k∑

i=1

[ Ui

(
x − qn

i

λni

)
− Ui (∞) ]→ 0 in H1(Ω)

where u∗ ∈ H1(Ω), qn
i → qi , 0 < λni → 0, satisfy for i 6= j ,

λni
λnj

+
λnj
λni

+
|qn

i − qn
j |2

λni λ
n
j

→ +∞.



The Ui ’s are entire, finite energy harmonic maps, namely solutions
U : R2 → S2 of the equation

∆U + |∇U|2U = 0 n R2,

∫
R2

|∇U|2 < +∞.

After stereographic projection, U lifts to a conformal smooth map
in S2, so that its value U(∞) is well-defined. It is known that U is
in correspondence with a complex rational function or its
conjugate. Its energy corresponds to the absolute value of the
degree of that map times the area of the unit sphere, and hence∫

R2

|∇U|2 = 4πm, m ∈ N,



In particular, u(·, tn) ⇀ u∗ in H1(Ω) and for some positive integers
mi , we have

|∇u(·, tn)|2 ⇀ |∇u∗|2 +
k∑

i=1

4πmi δqi

δq denotes the Dirac mass at q.

A least energy entire, non-trivial harmonic map is given by

U0(x) =
1

1 + |x |2

(
2x

|x |2 − 1

)
, x ∈ R2,

which satisfies∫
R2

|∇U0|2 = 4π, U0(∞) =

0
0
1

 .



Expected shape of a bubbling solution as t ↑ T

|∇u(x , t)|2 ∼ |∇u∗(x)|2 +
k∑

j=1

1

λj(t)2

∣∣∣∣∇Ui

(
x − qj(t)

λj(t)

)∣∣∣∣2



Very few examples are known of singularity formation phenomenon,
all of them for single-point blow-up in radial corrotational classes.

When Ω is a disk or the entire space, a 1-corrotational solution of
(HMF) is one of the form

u(x , t) =

(
e iθ sin v(r , t)

cos v(r , t)

)
, x = re iθ.

(HMF) then reduces to

vt = vrr +
vr
r
− sin v cos v

r 2

We observe that the function w(r) = π − 2 arctan(r) is a steady
state corresponding to to the harmonic map U0:

U0(x) =

(
e iθ sin w(r)

cos w(r)

)
.



• Chang, Ding and Ye (1991) found the first example of a blow-up
solution of Problem (HMF) (which was previously conjectured not
to exist). It is a 1-corrotational solution in a disk with the blow-up

profile v(r , t) ∼ w
(

r
λ(t)

)
or

u(x , t) ∼ U0

(
x

λ(t)

)
.

and 0 < λ(t)→ 0 as t → T . No information on λ(t)

• Topping (2004) estimated the general blow-up rates as

λi = o(T − t)
1
2

(valid in more general targets), namely blow-up is of “type II”: it
does not occur at a self-similar rate.

• Angenent, Hulshof and Matano (2009) estimated the blow-up
rate of 1-corrotational maps as λ(t) = o(T − t).



• From formal analysis, van den Berg, Hulshof and King (2003)
demonstrated that this rate for 1-corrotational maps should
generically be given by

λ(t) ∼ κ T − t

| log(T − t)|2

for some κ > 0.
• Raphael and Schweyer (2012) succeeded to rigorously construct
a 1-corrotational solution with this blow-up rate in entire R2.
Their proof provides the stability of the blow-up phenomenon
within the radially symmetric class.



A natural question: The nonradial case: find nonradial solutions,
single and multiple blow-up in entire space or bounded domains
and analyze their stability.

Our main result: For any given finite set of points of Ω and
suitable initial and boundary values, then a solution with a
simultaneous blow-up at those points exists, with a profile
resembling a translation, scaling and rotation of U0 around each
bubbling point. Single point blow-up is codimension-1 stable.



The functions

Uλ,q,Q(x) := QU0

(
x − q

λ

)
.

with λ > 0, q ∈ R2 and Q an orthogonal matrix are least energy
harmonic maps: ∫

R2

|∇Uλ,q,Q |2 = 4π.

For α ∈ R we denote

Qα

y1

y2

y3

 =

[
e iα(y1 + iy2)

y3

]
,

the α-rotation around the third axis.



Let (HMF) with boundary condition ϕ = U0(∞) = (0, 0, 1).

Theorem (J. Dávila, M. del Pino, J. Wei)

Let us fix points q = (q1, . . . , qk) ∈ Ωk . Given a sufficiently
T > 0, there exists an initial condition u0 such the solution
uq(x , t) of (HMF) blows-up as t ↑ T in the form

uq(x , t)− u∗(x)−
k∑

j=1

Qα∗i

[
U0

(
x − qi

λi

)
− U0(∞)

]
→ 0

in the H1 and uniform senses where u∗ ∈ H1(Ω) ∩ C (Ω̄),

λi (t) =
κ∗i (T − t)

| log(T − t)|2
.

|∇uq(·, t)|2 ⇀ |∇u∗|2 + 4π
k∑

j=1

δqj



• Raphael and Schweyer (2013) proved the stability of their
solution within the 1-corrotational class, namely perturbing
slightly its initial condition in the associated radial equation the
same phenomenon holds at a slightly different time.

• Formal and numerical evidence led van den Berg and Williams
(2013) to conjecture that this radial bubbling loses its stability if
special perturbations off the radially symmetric class are made.
Our construction shows so at a linear level.

Theorem (J. Dávila, M. del Pino, J. Wei)

For k = 1 there exists a manifold of initial data with codimension
1, that contains uq(x , 0), which leads to the solution of (HMF) to
blow-up at at exactly one point close to q, at a time close to T .



Continuation after blow-up?
• Struwe defined a global H1-weak solution of (HMF) by dropping
the bubbles appearing at the blow-up time and then restarting the
flow. This procedure modifies the topology of the image of u(·, t)
across T .

• Topping (2002) built a continuation of Chang-Ding-Ye solution
by attaching a bubble with opposite orientation after blow-up
(this does not change topology and makes the energy values
“continuous”). This procedure is called reverse bubbling. The
reverse bubble is

Ū0(x) =
1

1 + |x |2

(
−2x
|x |2 − 1

)
=

(
e iθ sin w̄(r)

cos w̄(r)

)
, w̄(r) = −w(r).
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Theorem (J. Dávila, M. del Pino, J. Wei)

The solution uq can be continued as an H1-weak solution in
Ω× (0,T + δ), with the property that uq(x ,T ) = u∗(x)

uq(x , t)−u∗(x)−
k∑

j=1

Qα∗i

[
Ū0

(
x − qi

λi

)
−U0(∞)

]
→ 0 as t ↓ T ,

in the H1 and uniform senses in Ω, where

λi (t) = κ∗i
t − T

| log(t − T )|2
if t > T .



It is reasonable to think that the blow-up behavior obtained is
generic. Is it possible to have bubbles other than those induced by
U0 or Ū0, and or decomposition in several bubbles at the same
point? Evidence seems to indicate the opposite:

• No blow-up is present in the higher corrotational class (Guan,
Gustafson, Tsai, 2009).

• No bubble trees in finite time exist in the 1-corrotational class
(Van der Hout 2002). In infinite time they do exist and their
elements have been classified (Topping, 2004).



Construction of a bubbling solution k = 1
Given a T > 0, q ∈ Ω, we want

S(u) := −ut + ∆u + |∇u|2u = 0 n Ω× (0,T )

with

u(x , t) ≈ U(x , t) := Qα(t)U0

(
x − x0(t)

λ(t)

)
The functions α(t), λ(t), x0(t) are continuous with

λ(T ) = 0, x0(T ) = q.

We recall

U0(y) =

(
e iθ sin w(ρ)

cos w(ρ)

)
, w(ρ) = π − 2 arctan(ρ), y = ρe iθ,

We want to compute S(U).



The vector fields

E1(y) =

(
−e iθ cos w(ρ)

sin w(ρ)

)
, E2(y) =

(
ie iθ

0

)
,

constitute an orthonormal basis of the tangent space to S2 at the
point U0(y).

S(U)(x , t) = Qα[
λ̇

λ
ρwρ E1 + α̇ρwρ E2 ] +

ẋ01

λ
wρ Qα[ cos θ E1 + sin θ E2] +

ẋ02

λ
wρ Qα[sin θ E1 − cos θ E2 ].



For a small function ϕ, we compute

S(U + ϕ) = −ϕt + LU(ϕ) + NU(ϕ) + S(U).

LU(ϕ) = ∆ϕ+ |∇U|2ϕ+ 2(∇U∇ϕ)U

NU(ϕ) = |∇ϕ|2U + 2(∇U∇ϕ)ϕ+ |∇ϕ|2ϕ.

We need |U + ϕ|2 = 1 or 2U · ϕ+ |ϕ|2 = 0.
If ϕ is small, this approximately means

U · ϕ = 0.

Neglecting quadratic terms, for small ϕ we want:

−ϕt + LU(ϕ) + S(U) ≈ 0, ϕ · U = 0.



for a function ϕ we write

ΠU⊥ϕ := ϕ− (ϕ · U)U.

We want to find a small function ϕ∗ such that

−∂tΠU⊥ϕ
∗ + LU(ΠU⊥ϕ

∗) + S(U) ≈ 0.

ϕ∗ will be made out of two pieces pieces ϕ∗ = ϕ0 + Z ∗. For
simplicity we fix

x0 ≡ q, α ≡ 0.

Step 1 Choice of ϕ0 to concentrating the outer error. Far away
from the concentration point the largest part of the error becomes

S(U)(x , t) ≈ E0 =
λ̇

λ
ρwρ(ρ) E1(y) y =

x − x0

λ
= ρe iθ, ρ = |y |.



Far away from q we have

−∂tΠU⊥ϕ
0 + LU [ΠU⊥ϕ

0] + E0 ≈ −ϕt + ∆xϕ
0 − 2

r

[
e iθλ̇

0

]
.

so we require ϕ0 =

[
e iθφ

0

]
where

φt = φrr +
φr
r
− φ

r 2
− 2λ̇

r
= 0.

We solve this equation with the aid of Duhamel’s formula,

φ = φ0[λ̇](r , t) = −2

∫ t

0
λ̇(s)

1− e
− r2

4(t−s)

2r
ds.

The new error gets concentrated near q.



Step 2
We consider ϕ∗ = vp0 + Z ∗ for a small smooth function
z∗(x , t) = z∗1 (x , t) + iz∗2 (x , t) which solves the heat equation,

z∗t = ∆z∗, in Ω× (0,T ),

z(x , t) = z0(x) in ∂Ω× (0,T ),

z(x , 0) = z0(x) in ∂Ω .

On z0(x) we assume the following. For a point q0 close to q,

div z0(q0) = ∂x1z01(q0) + ∂x2z02(q0) < 0

curl z0(q0) = ∂x1z02(q0)− ∂x2z01(q0) = 0

z0(q0) = 0, Dz0(q0) non-singular.



We write

Z ∗(x , t) =

[
z∗(x , t)

0

]
=

[
z∗1 + iz∗2

0

]
and compute the linear error

−∂tΠU⊥Z ∗ + LU(ΠU⊥Z ∗) −
1

λ
ρw 2

ρ

[
div z∗E1 + curl z∗ E2

]
1

λ
ρw 2

ρ

[
div z̄∗ cos 2θ + curl z̄∗ sin 2θ

]
E1

1

λ
ρw 2

ρ

[
div z̄∗ sin 2θ − curl z̄∗ cos 2θ

]
E2

+ O(ρ−2)



Step 3 Finding ϕ which improves the full error, namely that solves

−∂t(ΠU⊥(ϕ0 + Z ∗) + ϕ) + LU(ΠU⊥(ϕ0 + Z ∗) + ϕ) + S(U) ≈

−∂tϕ+ LU(ϕ) + E∗ = 0, ϕ · U = 0

where E∗ = E1 + E2 + E3,

E1 =

[
λ−2 4

(1 + ρ2)2

[
φ0[−2λ̇] + λρ div z∗

]
+

2λ−1λ̇

ρ(1 + ρ2)

]
E1

E2 =
4λ−1ρ

(1 + ρ2)2

{[
d1 cos 2θ+d2 sin 2θ

]
E1+

[
d1 sin 2θ−d2 cos 2θ

]
E2

}
E3 =

4λ−1ρ

(1 + ρ2)2
curl z∗ E2 + (U · Z ∗)2λ−1λ̇ρ

1 + ρ2
E1 + O(ρ−2)

We recall: z∗(q, 0) = 0, curl z∗(q, 0) = 0, div z∗(q, 0) < 0.



In order to find ϕ which cancels at main order E1 we consider the
problem of finding ϕ which decays away from the concentration
point and satisfies

LU(ϕ) + E1 = 0 ϕ · U = 0.

the following is a necessary (and sufficient!) condition We need
the orthogonality condition∫

R2

E1 · Z01 = 0

where Z01 = ρwρE1 which satisfies LU [Z01] = 0. This relation
amounts to an equation for λ(t).



After some computation the equation for λ(t) becomes
approximately ∫ t−λ2

0

λ̇(s)

t − s
ds = 4div z∗(q, t) .

Assuming that log λ ∼ log(T − t) the equation is
well-approximated by

−λ̇(t) log(T − t) +

∫ t

0

λ̇(s)

T − s
ds + 4div z∗(q, t) = 0.

which is explicitly solved as

λ̇(t) = − κ

log2(T − t)
(1 + o(1))

The value of κ is precisely that for which

κ

∫ T

0

ds

(T − s) log2(T − s)
= −4div z∗(q,T ).



Then if T is small we get the approximation

λ̇(t) ≈ λ̇0(t) :=
4| log T |

log2(T − t)
div z∗(q,T )

Since λ decreases to zero as t → T−, this is where we need the
assumption

div z∗(q,T ) < 0.

With this procedure we then get a true reduction of the total error
by solving LU [ϕ] + Ej = 0, j = 1, 2.



At last we find a new approximation of the solution of the type

U∗(x , t) = U0

(
x − q

λ

)
+ ΠU⊥ [φ0[−2λ̇] + Z ∗(x , t)] + ϕ∗(x , t)

where ϕ∗(x , t) is a decaying solution to

LU [ϕ∗] = E∗, ϕ∗ · U = 0.

To solve the full problem we consider consider

λ(t) = λ0(t) + λ1(t), α(t) = 0 + α1(t), x0(t) = q0 + x1(t).



The true perturbations λ1, α1 approximately solve linear equations
of the type

∫ t−λ2
0

0

λ̇1(s)

t − s
ds = p1(t)∫ t−λ2

0

0

α̇1(s)λ0(s)

t − s
ds = p2(t)

which are approximated by

−λ̇1(t) log(T − t) +

∫ t

0

λ̇1(s)

T − s
ds = p1(t).

−α̇1(t)λ0 log(T − t) +

∫ t

0

λ0α̇1(s)

T − s
ds = p1(t).

and can be explicitly solved.



Thanks for your attention


